PHYSICAL REVIEW B 66, 115315 (2002

Trial wave functions with long-range Coulomb correlations for two-dimensionalN-electron systems
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A new class of analytic wave functions is derived for two dimensidfi@lectron (2<N<) systems in
high magnetic fields. These functions are constructed through bregtiige Hartree-Fock levelnd subse-
guent restoratiorfvia post-Hartree-Fock methodsf the circular symmetry. They are suitable for describing
long-range Coulomb correlations, while the Laughlin and composite-fermion functions describe Jastrow cor-
relations associated with a short-range repulsion. Underlying our approach is a collectively-rotating-electron-
molecule picture, yielding for alN an oscillatory radial electron density that extends throughout the system.
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[. INTRODUCTION tion yields states representing electron molecylgd’s, or
finite crystallites. Subsequently the rotation of the electron
Two-dimensional (2D) few-electron systems in strong molecule is described through restoration of the circular
magnetic fields have been the focus of extensive theoreticglymmetry via post Hartree-Fock methods, and in particular
investigations in the last 20 yearst* Many of these studies Projection technique¥. Naturally, the restoration of symme-
have used the Jastrow-LaugKin(JL) and compo- try goes beyond the mean-field and yields multideterminantal
site-fermior (CF) wave functions, where the dynamics of Wave funqtlons. In contrast to the JL/CF funqtlons,_olur ana-
electrons in extended fractional quantum HE@HQH) sys- I){tlc func_tlons (appl!cable fqr anyN and fragtlonal filling
tems is governed by the so-called Jastrow correlations. It wa4€ld oscillatory radial ED's in agreement with the exact so-
showrt® that the JL functions are exact eigenstates of thdutions of theN-electron Coulombic systerfsee below
N-electron problem under high magnetic fields for a special
short-range interparticle repulsion. However, based on close- Il. METHOD AND TRIAL WAVE FUNCTIONS

to-unity overlaps with exact numerical solut_iéﬁ§1lof the In general, the symmetry-broken UHF orbitals are deter-
_Coulo_mb prakiéem for few-electron s_yster(wnh N=<8), !t mined numerically42%2However, in the case of an infi-
IS b(_allleved‘ " that the JL/CF functions should not differ pjte 2D electron gas in strong magnetic fields, it has been
significantly from the exact Coulombic solutions. found® that such UHF orbitals can be approximated by ana-
Recent experimenitSon electron tunneling into the edges lytic Gaussian functions centered at different positiahs
of a FQH system have found a current-voltage pOWGI’-laWEXJ-—HY]- and forming an hexagonal Wigner crystaach
behaviorl <V, with values for the exponent that are in  Gaussian representing a localized eledr@uch displaced
conflict with the universal predictiom=1/v derived from  Gaussians are written agere and in the following:
Jastrow correlations. These findings motivafed detailed =/-1)
exact diagonalization studies of FQH systems at the filling
factor v=1/3 with up toN=12 electrons. These latest stud- u(z,Zj)=(1/\/;)exr[— |Z—Zj|2/2]eXF[— (XY, +yX)],
ies revealed that the long-range Coulomb correlations lead to (1
the formation of stripe-like oscillations in the radial electron . ) ]
densitieS ED’s) which are responsibléfor the observed un- Where the phase factor is due to the gauge invariazme
expected behavior of the current-voltage power law. Most~ !y, and all lengths are in dimensionless unitd {2 with
importantly, the JL functions fdif to capture these ED os- the magnetic length beinig= \%c/eB.
cillations, in spite of having overlaps with the exact wave In the case of a Coulombic finifé-electron system, it has
functions that are very close to unity been found?**that the UHF orbitals arrange themselves in
For theN-electron problem in strong magnetic fields and concentric rings forming EM'qreferred to also as Wigner
in the disk geometrycase of quantum dots, QD;sve use in  molecules, WM'$.22 The UHF results for the ring arrange-
this paper amicroscopicmany-body approach to derive ana- ments are in agreement with the molecular structures ob-
lytic wave functions that capture the long-range correlationdained via conditional probability distribution$CPD’s)
of the Coulomb repulsion. To obtain analytic results, we spewhich can be extracted from exact numerical wave
cifically consider the limit when the confining potential can functions®***as well as with those obtain&dor the equi-
be neglected compared to the confinement induced by thiérium configurations of classical point charges in a 2D har-
magnetic field. monic trap?®
Underlying our approach is a physical picture of a collec- For anN-particle system, the electrons are situated at the
tively rotating electron moleculREM) and the synthesis of apexes of concentric regular polygons. The ensuing multi-
the states of the system consists of two steps: First the breaking structure is denoted byn{,n,, ... n;) with E;=1nq
ing of the rotational symmetry at the level of the single- =N. The position of thgth electron on thegth ring is given
determinantalunrestrictedHartree-Fock(UHF) approxima- by

0163-1829/2002/681)/115315%5)/$20.00 66 115315-1 ©2002 The American Physical Society



CONSTANTINE YANNOULEAS AND UZI LANDMAN

Z0=Zqexd12m(1=})/ng], 1<j<n,. @

We expand now the displaced Gausdigg. (1)] over the
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angular momenta associated with the concentric rings, i.e.,
ﬁLth[Fqu. The final analytic expression depends on the
specific ring arrangementn(,n,, ...,n,). For lack of

Darwin-Fock single-particle states. Due to the high magnetispace, we will present here explicitly only the simplest non-

field, only the single-particle states

e

of the lowest Landau level are needgde angular momen-
tum of this state is-1 due to the definitioz=x—1y). Then
a straightforward calculatié yields

h(2)= exp(—z2'/2) )

u(z,2>=|=20 Cl(2Z)¥(2), (4)

with C\(Z)=(Z*)'exp(~ZZ*/2)/\I' for Z+#0. Naturally,
C0(0)=l andC|>0(0):0.

Since electrons in strong magnetic fields are fully polar-
ized, only the space part of the many-body wave functions

needs to be consideré8iThe symmetry-broken UHF deter-
minant, W'{},-, describing the WM is constructed out of the
localized wave functionsj(z,Z]q). Using Eq.(4) one finds
the following expansioriwithin a proportionality constajit

C,(Z1)C,(Zo), - .. .Gy (ZN)

NN

N
><D(|1,|2,...,|N)exp(—2l zizi*/Z), (5)

where D(lq,l,, ... ,IN)Ede[z'll,z'22,~ ~-,z'NN]. The Z,’s
(with 1<k=<N) in Eq. (5) are theZ"s of Eq. (2), but
relabeled.

The UHF determinar¥ .- breaks the rotational symme-
try and thus it is is not an eigenstate of the total angula
momentun:L =43N .1, However, one carestoré®?! the
rotational symmetry by applying ont@'BHF the projection
operatof®

r

o=II n., (6)
q=1 ¢
with
2w N
ZWPLqE . dyqexd1yq(Lg—Lg)]s (7)
where ﬁ£q=hz;1ﬁ;glii and th:ﬁz;g:glh with i

=E§';lns (iy=0) are partial angular momenta operators
and values, respectively, associated with tlie ring, and
hAL=hX,_L4 are the eigenvalues of the total angular mo-
mentum.

When applied ontdfﬂHF, the projection operataP, acts
as a product of Kronecker deltas: from unrestricted $&m

it picks up only those terms having a given total angular

momentummlL and a specific ordered partition of it into partial

trivial arrangement, i.e.,n;,n,), with more complex[or
simpler ones, i.e(0,N) and (1IN—1)] obtained via straight-
forward extensions.

For specific electron location€g. (2)] associated with
the (n,,n,) WM, one derive¥ the following symmetry-
preserving, many-body correlated wave functignsthin a
proportionality constant

@ 1,(Ng,N2;5[Z])

It =Lyl gt

0=l <lp<---<ly
T
1<i1<_J[<nl n_l(li_lj)D
|
sw{n—z(li—lj)DD('l"z' coeln)

I
xexp( —ZNl zizi*/z) .

X sin

X

nitilsi<jsN

®

In deriving Eq.(8), we took into account that for each deter-
minant D(l,l,, ... ly) in the unrestricted expansiofd)
there areN! — 1 other determinants generated from it through
a permutation of the indice8,,l,, ... I\}; these determi-
nants are equal to the original one or differ from it by a sign
only.

Generalizations of expressiof8) to structures with a
larger number of rings involve, for each additionajth ring
(2<g=r), (I) the inclusion of an additional product of sines

with arguments containing,, and(ll) a restriction on the

summation of the associateg angular momenta.

IIl. PROPERTIES OF THE REM WAVE FUNCTIONS

We call the correlated wave functioh&g. (8)] the REM
wave functions. Among the properties of the REM functions,
we mention the following.

(1) The REM wave functions lie entirely within the Hil-
bert subspace spanned by the lowest Landau level and, after
expanding the determinantSthey can be written in the form
(within a proportionality constajt

N
oM z]= P[‘[z]exp( —Zl zizi*/2> , 9)

where thePﬁ[z] 's are order homogeneous polynomials of
thez’s.
(2) The ponnomiaIst[z] are divisible by

P@[z]:lgg@ (z—7), (10)
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TABLE I. The Q3[z] polynomial associated with the REM and

. . 08{\_~  N<=6 A N6 L\ Nt
the JL functionsthe Q'[z] polynomials are of ordet —L). L=20 ,’:‘=261 \ &35
04
(a) (b) (©
REM (Z2—32%2,+ 23+ 62,2,2,— 32523 — 32,25+ 23) . R N \ .
X(Z3— 32,25+ 25+ 62,2,23— 32523~ 32,25+ Z3) 4 8
\]L (21_22)2(21_23)2(22_23)2 N=6 L=105

@© ]

namely,P}'[z]=P{[z]Q'[z]. This is a consequence of the
antisymmetry oﬂ)f[z]. P\N,[z] is the Vandermonde determi-

nantD(0,1, ... N). For the case of the lowest allowed an- L=205
gular momentumLy=N(N—-1)/2 (see beloy, one has @]
Pt‘o[z]z PY[z], a property that is shared with the 1
Jastrow-Laughlifiand composite-fermichtrial wave func- 4 8

tions. e
(3) The P[‘[z] 's are translationally invariant functions. B

. (4)f The. Coe.ffICIentEs gf tr:ﬁ deterrr?marrlﬁ%é’EF:\;losucwf of FIG. 1. Radial ED’s from REM wave functior(solid lines, all
sine functions; see Eq8)] dictate that the unctions frameg, exact diagonalizatiopdashed linega)—(e)], and JL func-

are nonzero only for special values of the total angular motions[dotted lines(d) and (e)]. In (a) and (b), the solid and dashed

mentumL given for a 11,n,, ... ,n;) configuration by curves are practically indistinguishable.
r
L=N(N—1)/2+ E ngky, kq=0123... (11) trasts th_ng[z] polynomials corresponding to the REM and
q=1 JL functions.

The minimum angular momentuisy=N(N—1)/2 is deter- (6) For the case of three electronbl € 3), after trans-
mined by the fact that th® determinant§see Eq(8)] van- formmgll to the Jacobi coordinates=(z,+2,+25)/3,4

ish if any two of the single-particle angular momehtand = (2/3) 1(z1+2,)/2- 23]’Zb:_(zl_22)/\/§ (and dropping
| are equal. For the (B) and (IN—1) rings, the special the center-of-mass exponential fagtdhe REM wave func-
v]alues are given by =L+ Nk and L=Ly+(N—1)k, re- tions can be written ag&gain within a proportionality con-

spectively. In plots of the energy vs the angular momentaStan!

derived from exact-diagonalization studfes! it has been

3 — L L
found that the special values associated with the {0, and Oi[za.2,]=[(Zat125)"—(Za—12p)"]
(1N—1) rings (appropriate forN=<7) exhibit prominent xexd (= 1/2)(z.2* + z.7* 13
cusps reflecting enhanced stability; as a result thegglues M (2aza + 2021, (13
are often referred to as “magic angular momentaWe  with L=3m,m=1,2,3,4..., being the total angular mo-

predict that similar magic behavior reflecting enhanced stamentum. Again the wave functionB’[z,,z,] are very dif-
bility is exhibited by the specidl values given by Eq(11)  ferent from the three-electron JL ones; e.g., they are nonva-
and associated with the general ring arrangemengishing for evenm values, unlike the three-electron JL
(n1.n5, . ...n;). In the thermodynamic lim#;the totall i fynctions. However, the?[z,,2,]’s coincide with the func-
related to a fractional filling’=N(N—1)/(2L), and thus thé  {jons |m,0) derived in Ref. 1. We remark that, although it
angular moment&l11) of the REM functions correspond t0 a5 found that these wave functions exhibited a behavior

all the v associated with the FQH effect, including the even-exnected of fractional quantum Hall ground stdtes., areal

denominator ones, i.ev=1,3/5,3/7,5/7,2/3,1/2,1/3, €tC. . . quantization and incompressibilitythe generalization of
_ (5 For the case of two electron8iE2), the REM func-  them to a higher number of electrons did not follow; instead,
tions reduce to the Jastrow-Laughlin form, namely, the REM functions presented here do constitute such a gen-
eralization.
Pilzl= Il (z-2z)* (12
1<i<j=N

IV. OSCILLATORY ELECTRON DENSITIES

whgreL=1,3,5 T However, this is the only case for In Fig. 1, we display the radial ED’s of several REM
which therg IS commdt_ance between the REM and the Jbyqye functions and compare them to corresponding ED’s
wave fu_nctlonNs. For higher numbers of electrohs, the o exact diagonalizations. The main conclusion is that the
polynomials P[] of the REM functions(apart from the  gp'g of the REM functions exhibit a prominent oscillatory
lowest-order Vandermond@/_ [7] oneg are quite different pehavior in excellent agreement with the exact ED’s. Such
from the corresponding JL or composite-fermion polynomi-an oscillatory behavior is a natural consequence of the un-
als. In particular, the familiar factongiqu(zi—zj)Zp, derlying ring arrangements. FdI=6 andL =20, the under-
with p an integet* (which reflects multiple zerogsloes not  lying structure is &1,5) arrangemenfL is five units larger
appear in the REM functiongee, e.g., Table | which con- than the minimumLy=15, i.e., n;=1,k;=0 and n,
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=5k,=1in Eq.(11)], and thus the corresponding ED exhib- V. CONCLUSIONS
its a maximum at the origin followed by an outer hufpg. We have developed a class of trial wave functions of

L@]. ForN=6 andL =21, however, the underlying struc- simple functional form, which accurately describe the phys
ture is a(0,6) arrangementl( is six units larger thahy), and ) ! . e i
20,6 9 L( g 0) cs of electrons in QD’s under high magnetic fields. In par-

thus the ED exhibits a dip at the origin and a single outer" ) ,
hump[Fig. 1(b)]. In the otheN=6 cases plotted hef€igs. ticular, our functlon§ captur_e the Iong—rangg correlatloqs of
1(c), 1(d), and 1e)], the differencel — L, is divisible by 5 the Coulomb repu_IS|on; _u_nllke the JL _functlons, _they yield
and the underlying ring arrangement(is5); thus there are for all N and fractional fillingsy an oscillatory radial elec-
two humps in the Corresponding ED,S, the inner one portraylron density in agreement W|th eXaCt'diagonaliZation results.
ing the single electron at the origin. T=6,L=75[Fig.  The electron-density oscillations extend throughout the sys-
1(d)] andN=6,L=105[Fig. 1(e)] cases correspond to the tem. The thematic basis of our approach is built upon the
fractional fillings 1/5 and 1/7, respectively. For these twointuitive, but microscopicallysupported, picture of collec-
cases, we have plotted also the ED’s associated with the Jively rotating electron molecules, and the synthesis of the
functions(dotted lines. As was found in thev=1/3 casé®  many-body REM wave functions involves breaking of the
the JL functions fail to capture the radial oscillations that arecircular symmetry at the UHF level with subsequent restora-
characteristic of the long-range Coulomb force. Finally, intion of this symmetry via a projection technique. While we
Fig. 1(f) and Fig. 1g), we present the ED’s of the REM focus here on the strong magnetic-field regime, we note that
functions forN=12,L =123 andN=16,L=205. In general, the REM picture unifies the treatment of strongly correlated
there are as many humps as the number of concentric ringstates of electrons in QD’s over the whole magnetic-field
Indeed the ring structures afé® (3,9 and (1,5,10 for N range!3202L24Fjnally, our REM wave functions, aimed here
=12 andN =16, respectively’ We note that the ED foN  mainly at treating finite electron systentise., QD'S, can
=12, =123 is similar to the exact ED for the same c&5e, provide in the thermodynamic limit an alternative interpreta-
although the latter was calculated with an external confinetion of the FQH effect; namely, the observed hierarchy of
ment. fractional filling factors may be viewed as a signature origi-

25 H H . . .
It has been found*® that the number of ringsr) IN- nating from the magic angular momenta of rotating electron
creases as the number of electrons grows. #8d/3, this  molecules.

results in electron-density oscillations that extend along the
whole radius of the QD, with no obvious separation into bulk
and edge regions. Currently, the largest number of electrons
for which the ring structure has been determfieid N
=230 with a concentric-ing arrangement of  This research was supported by the U.S. D.Q@ant
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