Mar
07
Teaser:

Cells are highly ordered and organized. Much of the cell’s order relies on the active transport of material by molecular motors. Disruption in intracellular transport can be detrimental to cells, and is a common early theme in neurodegeneration. While molecular motors have been studied in isolated, cell-free system, how they act in groups in cells, and how their group functions are regulated or disrupted, are not yet understood. To address these questions in a concrete, experimentally tractable system, we studied the effects of a neurodegenerative mutation (“Legs at Odd Angles”, or Loa) on the major molecular motor, dynein. Combining single...

Mar
02
Teaser:

Soil harbors a huge number of microbial species interacting through secretion of antibiotics and other chemicals. What patterns of species interactions allow for this astonishing biodiversity to be sustained, and how do these interactions evolve? I used a combined experimental-theoretical approach to tackle these questions. Focusing on bacteria from the genus Steptomyces, known for their diverse secondary metabolism and production of antibiotics, I isolated 64 natural strains from several individual grains of soil and systematically measured all pairwise interactions among them. Quantitative measurements on such scale were never possible before. They were...

Feb
28
Teaser:

Flagellated bacteria swim by rotating thin helical filaments, each driven at its base by a reversible rotary motor, powered by an ion flux. Studies of the physiology of the bacterial flagellar rotary motor have been limited to the regime of relatively high load due to technical limitations. Here, we developed a new technique that allows systematic study of the motor near zero load. Sixty-nanometer-diameter gold spheres were attached to motors lacking flagellar filaments, and a novel laser darkfield setup was used to monitor the sphere rotation. Resurrection experiments were carried out near zero load: paralyzed motors without torque...

Feb
25
Teaser:

Our approach to engineer cellular environments is based on self-organizing spatial positioning of single signaling molecules attached to inorganic or polymeric supports, which offers the highest spatial resolution with respect to the position of single signaling molecules. This approach allows tuning cellular material with respect to its most relevant properties, i.e., viscoelasticity, peptide composition, nanotopography and spatial nanopatterning of signaling molecule. Such materials are defined as “nano-digital materials” since they enable the counting of individual signaling molecules, separated by a biologically inert background. Within these...

Feb
23
Teaser:

Chaotic system, characterized by sensitivity to initial conditions, handles abundant dynamics, sometimes leading to unimagined results in reality. In the past two decades, dynamical analysis and control of chaos attracted a lot of interests of scientists. Specifically, since chaos synchronization was found in 1991, generating and synchronizing chaotic systems has become a hot issue and been intensively studied. In this presentation, I would like to introduce some advances in generating new chaotic attractors and synchronizing chaos. Initially, starting from designing new chaotic systems, I demonstrate three types of systematic approaches to generate multi-scroll attractors and...

Feb
23
Teaser:

The first stars and galaxies had a profound impact on the universe, leading to reionization and the chemical enrichment of the intergalactic medium.  Here I present results from adaptive mesh refinement radiation hydrodynamics simulations that focus on the formation of the first galaxies with a self-consistent transition from massive metal-free stars to metal-enriched stars that populate the first galaxies. These results provide invaluable insight for interpreting the latest and future galaxy observations prior to reionization.

Feb
21
Teaser:

One of the biggest outstanding puzzles in physics today is the nature of dark matter. Although there is compelling evidence for its existence over a wide range of scales, from the Cosmic Microwave Background to dwarf galaxies, we still do not fully understand what exactly it is. Our own Milky Way galaxy and its Local Group environment presents an ideal laboratory for the study of dark matter: numerous ground and space-based experiments and observatories are gearing up to probe dark matter on Earth, in the Solar System, at the Galactic Center, in dwarf satellite galaxies, and beyond. In this talk I will describe how recent ultra-high resolution numerical...

Feb
16
Teaser:

The classical picture of the transition to turbulence in fluid flows is that of successive instabilities where starting from a stationary basic state complexity arises via a sequence of bifurcations. In contrast, shear flows undergo a sudden and direct transition from laminar to turbulent motion as the driving velocity increases. In this talk we examine the richness of this transition in pipe flow. We show that turbulence, which is transient at low Reynolds numbers, becomes sustained at a distinct critical point. The turbulent state emerging through this phase transition is a large-scale pattern consisting of localized chaotic clusters that may relaminarize, merge, nucleate new...

Feb
16
Teaser:

The field of high-energy astrophysics is experiencing a revolution due to recent observations that have revealed a Universe that is surprisingly rich, variable and complex at gamma-ray energies. We employ these new observations to address long-standing science topics including: the inner workings of the Universe's most powerful accelerators; the nature of dark matter; and the total amount of light that has been emitted in the Universe since the first stars were formed.  This revolution has come about due to the launch of the Fermi Gamma-ray Space Telescope and the full-fledged operation of a new generation of ground-based instruments like VERITAS, H.E.S.S. and MAGIC. Among the...

Feb
14
Teaser:

Our earliest image of the universe - the cosmic microwave background - shows that hundreds of thousands of years after the big bang, it was a relatively simple place. At that time, there were no planets, stars, or galaxies. Space was permeated by an expanding, nearly homogeneous mixture of dark matter and mostly hydrogen gas, devoid of the heavier elements common in daily life. How then did the complex structure we see today develop? I will focus on a key aspect of this problem, namely the story of the very first stars, galaxies, and black holes - how they formed, and how they influenced the subsequent evolution of cosmic structure. In particular, I will show...

Feb
09
Teaser:

Steady fluid solutions can play a special role in characterizing the dynamics of a flow: stable states might be realized in practice, while unstable ones may act as attractors in the unsteady evolution. Unfortunately, determining stability is often a process substantially more laborious than computing steady flows; this is highlighted by the fact that, for several comparatively simple flows, stability properties have been the subject of protracted disagreement (see e.g. Dritschel et al. 2005, and references therein).

In this talk, we build on some ideas of Lord Kelvin, who, over a century ago, proposed an energy-based stability argument for steady flows. In essence, Kelvin’s...

Feb
09
Teaser:

For the last seven years, gamma-ray astronomy from the ground provides us with fantastic results, which address questions in astroparticle physics, cosmology, and fundamental physics.  The workhorses in the field are imaging atmospheric Cherenkov telescopes, which are the most sensitive instruments to explore the gamma-ray sky above 100 GeV in pointed observations. Amongst others I discuss the efforts to lower the energy threshold of Cherenkov telescopes, and the detection of the Crab Pulsar as one of the merits of these efforts. I close by describing ongoing efforts to develop the next generation of Cherenkov telescopes, the Cherenkov Telescope Array (...

Feb
07
Teaser:

Galactic cosmic rays are found to have a broad and faint energy-dependent anisotropy in arrival direction from a few tens of GeV to hundreds TeV. The observations show large angular features across the sky overlapped with finer sub-structures, some of which manifest as highly significant localized excess regions. Currently there is no explanation for this puzzling observation. Depending on the cosmic ray energy and type, causes could be linked to the influence of the heliosphere, or of the interstellar medium. In this presentation the acceleration and propagation of cosmic rays is discussed along with their detection. The intringuing possibility that the...

Feb
02
Teaser:

Galaxy mergers are expected to be a natural channel for the formation of supermassive black hole binaries (SBHBs). Discovery of a statistically significant sample of these objects has important astrophysical implications for a range of questions that pertain to the formation and cosmological evolution of the supermassive black holes, the rate of their coalescences, and associated electromagnetic (EM) and gravitational wave signatures. All are intricately connected to the properties of the environment in which the SBHBs find themselves during the cosmic time. Most of the information about these systems so far had to be derived from theoretical studies and...

Jan
31
Teaser:

The Fermi Large Area Telescope (LAT) has been successfully launched  from Cape Canaveral on 11 June 2008. It is exploring the gamma ray sky in the energy range from 20 MeV to over 300 GeV with unprecedeted sensitivity. One of the most exciting science questions that Fermi LAT will address is the nature of dark matter. Several theoretical models have been proposed that predict the existence of Weakly Interacting Massive Particles (WIMPs) that are excellent dark matter candidates. Fermi LAT investigates the existence of WIMPs indirectly, primarily...

Pages