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We calculate a quantum (Casimir-like) superconducting phase-dependent force acting on a movable scatterer 
in a superconductor–normal metal–superconductor (SNS) junction. Repulsive Casimir forces are predicted for a 
short SNS junction with nonequilibrium (inverse) populations of Andreev levels. In a long SNS junction an 
anomalous (nonmonotonic) temperature behavior of quantum force is found.  
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1. Introduction 

The Casimir effect [1] and its various generalizations 
(see, e.g., [2]) is perhaps the simplest and most spectacular 
manifestation of zero-point fluctuations of quantum fields 
in macroscopic physics. The effect predicts attractive in-
teraction between neutral objects due to the change of en-
ergy spectrum of fluctuating fields, induced by boundary 
conditions (associated with the introduction of the objects). 

Modern STM and AFM techniques allow manipulations 
of small objects on nanoscale dimensions and measure-
ment of quantum forces acting on them. These forces could 
be produced by zero-point fluctuations of the electromag-
netic field as in classical Casimir effect, or by quantum 
fluctuations of fermionic or bosonic fields in various solid 
state problems (see, e.g., [3]). One of the aims of these 
studies is to find conditions for the occurrence of repulsive 
Casimir-like forces which could result in levitation effects. 

In Ref. 4 similarity between the physics of a ballistic 
SNS junction and the Casimir effect was revealed. It was 
shown that the Josephson current can be considered as the 
superconducting phase derivative of Casimir energy calcu-
lated for quasiparticle wave functions in the normal region. 
The corresponding Casimir-like force (coordinate deriva-
tive of Casimir energy) was studied in [5] where supercon-

ductivity-induced force oscillations in ideal (impurity-free) 
SNS junctions were predicted. Note that the force oscilla-
tions (as a function of the gate voltage) in the normal quan-
tum point contact (see, e.g., [6]) disappear in the limit of a 
multichannel junction. In contrast in SNS junctions trans-
verse channels contribute coherently to the Casimir energy 
(for a short SNS junction the thermodynamic potential is 
simply multiplied by the number N⊥  of transverse chan-
nels) and the force is therefore strongly enhanced in this 
case. 

In the present paper we consider a quantum (Casimir-
like) force acting on a movable impurity inside the normal 
part of a SNS junction. As an example we model such scat-
terer by a neutral fullerene molecule inside a single wall 
carbon nanotube which bridges the gap between two su-
perconducting electrodes. We show that in a short SNS 
junction, depending on the populations of Andreev bound 
states, this force could be either attractive (equilibrium 
population) or repulsive (nonequilibrium population). The 
amplitude of the quantum force is controlled by the Jo-
sephson current. In a long SNS junction we found a rather 
unusual (nonmonotonic) temperature behavior of the 
Casimir force, with a maximum value reached at a crosso-
ver temperature, where the Josephson current starts to de-
cay exponentially. 
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2. Basic equations 

We consider a SNS junction with a movable scatterer 
(impurity) in the normal region. The scatterer could be for 
instance a fullerene molecule inside a metallic single wall 
carbon nanotube (SWNT) which forms a weak link be-
tween two superconducing electrodes, or a tip of atomic 
force microscope (AFM). For a given position ( =x l ) of 
“impurity” inside a SNS junction of a length L  (see 
Fig. 1) the equation for the Andreev energy levels, E , 
takes the standard form (see, e.g., [7])  

 
0 0

2cos 2 arccos E E L
Δ Δ ξ

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
 (1) 

 
0
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Here 0Δ  is the superconducting gap, 0= /Fvξ Δ  is the 
superconducting coherence length and 2 1=ϕ ϕ ϕ−  is the 
superconducting phase difference, D  is the junction trans-
parency ( = 1R D− ). We note that for the Andreev levels 
there is no phase difference between the right and left su-
perconducting leads. When difference between the leads is 
taken into account these levels are called the Andreev–
Kulik levels [8]. 

In the case when a neutral fullerene molecule ( 60C ) is 
placed inside a SWNT the effective scattering potential 
experienced by the electrons is produced by the hybridiza-
tion of the lowest occupied molecular orbitals (LUMO 
states) of the 60C  with the conducting states of the SWNT 
[9]. The potential was shown [10] to be smooth and there-
fore it does not mix electronic states in two degenerated 
valleys of the SWNT spectrum. This intra-valley scattering 
depends strongly on the chiral properties of the nanotube 
and it was termed “chiral tunneling” in Refs. 11, 12. Chiral 
tunneling is characterized by the transmission coefficient 

( )D θ  [11,12] 
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Here θ  is the effective chiral angle of the SWNT (the dif-
ference between the chiral angle of the SWNT and the 
phase of scattering potential). Both the supercurrent J  
through the junction and the force, F , acting on the impu-
rity, can be evaluated as derivatives of the grand-canonical 
potential ( , )lΩ ϕ  of the SNS junction  

 ( , )( ) = , ( ) = ,s
s

e lJ F
l

ν Ω Ω ϕϕ ϕ ν
ϕ

∂ ∂−
∂ ∂

 (3) 

where the statistical factor = 2 2sν ×  accounts for the spin 
and valley degeneracy in the SWNT. The definition of the 
force F  in Eq. (3) means that we calculate the quantum 
(Casimir) force induced by the discreteness of energy lev-
els (this force vanishes in the limit L → ∞ ). Since in a 
SNS junction the bound states are given by the Andreev 
levels we will call the phase dependent force in a SNS 
junction as the Andreev force [5]. Andreev force can be 
analytically calculated in the limiting cases of short and 
long junctions. 

3. Repulsive Casimir interaction in a short junction 
with nonequilibrium Adreev level populations 

To calculate Andreev force in a short SNS junction we 
will use perturbation theory in the small parameter /L ξ . 
As it is well known in a short SNS junction there are only 
two Andreev bound states (see, e.g., [7]). The l-depend-
ence of energies appears in the second order perturbation 
theory as (2) 2[1 2 / ]E l Lδ ∝ ± − . By knowing l-dependent 
shift of the energy levels it is easy to valuate the force 
Eq. (3). The Andreev force, acting on an impurity in a 
short SNS junction, calculated under conditions of equilib-
rium populations of the Andreev levels at a temperature T , 
reads as  

 2
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2( ) = 2 ( / 2)sin1s
l LF R Dϕ ν Δ ϕ
ξ
−

×−
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Notice that the contribution to the force from two Andreev 
levels is of opposite sign. Consequently this the Andreev 
force at finite temperatures decays in the same way as the 
Josephson current. The force is a linear function of l  
( = / 2l L  is a point of unstable equilibrium) and it has the 
same dependence on the phase, ϕ , as the energy levels. It 
is clear that in the absence of reflection (both at S/N con-
tacts and in the interior of the junction) the force vanishes 
( = 0R , i.e. the case of transparent junction). The Andreev 
force reaches its maximum, 0( / ) /F L ξ Δ ξ∼ , in the op-
posite limit 0D → , when one can neglect the dependence 
of force on the superconducting phase difference. 

It is well known (see, e.g., [7]) that to /L ξ  order in 
perturbation theory not only bound states but also the con-
tinuum (scattering) states contribute to the Josephson cur-

Fig. 1. A SNS junction between two superconducting electrodes
(blue reservoirs on the right and left), formed by a metallic car-
bon nanotube with a fullerene molecule impurity which can
freely move inside the tube. The movable “impurity” is attracted
to superconductor leads, for equilibrium populations of the An-
dreev bound states and can levitate inside the tube for
nonequilibrium level occupations. 
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rent in a short SNS junction. The calculated force, Eq. (4), 
appears in this order of perturbation theory and one has 
to estimate the contribution of the scattering states to the 
Andreev force. The corresponding thermodynamic poten-
tial cδΩ  can be found as the integral of “continuum-states-
induced-current” ( )cJδ , over the phase difference, =cδΩ

 ( )( / ) c
se J dν δ ϕ= ∫ . The general formula for ( )cJδ  takes 

the form [7] 
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where [ ]4 4 2 2
0 0 0 0 0( , ) = 2 cos /D E u v u v ELα Δ ξ α+ − + . 

Here 0u  and 0v  are the standard BCS coherence factors 
2 2 2 1/2
0 02 = 1 ( ) /u E EΔ+ −  and 2 2 2 1/2

0 02 = 1 ( ) /v E EΔ− − . 
The phase α  in Eq. (5) is defined by the relation 

0cos = cos cos [2 ( 2 ) / ]D R E L lα ϕ Δ ξ+ − . Straightforward 
calculations in perturbation theory (with order parameter 

/L ξ ) show that continuum contribution to the force is 
( ) 2

0( / )( / ) (1 2 / )cF R L l Lδ Δ ξ ξ −∼ . We observe that for-
ce produced by the continuum spectrum is reduced by a 
factor / 1L ξ  compared to the Andreev force induced 
by the discrete spectrum. 

We note that irradiation of a short SNS junction by an 
electromagnetic field can lead to a nonequilibrium popula-
tion of the upper level. Under conditions when the popula-
tion of the upper Andreev level exceeds that of the lower 
level (so-called “somersault effect” [13]) the Casimir inter-
action in a SNS junction will be repulsive. Then the middle 
point = / 2l L  becomes the point of stable equilibrium. In 
the limiting case when only upper level is populated the 
oscillation frequency of the scatterer ( 60C  molecule) 
around equilibrium position reads  

 2 22
0= 1 / ,sin

2A R D M
ϕ

ω Δ ξ⎛ ⎞− ⎜ ⎟⎝ ⎠
 (6) 

where M  is the mass of the 60C  molecule. Repulsive 
Andreev forces could result in levitation of the fullerene 
molecule inside the tube at equal distances from the super-
conducting leads (i.e., the middle of the tube). 

4. Anomalous temperature behavior of Andreev force 
in a long junction 

Next we consider limit of a long SNS junction, i.e. 
L ξ . In this case all relevant energies in the problem are 
smaller than the superconducting gap, i.e. 0E Δ , and 
Eq. (1) simplifies. We consider first an almost transparent 
junction ( 1D ) and use perturbation theory, with a re-
flection coefficient 1R  in the evaluation of the energy 
spectrum. To zeroth order the spectrum is [8] ,n jE =

 ( / 2 )[ (2 1)]Fv L j nϕ π= + +  and the first order correction 
reads 
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where = 0, 1, 2, ...n ± ± , =j ± , and the phase difference in 
,n jEδ  can not be too close to = 0,ϕ π±  (that is 

| sin |R ϕ ). We will see below that this restriction can 
be omitted for the phase dependence of the total Andreev 
force, which is not the singular at these points. 

The l-dependent part of the potential Ω , to first order 
perturbation in the reflection coefficient 1R , takes the 
form  

 
,

,
/

,
( , ) = .

e 1n j

n j
E T

j n

E
l

δ
Ω ϕ

+
∑  (8) 

We neglect higher-order (l-independent) contributions to 
,n jEδ . To perform summation over n  we use the Poisson 

summation formula  
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The first term in Eq. (9) does not contribute to the force 
and performing integration in the second term we get the 
desired expression for the Andreev force acting on the im-
purity in a long SNS junction  
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Here = (1 2 / )a l L− , = / 2FT v Lπ∗  is the crossover 
temperature which separates the low- and high-T  regions. 
The two terms in the curly brackets in Eq. (10) correspond 
to the attractive forces associated with the left and the right 
superconducting reservoirs. After summation over the en-
ergy levels the singularities at = 0,ϕ π±  disappear and 
Eq. (10) is valid in the whole interval π ϕ π− ≤ ≤ . 

The low- and high-temperature asymptotics of Andreev 
force are  
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where 2
0 = /FF v R Lπ . According to these analytical 

expressions the force decays exponentially at high temper-
atures. However numerical calculations reveal an anoma-
lous (nonmonotonic) temperature behavior of the Andreev 
force (see Fig. 2). Note, that the Josephson current demon-
strates an usual (monotonous) temperature behavior (it 
decays with increasing of temperature) without any en-
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hancement in the crossover region (T T∗ ). It is clear that 
adjacent energy levels carry supercurrents of opposite 
signs and hence the temperature, tending to equalize level 
populations always suppress the net (Josephson) current. 
The signs of partial forces associated with the pair of adja-
cent energy levels are not always opposite. For the same 
value of n , but different values of j , the partial forces 

, , /n j n jf d E dlδ∝  are not oppositely directed (as in the 
case of a short junction). This results in the enhancement 
of quantum force in the crossover region. 

In Figs. 3, 4 we plot the dependence of the force on the 
coordinate of the mobile impurity and on the supercon-
ducting phase in a long SWNT junction. It is seen that in 
contrast to the case of short junction the l-dependence is 
not linear. Near the boundaries of junction the force exhib-
its a quadratic divergence characteristic to the Casimir 
force in one-dimensional systems (see, e.g., Ref. 2). The 
phase-dependence is also different from the case of a short 
junction. Now the force is enhanced (see Fig. 4) at the val-

ues = (2 1)nϕ π + , when one of the Andreev levels coin-
cide with the Fermi level. 

In the end of this section we consider long tunnel 
SNINS junction (superconductor–normal metal–insulator–
normal metal–superconductor). In zeroth order perturba-
tion theory in junction transparency 1D , we have two 
sets of uncoupled levels (to the left lE  and to the right rE  
with respect to the impurity position): 

 = ( 1/ 2) , = ( 1/ 2).
2 2( )
F F

l r
v v

E n E n
l L l
π π

+ +
−

 (12) 

Here the superconductivity (in the leads) is “manifested” 
through doubling the quantization length caused by the 
Andreev reflection at the /N S  boundary. The Casimir-like 
force for these energy levels can be readily obtained with 
the help of summation formula for half-integer numbers 
[2]:  
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Here the symbol “reg” stands for the regular (finite) part of 
the sum. The main contribution to the force for = 0D  
does not depend (as should be the case) on the supercon-
ducting phase and at = 0T  it takes the form  

 2 2 2
1 1= .

48 (1 / ) ( / )
F

C
vF

L l L l L
π ⎧ ⎫⎪ ⎪−⎨ ⎬
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 (14) 

The calculated force in Eq. (14) is simply the difference 
between two Casimir forces for spinless fermions on 1S -
manifold. The temperature dependence of the Casimir 
forces for a 1D fermion systems was calculated in Ref. 14 
and it can be easily generalized to our problem. Notice that 
unlike the ordinary “bosonic” Casimir effect, where the 
low-temperature corrections are power-law-like, here the 
temperature dependent contributions to the force are always 
exponentially small even for massless fermions. Anyway 

Fig. 2. The force (in units 2
0 = /FF v R Lπ ) as a function of

normalized temperature /T T∗  for = 0ϕ  (solid), = 2ϕ  (dot-
ted), = 3.14ϕ  (dashed). / = 0.7l L . 
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Fig. 3. The force (in units 2
0 = /FF v R Lπ ) as a function of the

normalized coordinate /l L  for two different values of phase
difference: = /12ϕ π  (solid) and =ϕ π  (dashed). 
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the Casimir force (Eq. (14)) and the corresponding finite 
temperature corrections, do not depend on superconducting 
phase and thus they are not of interest in the contest of the 
present paper. 

5. Conclusion 

In summary, we have calculated quantum (Casimir-
like) superconducting phase-dependent force acting on a 
movable “impurity” in a SNS junction. In a short junction 
the force is attractive (the superconducting leads attract the 
scatterer in the normal region) for equilibrium populations 
of the Andreev energy levels. In Ref. 13 it has been pre-
dicted that in a short SNS junction under microwave irra-
diation an inverse population of the energy levels takes 
place, accompanied by the reversal of the direction of the 
Josephson current (“somersault effect”). We showed that 
under the conditions of the “somersault effect” the An-
dreev force is repulsive and the movable scatterer (in our 
consideration a neutral fullerene molecule inside a metallic 
single wall carbon nanotube) can levitate at the equal dis-
tances from the leads. For a long SNS junction we predict-
ed anomalous (nonmonotonic) temperature behavior of the 
Andreev force with a maximum at a crossover temperature 
T ∗  when Josephson current starts to decay. A simple es-
timation of the amplitude of the Andreev force for a few 
channel junction with 2

0 10 KΔ ∼  gives 0.1 pNF ∼  
which is too small to be measured in superconducting de-
vices. However, this value can be strongly enhanced (by 
two orders of magnitude) in multichannel junctions. 
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