W. Jason Morgan, Who Developed Theory of Plate Tectonics, Dies at 87

The science world is remembering W. Jason Morgan, who in 1967 developed the theory of plate tectonics — a framework that revolutionized the study of earthquakes, volcanoes and the slow, steady shift of the continents across the earth’s mantle. Morgan, who died July 31 at his home in Natick, Mass., attended Georgia Tech and received his B.S. from the School of Physics in 1955. 

Researchers discover algorithm to create shapes that roll down pre-determined paths

Researchers have developed a method to construct solid objects that roll down pre-determined paths, which they reckon could have applications in quantum mechanics and medicine. To get a ball of malleable clay to roll down a simple path, you can force it down a specific path once, squashing it as you go. Take it to the top again, restart it from the initial starting point on the ball's surface, and it will roll down the same path.

To build a better crawly robot, add legs—lots of legs

When traveling on rough and unpredictable roads, the more legs the better — at least for robots. Balancing on two legs is somewhat hard; on four legs, it’s slightly easier. But what if you had many many legs, like a centipede?

Robotics Expert Brings Moss Clock to Life

There’s no artist more vibrant, spiritual, or creative than Mother Earth.

Physicists solve mysteries of microtubule movers

Researchers are exploring how active matter can be harnessed for tasks like designing new materials with tailored properties, understanding the behavior of biological organisms, and even developing new approaches to robotics and autonomous systems. But that’s only possible if scientists learn how the microscopic units making up active matter interact, and whether they can affect these interactions and thereby the collective properties of active matter on the macroscopic scale.

Pages

Subscribe to School of Physics RSS