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Edge states in graphene quantum dots: Fractional quantum Hall effect analogies and differences
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We investigate the way that the degenerate manifold of midgap edge states in quasicircular graphene
quantum dots with zigzag boundaries supports, under free-magnetic-field conditions, strongly correlated many-
body behavior analogous to the fractional quantum Hall effect (FQHE), familiar from the case of semiconduc-
tor heterostructures in high-magnetic fields. Systematic exact-diagonalization (EXD) numerical studies are
presented for 5=N=38 fully spin-polarized electrons and for total angular momenta in the range of N(N
—1)/2=L=150. We present a derivation of a rotating-electron-molecule (REM) type wave function based on
the methodology introduced earlier [C. Yannouleas and U. Landman, Phys. Rev. B 66, 115315 (2002)] in the
context of the FQHE in two-dimensional semiconductor quantum dots. The EXD wave functions are compared
with FQHE trial functions of the Laughlin, compact composite fermion, and the derived REM types. It is found
that a variational extension of the REM offers a better description for all fractional fillings compared with that
of the Laughlin functions (including total energies and overlaps), a fact that reflects the strong azimuthal
localization of the edge electrons. In contrast with the multiring arrangements of electrons in circular semi-
conductor quantum dots, the graphene REMs exhibit in all instances a single (0,N) polygonal-ring molecular
(crystalline) structure, with all the electrons localized on the edge. Disruptions in the zigzag boundary condi-
tion along the circular edge act effectively as impurities that pin the electron molecule, yielding single-particle
densities with broken rotational symmetry that portray directly the azimuthal localization of the edge electrons.
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I. INTRODUCTION

Since the discovery! of the fractional quantum Hall effect
(FQHE) in two-dimensional (2D) semiconductor heterostruc-
tures in the presence of a high perpendicular magnetic field
(B), phenomena associated with strongly correlated electrons
in the lowest Landau level (LLL) have attracted significant
and continuous attention.>!> Early on, it was realized that
the essential many-body physics in the LLL could be most
effectively grasped through the use of trial wave functions,
with celebrated examples being the Jastrow-type Laughlin®
(JL) and composite fermion® (CF) trial functions associated
with the formation of a special class of quantum-liquid
states.® Later interest in finite 2D electronic systems, such as
semiconductor quantum dots (QDs) under high B, led to the
consideration of a different class of analytic trial functions
known as rotating-electron (or Wigner) molecules®!! (REMs
or RWMs). An advantage of the REMs is that, while they
exhibit good-total angular momenta, they directly incorpo-
rate the molecular (crystalline) configurations that dominate
the anisotropic pair-correlation functions revealed through
numerical exact-diagonalization (EXD) studies for a finite
number of electrons under high B in a disk geometry. The
initial derivation® of the REM trial functions generated a
flare of theoretical activity aimed at finding which class of
trial functions (or combination of them) is most appropriate
for describing the correlated many-body physics in the LLL
of a small number of electrons N.”*-!3 Furthermore, experi-
mental advances in the field of ultracold trapped neutral at-
oms have been followed by considerable theoretical activity
regarding the nature of correlated states in the LLL that are
formed during the rapid rotation of the trap (see, e.g., Refs.
14-19).
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Recent progress in the fabrication of new materials, and in
particular in isolating and handling of a single graphene
sheet,’23 offers most promising materials for future, post-
silicone, miniaturized electronics?*?> (sometime called nano-
electronics). This expectation is based on the two-
dimensional character of graphene, where the electrons are
essentially confined in the spatial direction normal to the
graphene plane. Fabrication of nanoscale device elements for
use in electronics, spintronics, and information processing,
such as single-electron transistors, quantum point contacts,
and quantum dots, would require additional confinement in
the other two spatial dimensions. However, to achieve the
requested additional confinement, techniques (based on elec-
trostatic gating) developed for the creation of QDs in semi-
conductors (such as GaAs) cannot be used because of the
unique electronic structure of graphene. The difficulty origi-
nates from the relativistic, Dirac-type, nature of the low-
energy quasiparticles in graphene. In particular, the gapless
nature of the electrons in graphene?® allows them to pen-
etrate unimpeded through a high and wide potential barrier.?’
This phenomenon, which is known as the Klein paradox,?®%
is in fact not a paradox but a consequence of the relativistic
character of the electrons, with a sufficiently high potential
being repulsive for electrons but attractive for positrons, thus
resulting in positron states inside the barrier which can be
matched to the electronic continuum states outside, conse-
quently resulting in perfect transmission through the barrier;
the underlying property of the Dirac equation is known as
the charge-conjugation symmetry.

In light of the above, one wishes to explore alternative
nonelectrostatic methods for fabrication of lower dimension-
ality graphene nanostructures. One route for achieving the
desired added planar confinement consists of etching or cut-
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ting graphene into the desired geometry (e.g., ribbons,30-32

circular disks, or other shapes®~%). It is expected that further
progress in fabrication, characterization, and understanding
of the properties of such graphene nanostructures (in particu-
lar, zero-dimensional QDs) would lead to their use for the
study of interesting many-body phenomena, as well as their
employment as components in miniaturized electronic de-
vices.

Here we explore theoretically certain properties of circu-
lar graphene quantum dots, defined via cutting the desired
shape from a two-dimensional extended sheet. In particular,
we regard investigations of graphene QDs as providing an
opportunity for re-examination (and possibly experimental
resolution) of remaining questions concerning the appropri-
ateness of liquid-type vs molecular-type trial functions for a
finite number of 2D electrons. Indeed, it has been known for
some time that manifolds of degenerate midgap edge states
exist in graphene nanostructures (such as graphene ribbons)
when they terminate in a zigzag boundary.>>3 In a recent
paper’® it was noted that the single-particle edge states asso-
ciated with circular graphene dots with zigzag boundary
conditions, and in the absence of an applied magnetic field,
display degeneracies and quantum numbers in close analogy
with the manifold of single-particle states that form the fa-
miliar LLL in semiconductor heterostructures at high 5. Fur-
thermore, the numerical calculations in Ref. 38, covering
rather limited ranges of electron numbers (i.e., 2=N=<5)
and total angular momenta [i.e., N(N-1)=L=60], sug-
gested that the use of quantum-liquid-type trial functions in
relation to the graphene-dot lowest Landau level (GD-LLL)
may be less promising than that of Wigner-crystal-type
Ansditze.

In this paper, applying a methodology based on angular-
momentum projection techniques, which was introduced in
Ref. 8, we derive analytic REM trial functions appropriate
for the GD-LLL. By introducing a single variational param-
eter, we demonstrate numerically (through systematic com-
parisons with EXD calculations) that the variational variant
of the REM (referred to as VREM) substantially outperforms
the Laughlin and compact composite-fermion trial functions
(as well as the Ansatz in Ref. 38) for all values of fractional
fillings within the expanded angular-momentum range N(N
—1)/2=L=150 for the following numbers of electrons N
=5,6, 7, and 8.

II. LOWEST LANDAU LEVEL FOR CIRCULAR
GRAPHENE DOTS

A. Single-particle edge states

It is well known® that the low-energy-band structure of
graphene can be described by a linearized tight-binding
Hamiltonian H. For a graphene dot with a circular symmetry
this linearized Hamiltonian is given®® in polar coordinates by

2

where
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where v is the Fermi velocity and s==* specifies the degen-
erate in energy valleys for the two bands formed at the K and
K’ points. The index s can be considered as a “pseudospin,”
which creates a fourfold degeneracy when the spin degree of
freedom is also considered. The general solution of the
Hamiltonian in Eq. (2) is a two component vector of the

Hy= > (2)

form
(u?(r, ¢)) )
wl(r.g) )
where A and B denote the two triangular sublattices of
graphene.

The usual volume solutions (which are zero on the
graphene boundary but otherwise extend everywhere inside
the area enclosed by the graphene dot) have energy E;
=vrk, with u? and uf components that are expressed via the
Bessel functions. Here we are not interested in such volume
solutions. Instead we focus on the special edge states with
zero energy E=0. These E=0 states are eigenfunctions of H,
under the assumption that the graphene boundary exhibits an
uninterrupted zigzag edge;**~® an outline of their derivation
from the Hamiltonian H, is given in Appendix A.

Henceforth we will only need to remember the precise
form of the edge states, which is given by

[+1 )
+ T g
(W? )= R @)

B+
/A 0
and

0

_ = [+1 . (5)
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Namely, one of the A and B components is everywhere zero
(both on the boundary and inside the dot) and the two valleys
+ and — are decoupled even when the two-body Coulomb
interaction is considered (which is the main focus of this
paper; see below). As a result, in the following, we will drop
the sublattice and valley indices. We will also assume that
the electrons are fully polarized.

Since the single-particle angular momentum /=0 (to
guarantee normalizability), the manifold of such model edge
states forms a set of degenerate states similar to the LLL,
familiar from the case of 2D semiconductor devices at very
high-magnetic fields B. We will call the manifold*’ of degen-
erate edge states with /=0 the GD-LLL. The main difference
[apart from the normalization constant, see Eq. (3) in Ref. 8]
between the two cases is that the single-particle states in the
usual LLL exhibit an additional Gaussian multiplicative fac-
tor exp(—r?/4A%), where Az=fic/(eB) is the magnetic
length. This Gaussian is missing from the expression for the
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edge states in Egs. (4) and (5); instead one has ;=0 for r
>R. It is thus natural to investigate possible similarities re-
lated to FQHE physics.

B. Classes of variational many-body wave functions

FQHE physics in the LLL has been extensively investi-
gated for the case of 2D semiconductor quantum dots.”!! A
main focus has been the underlying nature of the correlated
many-body states, i.e., “liquid” (Laughlin, composite fermi-
ons) or molecule (“crystalline,” REM). Detailed comparisons
of pair-correlation functions between JL/CF and REM states
with EXD ones support the view that the molecular (local-
ized electrons) picture in semiconductor QDs provides the
most appropriate description. The emergence of a GD-LLL,
as described above in graphene dots, offers a further area for
testing the appropriateness of liquid-type variational wave
functions (JL/CF) versus those that describe REMs. First we
will proceed with deriving a modified REM trial wave func-
tion that takes into consideration the differences between the
single-particle states which span the usual LLL (zero-node
2D-harmonic-oscillator states) and the GD-LLL (edge
states).

III. DERIVATION OF VARIATIONAL REM TRIAL WAVE
FUNCTIONS FOR GRAPHENE DOTS

A. Intermediary parameter-free REM functions

REM analytical wave functions in the LLL for electrons
in two-dimensional semiconductor quantum dots were de-
rived earlier in Ref. 8. The physics underlying such a deri-
vation is based on the theory of symmetry breaking at the
mean-field level and of subsequent symmetry restoration via
projection techniques.''*' In particular, this approach con-
sists of two steps:

(I) At the first step, one constructs a Slater determinant
WN(zy,...,zy) out of displaced single-particle states
u(z;,Zy ), j=1,...,N, which represent the electrons local-
ized at the positions Z ;, with (omitting the particle indices)
z=x+iy=re'? and Zy=X,+iY,=Roe'?. Note that necessarily
all electrons are localized radially on the edge of the
graphene dot, so that Ry=R.

Naturally, for the LLL case of semiconductor QDs, the
localized u(z,Z;) single-particle states (referred to also as
orbitals) were taken to be displaced Gaussians with appro-
priate Peierls phases due to the presence of a perpendicular
magnetic field [see Eq. (1) in Ref. 8]. In the case of electrons
in graphene dots, however, the GD-LLL is spanned by edge-
like orbitals (without a Gaussian factor), i.e.,

I+17

__’ 6
wR* R ©

lﬁl(Z) =

and as a result the appropriate localized orbitals are taken to
have an exponential form

u(z,Zy) = G exp(z/Zy), (7)

with G being the normalization constant (depending only on
R). The fact that u(z,Z;) in Eq. (7) represents a localized
electron is illustrated in Fig. 1.

PHYSICAL REVIEW B 79, 075311 (2009)

FIG. 1. The displaced orbital u(z,Z,) (modulus square) repre-
senting a localized electron at the point Zy=1+0i. The radius R of
the dot serves as the unit of length.

The localized orbital can be expanded in a series over the
basis functions in Eq. (6) in the following way:

u(z,20) = 2 CAZo)P(2), (8)
=0
with
V’TTRM 1
C(Z)=G——F——. 9
(Zo) Iz 9)

When constructing the many-body Slater determinant Wz],
one considers N orbitals u(z;,Z, ;) representing N electrons
on a ring of radius R (the radius of the graphene dot) forming
a regular polygon, i.e.,

Zyj=Re*™IIN 1 <j<N. (10)

The single Slater determinant W"[z] represents a static
electron (or Wigner) molecule (REM or RWM). Using Egq.
(8), one finds the following expansion (within a proportion-
ality constant):

W]
o NG+ Iy + 1)
= X RiF oy C1(Zoy) - C1(Zon)
[pve - dy=0
XD(ZI’IZ’ 7lN), (11)

where D(ll,ZQ,...,lN)Edet[zlll,lez,...,zf\”,’]; the elements of
the determinant are the functions sz, with zlll ,zlzz, ,zf{)’ be-
ing the diagonal elements.

(I) At the second step, the Slater determinant ¥"[z]

breaks the rotational symmetry and thus it is not an eigen-

state of the total angular momentum ﬁ]::hE;V:lf . However,
one can restore®!! the rotational symmetry by applying onto
WNz] the projection operator

(7
PL=7- f dye" 0, (12)
0

where AL are the eigenvalues of the total angular momen-
tum.

When applied onto Wz], the projection operator P; acts
as a Kronecker delta: from the unrestricted sum in Eq. (11) it
picks up only those terms having a given total angular mo-
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mentum L (henceforth we drop the constant prefactor 7
when referring to angular momenta). As a result the pro-
jected wave function ®Y=7, WV is written as (within a pro-
portionality constant)

L+ =L
oplz]= X
Loy
with (/5 =2m(j—1)/N.
We further observe that it is advantageous to rewrite Eq.

(13) by restricting the summation to the ordered arrange-
ments [; </, <---<ly, in which case we get

Do ol sl (13)

Ly

lj+1+ - +I\=L
! ZE YDy, L)

vty ity L LIy

IV (14)

P)[z]=

.0 . ,0
Xdet[e®1h, e,

The second determinant in Eq. (14) can be shown*? to be
equal (within a proportionality constant) to the following
product of sine terms times a phase factor (independent of
the individual /;’s):

oI TN-DLIN H

1=j<k=N

sin[%(lj—lk)]. (15)

Thus, the final result for the REM wave function is (within a
proportionality constant)

Li+ly+ - +IN=L

DLy, ... 1)
REM 15625 sUN
CD |::l_()<[ <[E<‘..<l l]'lz' lN’
1= N
x 1 sin[g(lj—lk)]. (16)
1=j<k=N

B. Introducing the variational parameter

As will be described below, we found that the agreement
between the REM in graphene dots and the EXD solutions
can be improved in a nontrivial way by introducing varia-
tional parameters. In particular, we found that consideration
of a single variational parameter « serves our purpose re-
markably well. Specifically, one replaces the prefactor

1

LIy a7

in Eq. (16) by the following expression:

[+ D+ 1) (y+ D]
(L V! L) '

We call the a-optimized wave functions the variational
REM functions (denoted by VREM). When a=1, the VREM
coincides with the parameter-free REM expression. We note
that a single-parameter variational crystal-type wave func-
tion, but with a different dependence on the parameter «, has
also been employed in Ref. 38. The present choice of varia-
tional parameter [see Eq. (18)] produces substantially better
results (see below). From a practical point of view, we note

(18)
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that the crystal-type wave function proposed in Ref. 38 does
not contain a “less-than” ordered-arrangement restriction in
the summation indices /;,...,/y, and as a consequence it
generates an exponentially larger number of expansion
terms, thus greatly inhibiting numerical evaluations for larger
N and L.

IV. EXACT DIAGONALIZATION AND TWO-BODY
COULOMB MATRIX ELEMENTS

For a circular graphene QD comprising N electrons in the
GD-LLL, the many-body Hamiltonian H comprises only the
two-particle interelectron Coulomb repulsion, i.e.,

NN
H=22—, (19)
i=1 j>i KTij
where « is the dielectric constant and r;; denotes the relative
distance between the i and j electrons.

The REM wave functions ®XM derived in Sec. I will be
compared to the EXD ones <DN . that are solutions of the
exact diagonalization of Hamiltonian (19) in the many-body
Hilbert space spanned by the Slater determinants,

{ '/’11(21) '//IN(Zl)
Piz]= 7 : : , (20)
l/fz (ZN) l/sz(ZN)

where the single-particle functions ¢(z) are given by the
edge states of Eq. (6) and the index I counts the arrange-
ments 0=[; <[, <--- <[y with [;+1,+---+Iy=L.

Namely, (I)f,iD is written as

PIAPz] = E Cr [z, (21)

and the exact diagonalization of the many-body Schrodinger
equation,

(DEXD[Z] EEXDq)EXD[Z] (22)

yields the coefficients CI and the EXD eigenenergies Ey XD

The matrix elements <llf |H| W) between the basis deter—
minants [see Eq. (20)] are calculated using the Slater rules*3
and taking into account that, in the GD-LLL, the many-body
Hamiltonian has contributions from the Coulomb interaction
only, i.e.,

H=2

(23)
i<j |Zz Zj|

Naturally, one also needs the two-body matrix elements of
the Coulomb interaction in the basis formed out of the
single-particle edge states. These matrix elements are given
through appropriate analytic expressions. Indeed by defining

M (m,n,k)

fdzlf de‘//m+k(Zl)1//n k(Zz)| |'//m(Z1)‘//n(Zz)

(24)

one finds
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FIG. 2. (Color online) Exact diagonalization ground-state ener-
gies in the graphene-dot LLL for N=5, 6, 7, and 8 electrons as a
function of the total angular momentum L. Observe the appearance
of cusp states of enhanced stability at the magic angular momenta
L,=N(N-1)/2+kN, k=0,1,2,..., a fact that indicates formation of
Wigner molecules having a single polygonal-ring configuration
(0,N). Energies in units of e?/(kR), with x being the graphene
dielectric constant and R the radius of the quantum dot. For L
— o, the ground-state energies approach asymptotically the classi-
cal electrostatic energy [see Eq. (27)].

M(m,n, k)

1

1 2aC\7 F<k+5>
RQ2m+2n+3) I'(k+1)
r(n+1)F<1/2, k+1/2, n+1; 1)
F(n+2)>? k+1, n+2
T(m+k+1) (1/2, k+1/2, m+k+1;
+ 3

IF'm+k+2)° k+1,

]

(25)

m+k+2

where ;F) is the generalized hypergeometric function** at the
point x=1, I" is the Gamma function, and

C_vbn+k+1Xn—k+1Xm+1Xn+U
= - )

(26)

V. NUMERICAL RESULTS
A. EXD total energies

In Fig. 2 we display systematic EXD total energies in the
range of N=5 to N=8 edge electrons as a function of the
total angular momenta L (in the large range 0=L=150).
This large L range and the consideration of N>35 electrons
were not reached in another recent publication;’® they are,
however, essential for unequivocally establishing the proper
similarities and differences with the high-magnetic-field
physics of semiconductor QDs.

For fully polarized spins considered here, the minimum
total angular momentum is Ly=N(N—-1)/2, in analogy with
the case of semiconductor QDs.!! Furthermore, in analogy
again with the case of semiconductor QDs, the total energies
decrease in the average as L increases. On top of this average
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trend, one observes prominent oscillations of period N.
These oscillations reveal that the states with L=Ly+kN, k
=0,1,..., are energetically the most stable in their immediate
neighborhood. Borrowing the terminology from the
literature'* of semiconductor QDs, we refer to these states
in graphene QDs as cusp states and the corresponding total
angular momenta (i.e., L=Ly+kN) as magic angular mo-
menta. It is well known that cusp states develop to FQHE
states in the thermodynamic limit (N— ), with the corre-
sponding fractional filling factor being v=_L/L.

Following a similar analysis''*> with the case of semicon-
ductor QDs, one can conclude that the appearance of the
oscillatory period N in the total energies (associated with the
cusp states) is a reflection of formation of (0, N)-type Wigner
molecules, with all the electrons localized on a single ring
(of radius R) at the apices of a regular N polygon. There is a
major difference, however, between the present system and
the semiconductor quantum dot case. That is, in semiconduc-
tor QDs, more than one isomer may form with concentric
multiring arrangements occurring for N> 5 electrons in the
dot; such arrangements are denoted as (n,n,,...,n,) (see
Ref. 11), where n,, r=1,2, ... ,q are the number of localized
electrons on each ring; 2% n,=N. In contrast, in the case of
graphene dots only the one-ring (0,N) molecular configura-
tion arises (with no electron residing at the geometrical cen-
ter of the graphene QD).

For L— o, the EXD energies in Fig. 2 approach the lim-
iting value corresponding to the classical electrostatic energy
of N pointlike electrons in a (0,N) configuration with radius
R, ie.,

cl 62
EY(N) = 4KRNSN, (27)

with Sy=3 {sin[(j—1)m/N]}™".

B. EXD densities and pair correlations

The EXD eigenfunctions conserve the total angular mo-
mentum and the corresponding electron densities are circu-
larly symmetric. This property “conceals” the presence of the
Wigner molecule. The crystalline structure, however, is
present in the intrinsic frame of reference of the electron
molecule, and it can be revealed through the use of the fully
anisotropic pair-correlation function P(z,z,), defined as

Plz.20) = (@R |2 8z =2) 8z~ 2)|OFD).  (28)
i#]

P(z,7¢) is often referred to as the conditional probability
distribution (CPD) since it is proportional to the probability
of finding an electron at z under the condition that another
one is situated at the point z, (the so-called fixed or obser-
vation point).

In Fig. 3 we display the conditional probability distribu-
tion for the case of N=7 electrons and the magic total angu-
lar momentum L=63 (L—Ly=7k, with k=6), which corre-
sponds to the celebrated v=1/3 fractional filling. One clearly
observes six humps (arranged in a single-ring configuration)
associated with formation of a (0,7) rotating Wigner mol-
ecule. (As is well known from the literature of semiconduc-
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CPD N=7 L=63

FIG. 3. Conditional probability distribution [see Eq. (28)] asso-
ciated with the EXD ground state in the GD-LLL of N=7 electrons
and for L=63 (corresponding to fractional filling v=1/3). One
clearly observes six humps in agreement with formation of a (0,7)
Wigner molecule and in contrast to the liquidlike Laughlin physical
picture. The fixed (observation) point is denoted by a solid dot.
Lengths in units of the graphene-dot radius R. Vertical axis in arbi-
trary units.

tor quantum dots,'! the localized electron at the fixed point
does not contribute any hump in the CPDs.) Similar CPDs
are found for other values of N.

C. Comparison between VREM and EXD wave functions

We turn now to comparisons between the EXD wave
functions and the VREM ones. We first observe that the
REM and VREM functions (see Sec. III) correspond to the
magic angular momenta L=Ly+kN, k=0,1,2,..., since all
the sine-product coefficients in expansion (16) are identically
zero for L# Ly+kN. In this section, we will show that the
VREM functions represent a high-quality approximation to
the EXD eigenfunctions by investigating wave function
overlaps and relative errors between the total energies ob-
tained by the two methods; the relative errors are defined as
AVREM(NaL) (EVREM—EEXD)/EE)zD.

We start by displaying in Fig. 4 the relative error
Ayrem(N,L) of the VREM total energies. The VREM offers
an excellent approximation since the maximum relative error
is less than 0.045%. For all sizes examined, the maximum
relative error occurs about v=1/3 (see Sec. V A), and sub-

5
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'© N=6 \‘\.\'

T g T~ e,

'\'\H

o / ’\'\-\Hﬂmﬂ-uﬂ
25 50 75 L 100 125 150

FIG. 4. (Color online) Relative error (per electron) of the
VREM ground-state energies as a function of the total angular mo-
mentum L.
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FIG. 5. (Color online) Overlaps of the VREM ground states
with the EXD ones as a function of the total angular momentum L.

sequently it decreases as L increases, approaching zero as
L—oo,

In Fig. 5, we display the overlaps Syrem
—(CDEXD| QDVREM) between the VREM functions and the
EXD solutions. These overlaps are larger than 0.985 for N
=5 and larger than 0.95 for N=8 and they tend to slowly
approach unity as L increases.

In Fig. 6, we display the values of the variational param-
eter « that optimize the VREM trial functions for a given
number of electrons N as a function of L. These values are
significantly different from unity (which corresponds to the
parameter-free REM). In fact, the optimal « values are
smaller than 0.4 and they slowly decrease to about 0.16 for
L=150 for all the values 5=N=28. We stress that optimiza-
tion of « is essential for achieving a high-quality reproduc-
tion of the EXD ground states. Without the additional opti-
mization (i.e., taking only the value @=1) the behavior of the
overlaps is unsatisfactory since they tend to diminish as L
increases (see Appendix B). The degradation of the overlaps
of the parameter-free REM (a=1) as L increases in the case
of the graphene quantum dot contrasts with the opposite be-
havior of the overlaps of the parameter-free REM in the case
of semiconductor quantum dots.®%!! This difference is attrib-
uted to the absence of translational invariance for the elec-
trons in the graphene quantum dot, which leads to differ-
ences in the organization of the EXD excitation spectra.

0.4

L —_
035\-'\"5

Y

s,
0250 o7 ™
\%

— o
N=8 O

0.2

0.15

25 50 75 L 100 125 150

FIG. 6. (Color online) The values of the variational parameter «
[see Eq. (18)] that optimize the VREM trial functions for a given N
as a function of L.
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FIG. 7. (Color online) Relative error (per electron) of the
Laughlin energies as a function of the total angular momentum L.

D. EXD versus Laughlin wave functions

It is interesting to compare the accuracy with which the
VREM wave functions approximate the EXD ones with that
of the Laughlin trial functions. The Laughlin wave functions
are restricted to the so-called main (odd) fractions v
=1/(2m+1) and have played an important role in the FQHE
literature of the extended two-dimensional electron gas in
semiconductor heterostructures. Their form is

o zl= I1 (u-

1=i<j=N

Zj)2m+1 , (29)

where the Gaussian factors are missing (see Sec. IT A) due to
the differences in the single-particle states between semicon-
ductor and graphene quantum dots; m=0,1,2,.

In Fig. 7, we display the relative error, ALaughlm(N L)

(EL‘mf’hh“ EEXD )/ Ef,XLD , of the Laughlin total energies with
respect to the ground state EXD ones as a function of in-
creasing total angular momentum L. The Laughlin relative
errors are substantially larger (on the average by a factor of
5) than the VREM ones (see Fig. 4); this is the case even for
the celebrated v=1/3 fractional filling.

In  addition, the Laughlin  overlaps  Spaygniin
—(CIDEXD|<I>L““gh]‘“) (plotted in Fig. 8) exhibit an unsatisfac-
tory performance compared to that of the VREM overlaps,
that is, (i) they become steadily smaller as the angular mo-
mentum increases and (ii) even for v=1/3, they are smaller
than the corresponding VREM overlaps in all instances stud-

\ N7 Neg
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©
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v
07 -
N=5  N=6
0.6
20 40 60 80 100 120

L

FIG. 8. (Color online) Overlaps of the Laughlin trial states with
the EXD ones as a function of total angular momentum L.
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ied here, i.e., N=5-8 electrons in the graphene dot. We con-
clude that the Laughlin functions fail to capture the case of
the GD-LLL, while the VREM functions offer an appropriate
approximation for graphene QDs.

E. EXD versus composite-fermion wave functions

It is also interesting to compare the accuracy with which
the VREM wave functions approximate the EXD ones with
that of the composite-fermion trial functions, which are more
general than the Laughlin functions. Along with the Laughlin
functions, the CF trial functions have played a significant
role in the FQHE literature of the extended two-dimensional
electron gas in semiconductor heterostructures. Their form>’
in the disk geometry (case of 2D QD studied here) is given
by the expression

OFF(N)=Pr I1

1=i<j=N

mars IPM
(z- )M (30)

where z=x+1iy and \PIL}:M is the Slater determinant of N non-
interacting electrons of total angular momentum L*; it is
constructed according to the independent-particle model
(IPM) from the Darwin-Fock*® orbitals (ﬂp)f (z), where p and
[ are the number of nodes and the angular momentum, re-
spectively [for the values of p and [ in the nth Landau level
in high B, see Appendix F].

The single-particle electronic orbitals in the Slater deter-
minant \I’ILEM are not restricted to the lowest Landau level. As
a result, it is necessary to apply a projection operator Py to
guarantee that the CF wave function lies in the LLL, as ap-
propriate for B— . We carry the Pp; projection according
to Sec. 4.3 of Ref. 47. After obtaining the projected CF func-
tion in the LLL, the corresponding trial function in the GD-
LLL is constructed by simply replacing %) 1(z) by the #(z)
in Eq. (6).

Since the CF wave function is an homogeneous polyno-
mial in the electronic positions z j’s, its angular momentum L
is related to the noninteracting total angular momentum L* as
follows:

L=L"+mN(N-1)=2mL,. (31)

Here we will consider the mean-field version of the
composite-fermion theory, according to which the Slater de-

terminants \I’ILP*M are the so-called compact states (see Appen-

dix F for details; the corresponding values of L* are listed in
Table IT). We note that recently several extensions of the CF
theory have been formulated*® that account for residual-
interaction effects among the individual (bgF(N) composite-
fermion states. Consideration of such residual-interaction ef-
fects is beyond the scope of the present paper.

In Table I, we compare total CF and EXD energies (per
particle) for N=6 electrons in a graphene dot. We also dis-
play the corresponding relative errors ACF(N L)/N (EﬁFL

—Exi2)/(NEYP) and overlaps Scp=(®}"| D]

In addition to the L=15+6k, k=0,1,2,. magrc angular
momenta for N=6 found from EXD calculations (see Fig. 2),
the compact-state CF theory mistakenly predicts the exis-
tence of magic angular momenta with L=15+5k, &k
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TABLE 1. Total CF and EXD energies [per particle, in units of
e?/(kR)] for N=6 electrons in a graphene dot. The corresponding
relative errors, Acg/N, and overlaps, Scp, are also listed. For the
determination of the auxiliary angular momenta L*, see Appendix F.

L(L*) EFXP/N ECF/N 107*Acp/ N Scr
21(-9) 2.31357 2.3548 29.67 0.887
51(=9) 1.99693 2.0385 34.67 0.793
30(0) 2.24863 2.3473 73.17 0.369
60(0) 1.99452 2.0520 48.00 0.507
35(5) 2.15628 23022 112.8 0.356
65(5) 1.97413 2.0410 56.50 0.451
39(9) 2.06465 2.0952 24.67 0.892
69(9) 1.94477 1.9713 22.67 0.754

=0,1,2,..., e.g., for L=30, 35, 60, and 65. Furthermore,
even for the states with L=15+6k, e.g., L=21, 39, 51, and 69
(Table 1), the quantitative performance of the compact CF
functions (concerning relative errors and overlaps) is rather
weak compared to that of the VREM: the CF relative errors
are larger roughly by a factor of 10, while the CF overlaps
are systematically smaller (<0.9) than the VREM ones
(>0.97) (see Figs. 2 and 5 and Table I). As was the case with
the Laughlin functions, we conclude that the compact CF
functions are also at a disadvantage compared to the VREM
concerning the description of strongly correlated states in the
GD-LLL.

F. Comparison with the Wigner-crystal Ansatz in Ref. 38

Here we compare the VREM total energies with those
associated with the Wigner-crystal trial function in Ref. 38
given by

[ +ly+ - +Iy=L
oyild= X

Il ol

<T@, +1)""2D(, L, ... L), (32)

2mnl,
exp(— iz ﬂ)
n

N

where w is a variational parameter. In Fig. 9, we display the
relative errors Aywc(N ,L):(EXZS—EE,?;D)/ E]]%,?(LD of the WC-
Ansatz energies relative to the EXD ones. From a compari-
son of these results with those displayed in Fig. 4, we con-
clude that the relative errors of the WC Ansatz are on the
average at least twice as large as those corresponding to the
VREM, reflecting the superior description of the GD-LLL
provided by the latter function.

VI. PINNED ELECTRON MOLECULES

The zigzag geometry [on which the boundary conditions
are applied (see Sec. I A)] does not allow formation of a
continuous circular edge without some structural or chemical
modification of the graphene hexagonal lattice structure.
Without such modification, regions along the circular edge
satisfying a zigzag condition must necessarily be disrupted
by a number of discrete points associated with arm-chaired

PHYSICAL REVIEW B 79, 075311 (2009)
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FIG. 9. (Color online) Relative errors (per electron) of the en-
ergies of the WC-Ansatz [Eq. (32)] as a function of total angular
momentum L.

conditions.*® It has been found that the edge states are robust
in this case,’”* and as a result these discrete sets of disrup-
tions act as effective impurities that modify the many-body
Hamiltonian in Eq. (19). The presence of such impurity
terms in the many-body Hamiltonian will mix the good-total-
angular-momentum REM states, resulting in the formation of
pinned electron molecules (PEMs). In contrast to the REMs
(whose electron density is uniform along the azimuthal di-
rection, that is, not showing any azimuthal density modula-
tion), the electron density of a pinned electron molecule is
expected not to have circular symmetry; it will exhibit angu-
lar density oscillations, and the number of humps will equal
the number of electrons N.

We demonstrate this property of a PEM for two particular
cases displayed in Figs. 10 and 11. Figure 10 displays for
N=17 the electron density for the linear superposition of two
REM states with L=35 and L=42, while Fig. 11 displays for
N=8 the electron density for the linear superposition of two
REM states with L=44 and L=52. In both cases the expected
angular modulation is clearly well formed with seven humps
in the former and eight humps in the latter case.

VII. SUMMARY

The manifold of degenerate midgap (zero-energy) edge
states in circular graphene quantum dots with zigzag bound-
aries resembles, under free-field conditions,” the celebrated
lowest Landau level, familiar from the case of semiconductor
heterostructures in high-magnetic fields. The effect of e-e
interactions in this graphene-LLL was systematically inves-
tigated and was found to generate many-body strongly cor-
related behavior that exhibits many similarities with the frac-
tional quantum Hall effect.

Numerical exact-diagonalization studies were presented
for 5=N=38 fully spin-polarized electrons and for total an-
gular momenta in the range of N(N-1)/2=L=150. More-
over, we presented a derivation of a rotating-electron-
molecule type wave function based on the methodology
introduced earlier® in the context of the FQHE in two-
dimensional semiconductor quantum dots. The EXD wave
functions were compared with the derived rotating-electron
molecule and other suggested FQHE trial functions, such as
the Laughlin function, the compact composite fermions, and
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ED N=7 (L=35)+(L=42)

FIG. 10. Electron density of a pinned molecule for N=7 elec-
trons formed from the linear superposition of two REM states with
L=35 and L=42. Lengths in units of the graphene-dot radius R.
Electron density in units of R72.

the Wigner-crystal Ansatz in Ref. 38. It was found that a
variational extension of the REM offers a better description
for all fractional fillings compared with that of the Laughlin,
compact composite fermions, and Wigner-crystal Ansatz
functions (including total energies and overlaps). The suc-
cess of the REM function reflects the importance of strong
azimuthal localization of the edge electrons in graphene
quantum dots.

The variational REM functions were derived through the
use of a two-step method: (i) first a mean-field-type single
Slater determinant constructed out of N localized electron
orbitals (that break circular symmetry) was considered; this
determinant describes the finite analog of a classical static
Wigner crystal and (ii) a multideterminantal wave function
was generated through the subsequent application of projec-
tion techniques that introduced azimuthal fluctuations and
restored the circular symmetry and good-total angular mo-
menta.

In contrast with the multiring arrangements of electrons in
circular semiconductor quantum dots, we found that the
graphene REMs exhibited in all instances a single (0,N)
polygonal-ring molecular structure. Disruptions in the zigzag
boundary condition along the circular edge behave effec-
tively as crystal-field effects that pin the electron molecule,
yielding single-particle densities with broken rotational sym-
metry that portray directly the azimuthal localization of the
edge electrons.

ED N=8 (L=44)+(L=52)

FIG. 11. Electron density of a pinned molecule for N=8 elec-
trons formed from the linear superposition of two REM states with
L=44 and L=52. Lengths in units of the graphene-dot radius R.
Electron density in units of R™2.
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APPENDIX A: MORE ON EDGE STATES

The general solution of the eigenvalue equation corre-
sponding to the linearized tight-binding Hamiltonian (2) is of
the form

(A1)

W?s /\/lqs(r)ei[l+(l—s)/2]¢
lﬁfs = X;BX( " olL+149216 |2
where s=*; obviously s= = | when occurring in a phase. As

a result, the matrix eigenvalue problem is equivalent to the
following set of equations involving the vector components:

+

— ihvpd, X — ihvp(l+ 1)’(i = Ex\"" - itwpa x|
r

+
+ if’wFl)(i = E)(fJ’,
r

(A2)

where we considered only the case for s=+ (the s=— case
can be treated in a similar way).

We are interested in solutions with E=0 (the so-called
midgap solutions), in which case the set of Eq. (A2) reduces
to

(I+1)

I+ X =0,

[
2 i A (A3)
The solutions of these equations are
F\ -1
X" =x “”(E) :
I
AGE ﬁ*(R)(é) . (Ad)

The boundary condition is that of a zigzag graphene edge
that ends always on a site of the same lattice, i.e., the con-
dition

X (R)=0 (A5)

forces the B+ component to vanish everywhere on the B
sublattice, yielding the final form

( 114+> _ X;\+(R)(£)leil¢
o .

(A6)

The normalization constant /\/Z“(R) is easily calculated and is
given in Eq. (4).
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FIG. 12. (Color online) Overlaps of the parameter-free trial
REM states [i.e., for a=1, see Eq. (16)] with the EXD ones, as a
function of total angular momentum L.

APPENDIX B: THE PARAMETER-FREE REM (a=1)

As mentioned in Sec. VC, the overlaps Sgpm
= (CIDEXD| CDREM> between the parameter-free REM waves
function in the GD-LLL and the EXD ones behave in an
unsatisfactory way, i.e., they decrease as L increases. The
precise behavior of Sigy is displayed in Fig. 12, and it con-
trasts with that of the variational REM, Syrpm, displayed in
Fig. 6.

The degradation of the Sgpy reflects the fact that progres-
sively the overlap of the REM wave function with the ex-
cited EXD states increases with increasing L. On the other
hand, the optimized values of a correspond to variational
REM trial functions that have practically zero overlap with
these excited EXD ones. We have found that such optimal «
values can be found for all studied values of N and L. This is
illustrated in Fig. 13, where the overlaps of the VREM with
the first-excited EXD state dip toward zero at the optimal «
values.

APPENDIX C: SINGLE-PARTICLE DENSITY

We give here the expression for calculating the single-
particle density p(z) for a single many-body state ®;[z]
=3,CIWi[z], where the basis wave functions W} are the
Slater determinants defined by Eq. (20). Specifically, one has

N N
P(Z) = <¢L|E oz - Zk)|q)L> = E 2 CQ*CZOI’QIE oz~ Zk)
k=1 1 J k=1

X)) = Eldlzw |E 8z -z)[W])

L\
-3 16 g - Slars Lo (1)
k=1

(€1

where the edge states s are given by Eq. (6) and li denotes
the single-particle angular momenta associated with the
Slater determinant W}; naturally L=3} /. The single-
particle density operator connects in principle Slater determi-
nants that differ at most in one orbital. However, in the LLL,
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FIG. 13. (Color online) Overlaps of the variational REM states
with the EXD first-excited states for selected values of the varia-
tional parameter a [see Eq. (18)] as a function of total angular
momentum L. The drops toward zero determine the optimal «’s for
given L’s. For a=1 (top curve), no such drop to zero occurs.

the conservation of the total angular momentum implies that
there are no pair of Slater determinants in the linear super-
position of @, that differ precisely by one single orbital; thus
one sets J=I when deriving Eq. (C1).

APPENDIX D: SINGLE-PARTICLE DENSITY FOR A
SUPERPOSITION OF TWO WAVE FUNCTIONS

In Sec. VI we discussed how the disruptions in the zigzag
boundary conditions create crystal-field effects that pin the
rotating-electron molecule. The effect of this pinning is de-
scribed through the linear superposition of two many-body
wave functions (EXD and/or REM) with magic good-total
angular momenta L and M, namely, through a wave function
®PIN such that

1
PN = —(d, * D), (D1)
V2
where we have dropped the subscript N and superscripts
“EXD” or “REM” from the ®;’s on the right-hand side.

The ®;;;’s are known through their expansions over
Slater determinants (see Sec. IV), i.e,

O, =2 ¥ y=2 Cly, (D2)
1 J

and the Slater determinants W] and W7, are built out of

single- particle states having individual angular momenta l’

and m’ such that =} /i=L and =}’ ,m;=M. Using the opera-

tor p defined by the ﬁrst line of Eq. (C1), the single-particle

density is given by

. 1 R
p"N(2) = (DN[p| D) = > (Dy|plDp)
+ (D || D) =Dy |p| D) (D] DL)).

(D3)

The diagonal terms (®,|p|®,) and (®,,|p|P,,) are given by
Eq. (C1). Since p is a one-body operator, the cross terms
connect Slater determinants that differ precisely by one of
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orbital;** we denote by l; and mé the corresponding pair of

indices. By applying the Slater rules described in Ref. 43

1
o-Siars L)
1
+Elcﬁ4|22 (mk+ )<R)

+ > CyClo(M.1.q;L.J.p) 2
T 7R

where o(L,1,p;M,J,q)==*1 depending on the even or odd
number of exchanges of two rows (or columns) needed to
bring the two determinants into maximum coincidence.

APPENDIX E: TWO-PARTICLE CONDITIONAL
PROBABILITY DISTRIBUTION

For the conditional probability density [see Eq. (28)], one
has

P(z.20) = 2 2 C'C(W|TIWy) (ED)
rJ
where the operator T is symmetrized,
T=2 8z-12)8zp—z) + 8z—-z)8z~z). (E2)

i<j

The matrix elements of 7 between the two Slater determi-
nants W} and W} are calculated according to the Slater rules
for a two-body operator.*3

APPENDIX F: MORE ON COMPOSITE FERMIONS

There is no reason to a prlori restrict the Slater determi-
nants ‘I’ to a certain form.>! Following Ref. 51, we will
restrict the noninteracting L* to the range —Ly=<L"=L,, and
we will assume that the Slater determinants ‘I’lLli are the
so-called compact ones. Let N, denote the number of elec-
trons in the nth Landau level (LL) with =/_ N,=N; t is the
index of the highest occupied LL and all the lower LL’s with
n=t are assumed to be occupied. The compact determinants
are defined as those in which the N, electrons occupy con-
t1gu0usly the single-particle orbitals [(ﬂ) ¥(2)] of each nth LL
1)/2=n] with the lowest angular momenta, [=-n,
-n+1,...,—n+N,—1. The compact Slater determinants are
usually denoted as [Ny,N,,...,N,] and the corresponding to-
tal angular momenta are given by L*=(1/2)2!_N,(N,-2s
-1).

For the CF theory, the magic angular momenta can be
determined by Eq. (31) if one knows the noninteracting L*’s.
For N=6, the CF magic L’s in any interval 1/2m—-1)=v

= 3 ottt D

Vi + D+ 1)
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(including bringing the two determinants into “maximum co-
incidence”), one finds

N + pq DT
e—l¢(lp—l7lq)

e o
7R?

m +lJ)
HE

(D4)

=1/C2m+1) [15Cm-1)=L=152m+1)], m=1,2,3,4,...,
can be found by adding 2mLy=30m units of angular momen-
tum to each of the L*’s. To obtain the noninteracting L*’s,
one needs first to construct® the compact Slater determi-
nants. The compact determinants and the corresponding non-
interacting L*’s are listed in Table II.

There are nine different values of L*’s, and thus the CF
theory for N=6 predicts that there are always eight magic-
numbers in any interval 15(2m—1)<L<15(2m+1) between
two consecutive JL angular momenta 15(2m—1) and
152m+1), m=1,2,3,.... For example, using Table II and
Eq. (31), the CF magic numbers for N=6 in the interval 15
=L<45 (m=1) are found to be the following eight:

15, 21, 25, 27, 30, 33, 35, 39. (F1)
In the interval 45 <L <75 (m=2), the CF magic numbers are
45, 51, 55, 57, 60, 63, 65, 69. (F2)

TABLE II. Compact noninteracting Slater determinants and as-
sociated angular momenta L* for N=6 electrons according to the
CF prescription. Both L*=-3 and L*=3 are associated with two
compact states each, the one with lowest energy being the preferred
one.

Compact state [Ny,Ny, ...,N,] L
[1,1,1,1,1,1] -15
[2,1,1,1,1] -9

[2,2,1,1] -5
[3,1,1,1] -3
[2,2.2] -3
[3,2,1] 0
[4,1.1] 3
[3,3] 3
[4,2] 5
[5,1] 9
[6] 15
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