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Trial wave functions with long-range Coulomb correlations for two-dimensionalN-electron systems
in high magnetic fields
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A new class of analytic wave functions is derived for two dimensionalN-electron (2<N,`) systems in
high magnetic fields. These functions are constructed through breaking~at the Hartree-Fock level! and subse-
quent restoration~via post-Hartree-Fock methods! of the circular symmetry. They are suitable for describing
long-range Coulomb correlations, while the Laughlin and composite-fermion functions describe Jastrow cor-
relations associated with a short-range repulsion. Underlying our approach is a collectively-rotating-electron-
molecule picture, yielding for allN an oscillatory radial electron density that extends throughout the system.
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I. INTRODUCTION

Two-dimensional ~2D! few-electron systems in stron
magnetic fields have been the focus of extensive theore
investigations in the last 20 years.1–14 Many of these studies
have used the Jastrow-Laughlin2 ~JL! and compo-
site-fermion3 ~CF! wave functions, where the dynamics
electrons in extended fractional quantum Hall~FQH! sys-
tems is governed by the so-called Jastrow correlations. It
shown15 that the JL functions are exact eigenstates of
N-electron problem under high magnetic fields for a spe
short-range interparticle repulsion. However, based on clo
to-unity overlaps with exact numerical solutions1,5–11 of the
Coulomb problem for few-electron systems~with N<8), it
is believed2–4,15 that the JL/CF functions should not diffe
significantly from the exact Coulombic solutions.

Recent experiments16 on electron tunneling into the edge
of a FQH system have found a current-voltage power-
behaviorI}Va, with values for the exponenta that are in
conflict with the universal predictiona51/n derived from
Jastrow correlations. These findings motivated17,18 detailed
exact diagonalization studies of FQH systems at the fill
factor n51/3 with up toN512 electrons. These latest stu
ies revealed that the long-range Coulomb correlations lea
the formation of stripe-like oscillations in the radial electr
densities~ED’s! which are responsible17 for the observed un-
expected behavior of the current-voltage power law. M
importantly, the JL functions fail18 to capture these ED os
cillations, in spite of having overlaps with the exact wa
functions that are very close to unity.

For theN-electron problem in strong magnetic fields a
in the disk geometry~case of quantum dots, QD’s!, we use in
this paper amicroscopicmany-body approach to derive an
lytic wave functions that capture the long-range correlatio
of the Coulomb repulsion. To obtain analytic results, we s
cifically consider the limit when the confining potential ca
be neglected compared to the confinement induced by
magnetic field.

Underlying our approach is a physical picture of a colle
tively rotating electron molecule~REM! and the synthesis o
the states of the system consists of two steps: First the br
ing of the rotational symmetry at the level of the sing
determinantalunrestrictedHartree-Fock~UHF! approxima-
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tion yields states representing electron molecules~EM’s, or
finite crystallites!. Subsequently the rotation of the electro
molecule is described through restoration of the circu
symmetry via post Hartree-Fock methods, and in particu
projection techniques.19 Naturally, the restoration of symme
try goes beyond the mean-field and yields multidetermina
wave functions. In contrast to the JL/CF functions, our a
lytic functions ~applicable for anyN and fractional filling!
yield oscillatory radial ED’s in agreement with the exact s
lutions of theN-electron Coulombic system~see below!.

II. METHOD AND TRIAL WAVE FUNCTIONS

In general, the symmetry-broken UHF orbitals are det
mined numerically.13,14,20,21However, in the case of an infi
nite 2D electron gas in strong magnetic fields, it has be
found22 that such UHF orbitals can be approximated by a
lytic Gaussian functions centered at different positionsZj
[Xj1ıYj and forming an hexagonal Wigner crystal~each
Gaussian representing a localized electron!. Such displaced
Gaussians are written as~here and in the followingı
[A21!

u~z,Zj !5~1/Ap!exp@2uz2Zj u2/2#exp@2ı~xYj1yXj !#,
~1!

where the phase factor is due to the gauge invariance.z[x
2ıy, and all lengths are in dimensionless units ofl BA2 with
the magnetic length beingl B5A\c/eB.

In the case of a Coulombic finiteN-electron system, it has
been found12,13 that the UHF orbitals arrange themselves
concentric rings forming EM’s~referred to also as Wigne
molecules, WM’s!.23 The UHF results for the ring arrange
ments are in agreement with the molecular structures
tained via conditional probability distributions~CPD’s!
which can be extracted from exact numerical wa
functions,10,11,24as well as with those obtained25 for the equi-
librium configurations of classical point charges in a 2D h
monic trap.26

For anN-particle system, the electrons are situated at
apexes ofr concentric regular polygons. The ensuing mul
ring structure is denoted by (n1 ,n2 , . . . ,nr) with (q51

r nq

5N. The position of thej th electron on theqth ring is given
by
©2002 The American Physical Society15-1
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Zj
q5Z̃qexp@ ı2p~12 j !/nq#, 1< j <nq . ~2!

We expand now the displaced Gaussian@Eq. ~1!# over the
Darwin-Fock single-particle states. Due to the high magn
field, only the single-particle states

c l~z!5
zl

Ap l !
exp~2zz* /2! ~3!

of the lowest Landau level are needed~the angular momen
tum of this state is2 l due to the definitionz[x2ıy). Then
a straightforward calculation27 yields

u~z,Z!5(
l 50

`

Cl~Z!c l~z!, ~4!

with Cl(Z)5(Z* ) lexp(2ZZ* /2)/Al ! for ZÞ0. Naturally,
C0(0)51 andCl .0(0)50.

Since electrons in strong magnetic fields are fully pol
ized, only the space part of the many-body wave functio
needs to be considered.28 The symmetry-broken UHF deter
minant,CUHF

N , describing the WM is constructed out of th
localized wave functionsu(z,Zj

q). Using Eq.~4! one finds
the following expansion~within a proportionality constant!:

CUHF
N 5 (

l 150, . . . ,l N50

` Cl 1
~Z1!Cl 2

~Z2!, . . . ,Cl N
~ZN!

Al 1! l 2! ••• l N!

3D~ l 1 ,l 2 , . . . ,l N!expS 2(
i 51

N

zizi* /2D , ~5!

where D( l 1 ,l 2 , . . . ,l N)[det@z1
l 1 ,z2

l 2 ,•••,zN
l N#. The Zk’s

~with 1<k<N! in Eq. ~5! are the Zj
q’s of Eq. ~2!, but

relabeled.
The UHF determinantCUHF

N breaks the rotational symme
try and thus it is is not an eigenstate of the total angu
momentum\L̂5\( i 51

N l̂ i . However, one canrestore19,21 the
rotational symmetry by applying ontoCUHF

N the projection
operator29

OL[ )
q51

r

PLq
, ~6!

with

2pPLq
[E

0

2p

dgqexp@ ıgq~ L̂q2Lq!#, ~7!

where \L̂q5\( i 5 i q11
i q1nq l̂ i and \Lq5\( i 5 i q11

i q1nq l i with i q

5(s51
q21ns ( i 150) are partial angular momenta operato

and values, respectively, associated with theqth ring, and
\L5\(q51

r Lq are the eigenvalues of the total angular m
mentum.

When applied ontoCUHF
N , the projection operatorOL acts

as a product of Kronecker deltas: from unrestricted sum~5!,
it picks up only those terms having a given total angu
momentumL and a specific ordered partition of it into parti
11531
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angular momenta associated with the concentric rings,
\L5\(q51

r Lq . The final analytic expression depends on t
specific ring arrangement (n1 ,n2 , . . . ,nr). For lack of
space, we will present here explicitly only the simplest no
trivial arrangement, i.e., (n1 ,n2), with more complex@or
simpler ones, i.e.,~0,N! and (1,N21)] obtained via straight-
forward extensions.

For specific electron locations@Eq. ~2!# associated with
the (n1 ,n2) WM, one derives30 the following symmetry-
preserving, many-body correlated wave functions~within a
proportionality constant!

FL1 ,L2
~n1 ,n2 ;@z# !

5 (
0< l 1, l 2,•••, l N

l 11•••1 l n1
5L1 ,l n1111•••1 l N5L2 S )

i 51

N

l i ! D 21

3S )
1< i , j <n1

sinF p

n1
~ l i2 l j !G D

3S )
n111< i , j <N

sinF p

n2
~ l i2 l j !G DD~ l 1 ,l 2 , . . . ,l N!

3expS 2(
i 51

N

zizi* /2D . ~8!

In deriving Eq.~8!, we took into account that for each dete
minant D( l 1 ,l 2 , . . . ,l N) in the unrestricted expansion~5!
there areN! 21 other determinants generated from it throu
a permutation of the indices$ l 1 ,l 2 , . . . ,l N%; these determi-
nants are equal to the original one or differ from it by a si
only.

Generalizations of expression~8! to structures with a
larger numberr of rings involve, for each additionalqth ring
(2,q<r ), ~I! the inclusion of an additional product of sine
with arguments containingnq , and ~II ! a restriction on the
summation of the associatednq angular momenta.

III. PROPERTIES OF THE REM WAVE FUNCTIONS

We call the correlated wave functions@Eq. ~8!# the REM
wave functions. Among the properties of the REM function
we mention the following.

~1! The REM wave functions lie entirely within the Hil
bert subspace spanned by the lowest Landau level and,
expanding the determinants,30 they can be written in the form
~within a proportionality constant!

FL
N@z#5PL

N@z#expS 2(
i 51

N

zizi* /2D , ~9!

where thePL
N@z# ’s are order-L homogeneous polynomials o

the zi ’s.
~2! The polynomialsPL

N@z# are divisible by

PV
N@z#5 )

1< i , j <N
~zi2zj !, ~10!
5-2



e
i-
n-

e

o

l

ta

sta

e

o
n

r
J

i

-

d

-

va-
L

it
ior

d,
en-

D’s
the

ch
un-

d

TRIAL WAVE FUNCTIONS WITH LONG-RANGE . . . PHYSICAL REVIEW B66, 115315 ~2002!
namely,PL
N@z#5PV

N@z#QL
N@z#. This is a consequence of th

antisymmetry ofFL
N@z#. PV

N@z# is the Vandermonde determ
nantD(0,1, . . . ,N). For the case of the lowest allowed a
gular momentumL05N(N21)/2 ~see below!, one has
PL0

N @z#5PV
N@z#, a property that is shared with th

Jastrow-Laughlin2 and composite-fermion3 trial wave func-
tions.

~3! The PL
N@z# ’s are translationally invariant functions.

~4! The coefficients of the determinants@i.e., products of
sine functions; see Eq.~8!# dictate that the REM functions
are nonzero only for special values of the total angular m
mentumL given for a (n1 ,n2 , . . . ,nr) configuration by

L5N~N21!/21 (
q51

r

nqkq , kq50,1,2,3, . . . ~11!

The minimum angular momentumL05N(N21)/2 is deter-
mined by the fact that theD determinants@see Eq.~8!# van-
ish if any two of the single-particle angular momental i and
l j are equal. For the (0,N) and (1,N21) rings, the specia
values are given byL5L01Nk and L5L01(N21)k, re-
spectively. In plots of the energy vs the angular momen
derived from exact-diagonalization studies,9–11 it has been
found that the specialL values associated with the (0,N) and
(1,N21) rings ~appropriate forN<7) exhibit prominent
cusps reflecting enhanced stability; as a result theseL values
are often referred to as ‘‘magic angular momenta.’’31 We
predict that similar magic behavior reflecting enhanced
bility is exhibited by the specialL values given by Eq.~11!
and associated with the general ring arrangem
(n1 ,n2 , . . . ,nr). In the thermodynamic limit,2,5 the totalL is
related to a fractional fillingn5N(N21)/(2L), and thus the
angular momenta~11! of the REM functions correspond t
all then associated with the FQH effect, including the eve
denominator ones, i.e.,n51,3/5,3/7,5/7,2/3,1/2,1/3, etc. . . . .

~5! For the case of two electrons (N52), the REM func-
tions reduce to the Jastrow-Laughlin form, namely,

PL
2@z#5 )

1< i , j <N
~zi2zj !

L ~12!

where L51,3,5, . . . . However, this is the only case fo
which there is coincidence between the REM and the
wave functions. For higher numbers of electrons,N, the
polynomials PL

N@z# of the REM functions~apart from the
lowest-order VandermondePL0

N @z# ones! are quite different

from the corresponding JL or composite-fermion polynom
als. In particular, the familiar factor)1< i , j <N(zi2zj )

2p,
with p an integer3,4 ~which reflects multiple zeroes! does not
appear in the REM functions~see, e.g., Table I which con

TABLE I. The Q9
3@z# polynomial associated with the REM an

the JL functions~the QL
N@z# polynomials are of orderL2L0).

REM (z1
323z1

2z21z2
316z1z2z323z2

2z323z1z3
21z3

3)
3(z1

323z1z2
21z2

316z1z2z323z1
2z323z2z3

21z3
3)

JL (z12z2)2(z12z3)2(z22z3)2
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~6! For the case of three electrons (N53), after trans-

forming to the Jacobi coordinatesz̄5(z11z21z3)/3,za

5(2/3)1/2@(z11z2)/22z3#,zb5(z12z2)/A2 ~and dropping
the center-of-mass exponential factor!, the REM wave func-
tions can be written as~again within a proportionality con-
stant!

FL
3@za ,zb#5@~za1ızb!L2~za2ızb!L#

3exp@~21/2!~zaza* 1zbzb* !#, ~13!

with L53m,m51,2,3,4, . . . , being the total angular mo
mentum. Again the wave functionsFL

3@za ,zb# are very dif-
ferent from the three-electron JL ones; e.g., they are non
nishing for evenm values, unlike the three-electron J
functions. However, theFL

3@za ,zb# ’s coincide with the func-
tions um,0& derived in Ref. 1. We remark that, although
was found1 that these wave functions exhibited a behav
expected of fractional quantum Hall ground states~e.g., areal
quantization and incompressibility!, the generalization of
them to a higher number of electrons did not follow; instea
the REM functions presented here do constitute such a g
eralization.

IV. OSCILLATORY ELECTRON DENSITIES

In Fig. 1, we display the radial ED’s of several REM
wave functions and compare them to corresponding E
from exact diagonalizations. The main conclusion is that
ED’s of the REM functions exhibit32 a prominent oscillatory
behavior in excellent agreement with the exact ED’s. Su
an oscillatory behavior is a natural consequence of the
derlying ring arrangements. ForN56 andL520, the under-
lying structure is a~1,5! arrangement@L is five units larger
than the minimum L0515, i.e., n151,k150 and n2

FIG. 1. Radial ED’s from REM wave functions~solid lines, all
frames!, exact diagonalization@dashed lines~a!–~e!#, and JL func-
tions @dotted lines~d! and~e!#. In ~a! and~b!, the solid and dashed
curves are practically indistinguishable.
5-3
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55,k251 in Eq.~11!#, and thus the corresponding ED exhi
its a maximum at the origin followed by an outer hump@Fig.
1~a!#. For N56 andL521, however, the underlying struc
ture is a~0,6! arrangement (L is six units larger thanL0), and
thus the ED exhibits a dip at the origin and a single ou
hump@Fig. 1~b!#. In the otherN56 cases plotted here@Figs.
1~c!, 1~d!, and 1~e!#, the differenceL2L0 is divisible by 5
and the underlying ring arrangement is~1,5!; thus there are
two humps in the corresponding ED’s, the inner one portr
ing the single electron at the origin. TheN56,L575 @Fig.
1~d!# and N56,L5105 @Fig. 1~e!# cases correspond to th
fractional fillings 1/5 and 1/7, respectively. For these tw
cases, we have plotted also the ED’s associated with th
functions~dotted lines!. As was found in then51/3 case,18

the JL functions fail to capture the radial oscillations that
characteristic of the long-range Coulomb force. Finally,
Fig. 1~f! and Fig. 1~g!, we present the ED’s of the REM
functions forN512,L5123 andN516,L5205. In general,
there are as many humps as the number of concentric ri
Indeed the ring structures are12,25 ~3,9! and ~1,5,10! for N
512 andN516, respectively.33 We note that the ED forN
512,L5123 is similar to the exact ED for the same case34

although the latter was calculated with an external confi
ment.

It has been found12,25 that the number of rings~r! in-
creases as the number of electrons grows. Forn<1/3, this
results in electron-density oscillations that extend along
whole radius of the QD, with no obvious separation into bu
and edge regions. Currently, the largest number of elect
for which the ring structure has been determined25 is N
5230 with a concentric-ring arrangement
~1,6,12,18,23,25,34,37,37,37!.
ev
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V. CONCLUSIONS

We have developed a class of trial wave functions
simple functional form, which accurately describe the ph
ics of electrons in QD’s under high magnetic fields. In p
ticular, our functions capture the long-range correlations
the Coulomb repulsion; unlike the JL functions, they yie
for all N and fractional fillingsn an oscillatory radial elec-
tron density in agreement with exact-diagonalization resu
The electron-density oscillations extend throughout the s
tem. The thematic basis of our approach is built upon
intuitive, but microscopicallysupported, picture of collec
tively rotating electron molecules, and the synthesis of
many-body REM wave functions involves breaking of t
circular symmetry at the UHF level with subsequent resto
tion of this symmetry via a projection technique. While w
focus here on the strong magnetic-field regime, we note
the REM picture unifies the treatment of strongly correla
states of electrons in QD’s over the whole magnetic-fi
range.13,20,21,24Finally, our REM wave functions, aimed her
mainly at treating finite electron systems~i.e., QD’s!, can
provide in the thermodynamic limit an alternative interpre
tion of the FQH effect; namely, the observed hierarchy
fractional filling factors may be viewed as a signature ori
nating from the magic angular momenta of rotating elect
molecules.
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