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Thermoelectric effects in a Luttinger liquid~LL ! wire adiabatically connected to the leads of
noninteracting electrons are considered. For a multichannel LL a staircase-like behavior of the
thermal conductance as a function of chemical potential is found. The thermopower for a
LL wire with an impurity is evaluated for two cases:~i! LL constriction, and~ii ! infinite LL wire.
We show that the thermopower is described a Mott-like formula renormalized by an
interaction-dependent factor. For an infinite LL the renormalization factor decreases with increase
of the interaction. However, for a realistic situation, when a LL wire is connected to the
leads of noninteracting electrons~LL constriction!, the repulsive electron-electron interaction
enhances the thermopower. A nonlinear Peltier effect in a LL is briefly discussed.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1414571#
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1. INTRODUCTION

Charge and heat transport through a narrow wire wh
width is comparable to the electron Fermi wavelength oc
via a finite number of transport channels associated w
quantization of the electron’s transverse momentum in
wire. Furthermore, at low temperatures the phase-brea
length, lr(T), can exceed the length of the wire,lr(T)
.L, and the electron transport becomes phase coheren
the Landauer approach1 to such quantum mechanical tran
port problems the complexity of calculating the releva
transport coefficients is reduced to a single-particle scatte
problem, with the transport properties of the electrons
scribed in terms of the probability for transmission of t
electrons through the effective scattering potential rep
sented by the wire. Indeed, this approach, whose implem
tation is often simpler than the use of the Kubo treatmen
such problems, has proved to be most useful for the desc
tion of the transport properties of noninteracting electro
through wires~constrictions! of reduced dimensions~see re-
views in Ref. 2!.

It is well known that for strictly one-dimensional~1D!
interacting electron systems the Fermi liquid~FL! descrip-
tion of the low-energy excitations does not hold. Instead,
such systems with interactions which leave the electro
spectrum gapless, the corresponding ‘‘long-waveleng
theory is that of the Luttinger liquid~LL !.3 Unlike the Fermi
liquid description, where charged excitations are represe
by quasiparticles~electrons and holes!, electrons do not
propagate in an~infinite! LL. Rather, the excitation spectrum
of the LL consists of gapless bosonic excitations~charge and
spin density waves!; harmonic oscillations of boson field
8211063-777X/2001/27(9–10)/10/$20.00
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are neutral, whereas their topological excitations ca
charge and spin.

Since the LL and the FL have qualitatively different e
citation spectra, the transport properties of LLs have been
subject of theoretical interest, and it was shown rather ea4

that the electric conductanceG of an impurity-free infinite
LL depends on the interelectron interaction, i.e.,G5gG0 ,
whereG05e2/h is the quantum of conductance andg is the
dimensionless electron–electron interaction parameter of
LL. Subsequent intensive investigations pertaining to tra
port properties of LLs were triggered by the studies of Ka
and Fisher5 and of Glazmanet al.,6 who considered the
transport of charge through a local impurity in the LL, fin
ing that for repulsive electron-electron interactions the c
ductance scales with temperature~at low temperatures! as a
power lawG(T);T2/g22; such behavior has been reporte
in recent experiments.7,8

Heat transport in a LL was first considered in Ref.
where it was shown that in an infinite homogeneous LL
thermal conductanceK(T) is not renormalized by the inter
actions, i.e.,K(T)5K0(T)5(p2/3)kB

2T/h, while in the pres-
ence of an impurityK(T);T3. This result, together with the
one for the electrical conductance, predicts violation of
Wiedemann-Franz law in a LL.

The above results, which were derived for effective
infinite LLs, cannot be tested directly in quantum wires co
nected to source and drain leads. To address this issue
transport properties of the LL were considered for a finite
wire adiabatically connected to FL leads modeled by 1D r
ervoirs of noninteracting electrons. The results obtained
such a finite and impurity-free LL wire were found to b
qualitatively different from those derived for the infinite LL
© 2001 American Institute of Physics
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In particular, it was shown that for finite LL wires with adia
batic contacts to the reservoirs the electric conductance is
renormalized by the interelectron interaction10 and that the
thermal conductance is significantly suppressed~for spinless
electrons! for a strong repulsive interparticle interaction.11,12

These predictions have a rather simple physical explana
Since the electrons in the reservoirs are taken as noninte
ing particles, one could use the Landauer approach for
culation of the electric and thermal conductances. For
adiabatic LL constriction the electrons are not backscatte
by the confining potential of the wire, and consequen
charge is transmitted through the wire with unit probabili
Therefore, the electric conductance of a LL constriction
incides with the conductance of a single-channel quan
point contact. In contrast, heat is transported in the LL
plasmons~charge-entropy separation!11 which, for strong in-
teractions, are significantly backscattered at the ‘‘transitio
region between the LL wire and the FL reservoirs, and c
sequently heat transport is suppressed.

The aforementioned studies dealt with spinless electr
and a single-channel LL. However, in many real situatio
the quantum wires may support several 1D~transport! chan-
nels, and currently thermoelectric effects in LLs rema
largely unexplored. In this context, we remark that it h
been noted13 that the thermopower of a Hubbard chain, in t
vicinity of a Mott-Hubbard phase transition to a dielectr
phase, can be calculated using the Mott formula~see, e.g.,
Ref. 14! for noninteracting fermions. This observation h
been exploited15 in a derivation of the thermopower of
homogeneous infinite Hubbard chain in the limits when
Hubbard model can be mapped onto a model of spin
Dirac fermions.

In light of the above, we report here on studies of h
transport through a multichannel LL constriction connec
to Fermi liquid leads, as well as investigations of the th
mopower~Seebeck! and Peltier effect in a LL wire~Fig. 1!.

First, we study heat transport through a multichannel
constriction. In this case the thermal conductance as a fu
tion of the chemical potentialm demonstrates a staircase-lik
behavior. We show that at low temperaturesT!T0.\v0 /L
~v0 is the characteristic velocity, which is determined by t
strength of the confining potential, andL is the length of the
LL wire! the steps in the conductanceK(m) are practically
unaffected by electron-electron interactions. On the ot
hand, strong interactions suppress the heat conductio
temperaturesT;T0 ; however, the steps are pronounc
even in this high-temperature region. Subsequently,
evaluate the thermopower for a finite LL wire connected
FL leads. In this case a simple physical approach to the p

FIG. 1. Schematic of a Luttinger liquid~LL ! nanowire of lengthL, con-
nected to Fermi liquid~FL! reservoirs that are kept at different temperatur
The impurity~scattering potential, denoted byX! is placed in the middle of
the LL wire.
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lem was used. The finite LL wire is modeled by an effecti
transmission coefficient which in the Landauer-Buttiker a
proach determines the charge and heat transport betwee
leads. We predict that the thermopower of a LL with
impurity is described by a Mott-like formula—it depend
linearly on the temperature and is proportional to the lo
rithmic derivative of the bare~unrenormalized by the
electron-electron interactions! electric conductance. At low
temperatureskBT!DL.\s/L ~L is the length of the LL
wire, ands is the plasmon velocity! the thermopower is no
renormalized by the electron-electron interactions, and i
described by the well-known formula for the thermopow
S0 for a system of noninteracting electrons~see, e.g., Ref.
14!. At temperatureskBT@DL the interaction renormalize
the thermopower, and consequently for a strong interac
SLL;S0 /g2@S0 . The renormalization factor is different fo
spinless and spin-1/2 electrons, and the enhancement o
thermopower is more pronounced for spinless particles.

Next, we calculate the thermopower for an infinite L
Although the situation when the effects of the leads are
cluded appears somewhat artificial from the experimen
point of view, it is useful to elaborate this problem by
powerful LL calculation technique. In particular, we note th
the transport properties of 1D interacting electrons have b
studied mostly for an infinite LL, and thus the evaluation
the thermopower for this case represents an interesting
important theoretical problem. We show that for an infin
LL wire with an impurity the thermopower is described b
the Mott formula,S0 , multiplicatively renormalized by the
electron-electron interaction.

For an infinite LL the renormalization factor decreas
with increase of the interaction,S(g!1);gS0 . This result
does not contradict our previous claim, since the two pr
lems under study~infinite LL wire and LL wire adiabatically
connected to metallic leads! are not identical. In particular
the driving voltage which enters the definition of the the
mopower is different for the two cases in question. For
infinite LL it is the voltage dropV across the impurity. In the
case of the LL constriction the bias voltageU is defined as
the difference of the chemical potentials of the leads,U
5Dm/e. It has been shown16 that for a strong impurity
~weak tunneling! V5g2U. Thus the thermopower of a LL
wire, when expressed in terms ofU, is enhanced by interac
tion. This derivation supports our finding that the strong
terelectron interaction strongly enhances the thermopowe
a LL with an impurity.

It is well known ~see, e.g., Ref. 14! that in the linear-
response regime the Peltier effect is determined by the s
thermoelectric coefficient as the Seebeck effect. Howeve
the nonlinear regime the Onsager symmetry relations
tween the transport coefficients cease to be valid, and
Peltier coefficient foreV>kBT ~V is the bias voltage! de-
scribes an independent thermoelectric phenomenon.
evaluate the nonlinear Peltier coefficient for an impuri
containing LL wire connected to leads. The phenomenolo
cal approach, when the finite LL wire is modeled by an
fective transmission coefficient, does not predict t
renormalization of the nonlinear differential Peltier coef
cient by the interaction.

The paper is organized as follows. In Sec. 2 the therm

.
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conductance of a multichannel LL is studied. In Sec. 3
thermopower of a LL constriction with an impurity is evalu
ated in a phenomenological approach. In Sec. 4 bosoniza
technique in conjunction with a tunneling Hamiltonia
method is used for a calculation of the thermopower of
infinite LL. In Sec. 5 we investigate the Peltier effect in
Luttinger liquid. The main results are summarized in Sec

2. INTERACTION-ENHANCED STAIRCASE BEHAVIOR OF
THE THERMAL CONDUCTANCE

To calculate the thermal conductance of a multichan
LL wire adiabatically connected to 2D reservoirs of non
teracting electrons we will use the multimode LL model d
veloped in Ref. 16. The Hamiltonian of the model in t
boson representation takes the form

H5(
j 51

N E dxFpj
2~x!

2mnj
1

mnj

2
v j

2~uj8!2G
1

U0

2 (
i , j 51

N

ninjE dx fL~x!ui8~x!uj8~x!, ~1!

whereuj (x) is the displacement operator of thej th mode;
uj8[]uj /]x; pj is the conjugate momentum, wit
@ui(x),pj (y)#5 i\d i j d(x2y); nj is the number density o
the electrons in thej th mode andv j5p\nj /m is the corre-
sponding Fermi velocity, andU0 determines the strength o
the electron-electron interaction, which is assumed to be
cal: U(x2y)5U0d(x2y). We introduced into the Hamil-
tonian in Eq.~1! a smooth functionf L(x) that restricts the
electron-electron interaction to a finite region of lengthL.
The electron reservoirs are modeled as 1DN-channel Fermi
gases and they are represented, in the boson form, by
noninteracting part of the Hamiltonian.

The Hamiltonian in Eq.~1! is quadratic and can be easi
diagonalized. In diagonal form it describesN noninteracting
‘‘bosonic’’ modes with velocitiessn (n51,...,N) which are
adiabatically transformed intoN modes with velocitiesvn

(n51,...,N). The latter modes correspond to theN noninter-
acting electron channels in the leads. The plasmon veloc
sn are determined by the equation17

(
n51

N
vn

s22vn
2 5

p\

U0
. ~2!

For a two-channel (N52) case the above equation ca
be easily solved, yielding

s1~2!5A1

2
~u1

21u2
2!6

1

2
A~u1

22u2
2!21~2U0 /p\!2v1v2,

~3!

where

u1~2!5v1~2!A11U0 /~p\v1~2!!. ~4!

In the limit of strong interelectron repulsion, i.e.,U0

@p\v1(2) , the interaction parameters of the two-chann
LL, defined asgn5vn /sn , take the form (v1>v2)
e

on

n

.

l

-

o-

he

es

l

g1[
v1

s1
.S p\v1

U0

v1

v1
21v2

2D 1/2

!1;

g2[
v2

s2
.Av2 /v1<1. ~5!

Note that for spin-1/2 interacting electrons the Ham
tonian of a single channel LL is given by Eq.~1! with N
52 andv15v25v. In this case the velocity of the ‘‘spin’’
modes25v is not renormalized by the interaction, i.e.,gs

51. In the following we will see that ‘‘spin’’ channels offe
‘‘easy pathways’’ for heat transport through a LL constri
tion.

In the absence of electron backscattering~see discussion
below! the plasmon modes are noninteracting. Conseque
the Landauer approach1 can be used for calculation of th
thermal conductance. The corresponding express
reads11,12

K~T!5
1

Th (
n51

N E
0

`

d««2S 2
] f B

]« D tn~«!, ~6!

where f B[@exp(«/kBT)21#21 is the Bose-Einstein distribu
tion function of the plasmons, andtn(«) is the probability of
plasmon transmission through thenth mode of the LL. As
we have said, we assume here that the contacts of the L
the Fermi liquid reservoirs are adiabatic, which means t
there is no backscattering of charged excitations in the
Formally Eq. ~6! represents the thermal conductance o
purely bosonic noninteracting system.18 As was shown in
Refs. 11 and 12, this formula also applies to an adiabatic~no
electron backscattering! LL wire, where the heat is trans
ported by bosonic excitations~plasmons!, whose dynamics,
in the absence of local scatterers, is described by a quad
Hamiltonian. These considerations lead one to conclude
Eq. ~6! yields the exact thermal conductance of a LL wire
the absence of impurities. However, the plasmons could
backscattered by the ‘‘transition region’’ between the LL a
the FL reservoirs. Since the widthd of the transition regions
obeyslF!d!L, we can model them as zero-width boun
aries located atx50 andx5L. Consequently, the mismatc
of the plasmon velocities at the boundaries will cause str
backscattering of the plasmons. Thus the transmission c
ficient tn(«) in Eq. ~6! can be obtained by taking the functio
f L(x) in Eq. ~1! to be of the form f L(x)5u(x)u(L2x)
@whereu(x) is the Heaviside step function# and matching the
wave functions of the plasmons at the boundaries. Si
there is no channel mixing,tn(«) takes a form analogous t
that calculated in Ref. 12:

tn~«!5Fcos2S «

Dn
D1

1

4 S gn1
1

gn
D 2

sin2S «

Dn
D G21

, ~7!

whereDn[\sn /L is the characteristic energy scale for th
finite LL wire, and the plasmon velocitiessn (n51,...,N) are
determined by Eq.~2!. Note that for spin-1/2 electrons th
‘‘spin’’ mode is not renormalized by interaction, and the co
responding correlation parametersgn

(s)51 (n51,...,N/2);
i.e., for the ‘‘spin channels’’ one hastn

(s)51, and the heat
transport associated with spin density wave excitations is
affected by the electron-electron interaction.
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The expressions given in Eqs.~2!, ~5!, and~7! generalize
the problem of heat transport through a single-mode spin
LL11,12 to a multichannel LL. Now the Fermi velocitiesvn

depend both on the chemical potentialm and the ‘‘trans-
verse’’ quantum numbern which characterizes the quantiz
tion of the transverse electron momentum. For a parab
confining potential Uc(y)5mV2y2/2 the corresponding
transverse energy takes the valuesEn

'5\V(n21/2) (n
51,...,N), and the Fermi velocity of thenth mode is given
by

vn5v0uS m

\V
1

1

2
2nD S m

\V
1

1

2
2nD 1/2

, ~8!

wherev05A2\V/m. The appearance of the step function
the definition of the Fermi velocities of the multimode L
results in a staircase behavior of the electricG(m) and ther-
mal K(m) conductances as functions of the chemical pot
tial m.

An important comment concerning Eqs.~6!–~8! is war-
ranted here. Note that Eq.~7! is an exact result for noninter
acting plasmon excitations—that is, when the electrons
not backscattered by the confining potential in the LL co
striction. Such a condition is fulfilled at low temperatur
and for chemical potentials satisfyingmÞ\V(n21/2). In
the vicinity of m5\V(n21/2) an additional electron mod
is converted from an evanescent to a propagating mode.
implies that upon reaching the thresholdm for entrance into
the contact, the character of the corresponding m
changes, and in doing so the mode is strongly influenced
the confining potential. Consequently, at such threshold
ues of the chemical potential the assumption of adiabati
of the LL constriction fails, and in calculating the therm
conductance the contribution due to electron transport ne
to be considered. However, it is well known that the tra
port of charge through a local~of the order oflF! potential
in a LL is strongly suppressed due to plasmon renormal
tion of the bare scattering potential,9 implying that for suffi-
ciently long wires and for strong electron-electron repuls
the contribution of electron transport to the thermal cond
tanceK(T) is small and can be neglected. Therefore,
conclude that under such circumstances Eq.~6! is valid for
practically all values of the chemical potential except at
very beginning of the steps. We note that at low tempe
tures,T!\v0 /L, the staircase-like behavior of the therm
conductance is practically unaffected by electron-electron
teraction~Fig. 2a!. At high temperaturesT@\v0 /L the ther-
mal conductance, although being suppressed in the cas
strong interaction,11,12 still demonstrates a clear staircase b
havior as a function of chemical potential~Fig. 2b!.

3. IMPURITY-INDUCED THERMOPOWER IN A LUTTINGER-
LIQUID CONSTRICTION

The thermopower is a measure of the capability o
system of charged particles to generate an electromo
force when a temperature gradient is applied across the
tem. In the linear-response regime it can be represented
ratio of transport coefficients,

S~T,m!52
L~T,m!

G~T,m!
, ~9!
ss
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where G is the electric conductance andL is the cross-
transport coefficient which connects the electric current
the temperature difference for noninteracting particles. Th
coefficients can be calculated using a formalism develo
in Ref. 19 and adapted in Ref. 18 to the Landauer schem1

In this approach the transport coefficients are expresse
terms of the transmission probabilityt j («) for an electron to
arrive at the drain electrode in thej th channel as

G~T,m!5G0(
j 51

N E
0

`

d«S 2
] f F

]« D t j~«!, ~10!

and

L~T,m!5G0

kB

h (
j 51

N E
0

`

d«S 2
] f F

]« D «2m

kBT
t j~«!. ~11!

Here G0 is the conductance quantum andf F(«2m) is the
Fermi-Dirac distribution function of the electrons in th
leads.

Equations~10! and ~11! cannot be applied to an infinite
LL, where electrons are not propagating particles and
conventional scattering problem is ‘‘ill-posed.’’A general a
proach for calculating transport coefficients in a system
strongly interacting particles is the Kubo formalism, and
recent publication where it was used for calculation of t
thermopower for a Hubbard chain can be found in Ref.
As may be seen from that study, with the Kubo approach
difficult to calculate the thermopower in the whole range
external parameters~temperature, interaction strength, de
sity of particles, etc.!, and indeed the final analytical expre
sions for the desired quantities were derived13,15 only in the

FIG. 2. The thermal conductance, in units ofp2kB
2T/3h, plotted as a func-

tion of the dimensionless chemical potentialm/(\V)11/2 for several val-
ues of the strength of the electron-electron interactionU0 /(p\vF). In ~a!
the temperature was taken to beT̃5kBTL/(\v0)50.1, and in~b! T̃510.
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limits when the Hubbard model can be mapped to a mode
noninteracting fermions, for which a Mott-type expressi
for the thermopower could be used.

To obtain thermopower results pertaining specifically
the transport properties of systems of strongly interact
electrons, and to consider quantum-wires thermoelectric
fects which could be tested in experiments, we choose
invoke at first certain simplified~yet physically reliable!
models of strongly interacting electron systems. Such ph
cal models of charge transport in LLs of strongly, as well
weakly, interacting electrons were proposed in Refs. 6
20 and were shown to yield the same results as those
tained from more conventional~and rigorous! treatments of
LL effects,5,21 through the use of Landauer-like expressio
for estimating the dependence of the conductance on
temperature and on the bias voltage. In this Section an
Sec. 5 we use such a phenomenological approach~see also
Ref. 22! for studying the Seebeck and Peltier effects in m
tichannel LLs.

When a LL is connected to FL reservoirs with give
temperatures and chemical potentials one could make us
Eqs.~10! and~11!, with t j («) now regarded as the probabi
ity of transmission of the electrons~in the j th channel!
through the effective potential barrier formed by the L
piece of the wire. For a wire which is adiabatically connec
to the leads the transmission coefficient is unity as long
we neglect the backscattering of electrons by the confin
potential. For a perfect wire the backscattering effect is
ponentially small for practically all values of the chemic
potential, except at the narrow regions in the vicinity of co
ductance jumps~steps! where an additional mode is con
verted from an evanescent to a strongly propagating mo
Such a physical picture results in a staircase-like behavio
the conductance as a function of the chemical potential
is often modeled by abrupt jumps of the electron transm
sion coefficient from zero~reflected mode! to one~transmit-
ted mode!. This model is too simplified for real quantum
point contacts, where the specific features of the confin
potential could be important for a correct description of t
transition region between the conduction plateaus. Howe
for strongly interacting electrons this simple model, whi
does not depend on the details of the bare scattering po
tial, could be a correct approximation. Indeed, the transm
sion of electrons through a long but finite LL is determin
by an effective scattering potential that includes the effect
electron-electron interactions. This potential for sufficien
long wires and for temperatureskBT!EF quenches all
modes whose bare transmission coefficientst0 are not very
close to unity~see the corresponding discussion in Ref. 2!.
Since according to Eqs.~9!–~11! the thermopowerS(T,m)
}]G/]m we observe that for a multimode LL constrictio
the thermopower vanishes on the conductance plateaus a
peaks at the conduction steps~that is, at the transition region
from one conductance plateau to the next!. The qualitative
distinction of the thermopower in a LL from that evaluat
for noninteracting electrons23,24 lies in the shape of the ther
mopower peaks. For strongly interacting electrons a sim
approximation in which the~now effective! transmission co-
efficient is modeled by a Heaviside step function could b
quite reliable procedure. Then the temperature behavio
of
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the peaks will be universal~it will not depend on the con-
crete shape of the confining potential!. To make more-
definite predictions we need to evaluate the thermopower
a quantum wire with a single impurity.

Since it is known that in the presence of an impurity t
conductance of a LL is strongly suppressed, one may naiv
expect that the thermopowerS}]G/]m will also be strongly
suppressed in such a wire. However, as we show below,
is not the case. Instead, we find that for strong~repulsive!
electron-electron interactions the impurity-induced th
mopower of a LL is significantly enhanced in comparis
with the thermopower of a system of noninteracting p
ticles.

To calculate the thermopower of a finite-length LL in th
presence of a local impurity~which we place for simplicity at
the middle of the constriction! we will model the effective
transmission coefficient as

teff~«!5t0~«!S DL

L D a

for u«2EFu!DL , ~12!

and

teff~«!5t0~«!U«2EF

L Ua

for u«2EFu@DL . ~13!

Here t0(«)!1 is the bare transmission coefficient dete
mined by the unrenormalized scattering potential~we restrict
ourselves to a single-mode LL!; DL5\s/L is the character-
istic low-energy scale~s is the plasmon velocity!, andL is
the cutoff energy, which for a purely 1D LL is of the order o
the Fermi energyEF . The exponenta depends on the
electron-electron interaction strength and is different
spinless and spin-1/2 electrons:17

a52S 1

g
21D ; g5S 11

U0

p\vF
D 21/2

for s50, ~14!

and

a5
2

gs
21; gs52S 11

2U0

p\vF
D 21/2

for s51/2. ~15!

The transmission probabilityteff in Eq. ~12! results in an
expression for the linear conductance which coincides~up to
an irrelevant numerical constant! with that obtained in Ref.
25 via a renormalization group calculation. In fact, the sa
expression has been used6 for estimation of the temperatur
dependence of the LL conductance in the limit of stro
interaction (g!1); this is also the limit of interest to us
since for weak interactions LL effects would be mu
weaker.

The bare transmission is commonly assumed to b
smooth function of the energy aroundEF , i.e.,

t0~«!.t0~EF!1~«2EF!S ]t0

]« D
«5EF

. ~16!
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With this form, Eqs.~10! and ~11! yield

GLL~T!5G0t0~EF!

3H S DL

L D a

, kBT!DL ,

2~12212a!G~11a!z~a!S kBT

L D a

, DL<kBT!L,

~17!

and

LLL~T!5G0S p2kB
2T

3e D t08~EF!

3H S DL

L D a

, kBT!DL ,

6

p2 ~122212a!G~31a!z~21a!S kBT

L D a

, kBT>DL ,

~18!

whereG(x) and z(x) are the gamma function and the Ri
mann zeta function, respectively.

From Eqs.~9!, ~17!, and ~18! we conclude that at low
temperatureskBT!DL the thermopower of a LL constriction
with an impurity is not renormalized by the interelectro
interactions. Instead it is described by a Mott-type form
for noninteracting electrons,24

S0~T!.2
p2

3

kB
2

e S ] ln G0~«!

]« D
«5EF

, ~19!

whereG0(«) is the corresponding~bare! conductance of the
noninteracting electrons. This finding is not surprising, sin
at kBT!DL the electrons in the leads determine the transp
properties of the LL constriction. However, at temperatu
kBT@DL the thermopower, being still a linear function o
temperature, undergoes a strong multiplicative renormal
tion:

SLL~T>DL /kB!.Cs~g!S0~T!, ~20!

Cs~g!5
3

p2

122212a

12212a

z~a12!

z~a!
~a11!~a12!.

Note that unlike the electric conductanceGLL(T) and the
cross-coefficientLLL(T), the thermopowerSLL(T) does not
depend on the cutoff parameter, and therefore the interac
and spin-dependent factorCs(g) cannot be absorbed into
definition of L.

For noninteracting electronsCs(g51)51, and the Mott-
type formula~Eq. ~19!! holds ~as it should! for all tempera-
tures (kBT!EF). In the limit of strong interactionU0

@p\vF

C0~g!1!512
U0

p3\vF
, ~21!

C1/2~g!1!56
U0

p3\vF
. ~22!
a

e
rt
s

a-

n-

From Eqs.~20!–~22! we observe that the LL effects on th
thermopower are most significant for strong interactio
U0@p\vF , and that they are more pronounced for spinle
particles than for spin-1/2 electrons~Fig. 3!.

Since for the thermopower the interaction depende
factorizes. Equation~20! could be readily generalized for th
case of wires with dilute impurities, where the average sp
ing between the impurities is large enough so that the im
rities act incoherently. In this case the thermopower will s
be described by Eq.~20! at temperatureskBT.\sn̄, wheren̄
is the mean concentration of the impurities. An interest
example is a LL junction made of a perfect LL wire of leng
L connected to leads through a potential barrier at the c
tacts. The thermopower of such a LL junction for tempe
tureskBT>DL is described by Eqs.~19! and ~20! with the
total ~bare! conductanceG05G1

0G2
0/(G1

01G2
0), where G1

0

andG2
0 are the~bare! conductances of the contacts.

The thermopower, being the ratio of transport coe
cients, is less affected by interaction than the transport c
ficients themselves~Eqs.~17!, ~18!!. It is the prefactors in the
power-law dependences ofG(T) andL(T) on the tempera-
ture that determine the dependence of the thermopowe
the interaction strength. In the phenomenological appro
developed above, the quantitative correctness of these c
ficients cannot be proved. Therefore, we conclude that
electron-electron interaction enhances the thermopower
LL wire, and we will attempt to find a more rigorous trea
ment of the problem. In the next Section we evaluate
thermopower of an infinite LL with an impurity by makin
use of the bosonization technique when calculating the c
rent in the wire induced by the bias voltage and by the te
perature difference.

4. THERMOPOWER OF AN INFINITE LUTTINGER LIQUID

Let us consider an infinite LL wire with a single impurit
placed~for definiteness! at x50 ~i.e., the middle of the wire;
see Fig. 1!. It is known that for a LL with repulsive electron
electron interaction the charge transport through an impu

FIG. 3. The renormalization parameterC(g) and the dimensionless electro
interaction parameterg plotted versus the dimensionless strength of t
electron-electron interactionU0 /(p\vF) for spinless~solid line! and spin-
1/2 ~dashed line! electrons.
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is sharply suppressed at low temperatures. Therefore, th
is ‘‘split’’ by the impurity into two disconnected semi-infinite
segments, and the charge current through the impurity ca
evaluated with the use of the tunneling Hamiltonian meth

We start with the Hamiltonian

H5 (
m51,2

H0,m1Ht ,

where H0,m describes two (m51,2) identical semi-infinite
parts of the LL wire. In the bosonic form it reads

H0,m5
s\

8p E dx@g~]xQm!21g21~]xFm!2#. ~23!

Heres is the plasmon velocity,g5vF /s is the LL correlation
parameter,Fm(x) is the displacement field, andQm(x) is the
field complementary toFm(x), obeying the commutation re
lation ~see, e.g., Ref. 25! @Qm(x),Fm(x8)#
52p idmm8 sgn(x2x8). The tunneling Hamiltonian is

Ht5E
2`

0

dx1E
0

1`

dx2@^x2uT̂ux1&c2
1~x2!c1~x1!

1^x1uT̂ux2&c1
1~x1!c2~x2!#, ~24!

wherecm(cm
1) is the electron annihilation~creation! opera-

tor, the indexm labels two identical semi-infinite segmen
of the LL wire, and̂ x2uT̂ux1& is the tunneling matrix elemen
in the coordinate representation, i.e., the amplitude for
process of electron tunneling from the pointx1 to the point
x2 .

Let us introduce the ‘‘slow’’ annihilation and creatio
operators of two types—for right- and left-moving electron
cm(x)5eipFxCm,R(x)1e2 ipFxCm,L(x). At first we suggest
that our contact is pointlike. Then one can simplify the tu
neling Hamiltonian and write it in the form

Ht5 (
r 1 ,r 2

~l0C2,r 2

1 ~0!C1,r 1
~0!1h.c.!, ~25!

where Cm,r m
(Cm,r m

1 ) is the operator of annihilation~cre-

ation! of an electron from themth half of the wire~for right-
moving ~R! electronsr m511, for left-moving~L! electrons
r m521!.

We assume that the bare tunneling amplitudel0 is small.
Then the tunneling rate of electrons through the barrier
be obtained to leading order from Fermi’s ‘‘golden rule
The total rate of electrons from the left~‘‘1’’ ! LL to the right
~‘‘2’’ ! LL is of the form ~see, e.g., Ref. 27!

G125
2p

\ (
E18E28E18E28

u^E1E2uHtuE18E28&u
2

3P12dS E181E282E12E22
eV

2 D , ~26!

whereP12 is the probability of finding the system in the sta
uE1E2&, andV is the bias voltage. The standard evaluati
~see below! of the tunnel currentJ(V,T)5e@G12(V,T)
2G21(V,T)# results in the well-known expression for th
conductanceG(T) of an LL with an impurity.5

Let us assume now that the temperatures of the left (T1)
and right (T2) parts of the wire are different. In this case o
LL

be
.

e

:

-

n

can expect the contribution (JT) to the charge current in
duced by the temperature gradient. The Hamiltonian giv
by Eq. ~25! with a constant bare tunneling amplitude do
not allow one to evaluate this contribution. To obtain t
temperature-induced current we have to take into accoun
finite size of the barrier. We can do it by modifying th
tunneling Hamiltonian. The modified Hamiltonian include
extra terms containing the derivatives of the field operato

Ht5 (
r 1 ,r 2

~l0C2,r 2

1 ~0!C1,r 1
~0!1h.c.!

1 (
r 1 ,r 2

$2 i\l1@r 1C2,r 2

1 ~0!]xC1,r 1
~0!

2r 2]xC2,r 2

1 ~0!C1,r 1
~0!#1h.c.%. ~27!

Here ul1u is a small additional parameter (ul1upF;ul0u).
Notice that this form of the Hamiltonian corresponds to
tunneling amplitude which depends upon the momentum
the tunneling electron^p2uTup1&5l01l1r 1q11l1r 2q2 ,
whereqm5pm2r mpF is the momentum of the electron to
ward the Fermi level.

Now the total electron current through the barrier can
written in the form

J52ieul0u2 (
r 1 ,r 2

E
2`

1`

dt sin~eVt!^C2,r 2
~ t !C2,r 2

1 &

3^C1,r 1

1 ~ t !C1,r 1
&12ie\~l0l1*

1l0* l1! (
r 1 ,r 2

E
2`

1`

dt cos~eVt!

3~r 1]x^C1,r 1

1 ~ t,x!C1,r 1
&!^C2,r 2

~ t !C2,r 2

1 &U
x→0

22ie\~l0l1* 1l0* l1! (
r 18r 2

E
2`

1`

dt cos~eVt!

3~r 2]x^C2,r 2
~ t,x!C2,r 2

1 &!^C1,r 1

1 ~ t !C1,r 1
&U

x→0

, ~28!

where^...& denotes the thermal average, andCm,r m
(t) are the

field operators in the Heisenberg representation,Cm,r m

[Cm,r m
(0). The correlation functions in Eq.~28! can be

calculated by making use of the bosonization formula

Cm,r m
~x,t !5

1

A2pa
Um,r m

1 e2 i @r mFm~x,t !1Qm~x,t !#/2. ~29!

Here a is the cutoff parameter (a;\vF /EF), andUm,r m

1 is

the unitary raising operator, which increases the numbe
electrons on the branchr m by one particle but does not affec
the bosonic excitations. We will not specify its form, sin
this operator enters the formulas we are studying only in
combinationUU151. Now the bosonic fieldsFm(x,t) and
Qm(x,t) are in the Heisenberg representation.

In our case we have to impose a boundary condition
the displacement fieldFm(x) at x50 to account for the
semi-infiniteness of each segment of the LL wire, i.e.,

F1~0!5F2~0!50. ~30!
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Besides this, the boson fieldsQm(x) in Eqs.~23!, ~29! satisfy
the boundary condition

j ~x50!5
1

2p
]xQm~0!50. ~31!

The boson fields obeying the boundary conditions Eqs.~30!,
~31! in the momentum representation take the form

Qm~x!5 i E
2`

1`

dpS 2s

gp
oD 1/2

~bp2bp
1!cosS p

o

s
xD ,

Fm~x!5E
2`

1`

dpS 2sg

p
o D 1/2

~bp1bp
1!sinS p

o

s
xD , ~32!

wherebp and bp
1 are the standard bosonic annihilation a

creation operators (@bp ,bp8
1

#5dp,p8); p
05supu is the energy

of bosonic excitation with momentump.
With the help of Eqs.~29! and ~32! it is straightforward

to evaluate the correlation functions. In the vicinity of th
contact (x;0) one gets the desired correlator

^Cm,r m

1 ~x,t !Cm,r m
&.

1

2pa

3F 1

11 ivFx/a

pTmx

sinh~pTmx!G
1/2~1/g1r m!

3F 1

11 ivFh/a

pTmh

sinh~pTmh!G
1/2~1/g2r m!

,

~33!

where x5t2x/s and h5t1x/s. By substituting Eq.~33!
into Eq. ~28! we find the total electron current. In the linea
response approximationV→0, T12T25DT→0, the
voltage-induced (JV) and temperature-induced (JT) currents
take the form

JV58i
ul0u2e2

~2pa!2
VE

2`

`

dt
t

~11 ivFt/a!2/g F T̃t

sinh~ T̃t !
G 2/g

,

~34!

JT5
16ipe

~2pa!2
~l0l1* 1l0* l1!

kBDT

vF
E

2`

` dt

T̃t

3S 11 i
vFt

a
D 22/gF T̃t

sinh~ T̃t !
G 2/g

@ T̃t cosh~ T̃t !21#

3F T̃t cosh~ T̃t !2S 11 i
vFt

a
D 21G . ~35!

Here T̃[pkBT/\, whereT5(T11T2)/2 is the mean tem-
perature.

The integrals in Eqs.~34! and ~35! look very compli-
cated. Fortunately we are interested only in the limita→0.
In this case the asymptotics of the above integrals can
easily found. Both currentsJV,T are power-law functions o
the small dimensionless parameter Y[pkBTa/\vF!1. The
leading terms in the asymptotics Y→0 are

JV5VG~T!, ~36!
e

G~T!.
ul0u2e2

4p\3vF
2 BS 1

2
,g21D S pkBTa

\vF
D 2/g22

,

JT5kBDTL~T!, ~37!

L~T!.
pe

2\3vF
3 ~l0l1* 1l0* l1!kBTBS 3

2
,g21D

3S pkBTa

\vF
D 2/g22

.

Here B(x,y)5G(x)G(y)/G(x1y) is the beta function.
Equation ~36! coincides with the one found in Ref. 28.
predicts the power-law dependence of conductance on t
perature. Equation~37! is a new result. From Eqs.~36! and
~37! one easily gets the thermopower

S~g!52
kB

2p2

e

B~3/2,g21!

B~1/2,g21!

T

ul0u2

2

vF
~l0l1* 1l0* l1!.

~38!

For noninteracting electrons (g51) Eq. ~38! has to trans-
form into the Mott formula, Eq.~19!. This allows us to relate
the parametersl0 , l1 of the tunneling Hamiltonian to the
conductance and its derivative at the Fermi energy

2

vFul0u2 ~l0l1* 1l0* l1!5
1

G0

]G0

]« U
«5EF

, ~39!

whereG0 is the bare~unrenormalized by interaction! con-
ductance. Thus, the thermopower of an infinite LL takes
form

S~g!52
p2g

21g

kB
2T

e

] ln G0~«!

]«
U

«5EF

5
3g

21g
S0 . ~40!

We showed that the electron-electron interaction in
systems modeled by a Luttinger liquid multiplicative
renormalizes the thermopowerS0 of the Fermi liquid. For an
infinite Luttinger liquid the renormalization factor decreas
with increasing interaction. At first glance this result, E
~40!, contradicts the conclusion derived in the previous S
tion. Notice, however, that the two problems in question
not equivalent. It is well known, for instance, that the depe
dence of the conductance on the interaction strength is
ferent for an infinite LL and for a finite LL wire connected t
reservoirs of noninteracting electrons~see, e.g., Ref. 10!. To
relate the two problems under study we will follow the co
siderations presented in Ref. 16. In that paper it was sho
that for a LL wire adiabatically connected to electron res
voirs the voltage dropV across the strong impurity~no elec-
tron tunneling! is connected to the voltage dropU measured
on the leads by the simple relationV5g2U. This formula is
the manifestation of the Coulomb blockade phenomen
Physically it is evident that in the limit of strong interactio
g2;\vF /e2!1 the shift of the chemical potentials in th
leads (DmL5eU) cannot change significantly the charg
densities in the LL wire ‘‘split’’ into two parts by a strong
impurity potential. So, to relate~at least qualitatively! the
thermopowerS(g) evaluated for infinite LL to the ther-
mopowerSLL(g) of a LL smoothly connected to the leads
noninteractive electrons we first of all have to replace
voltageV in Eqs. ~26!, ~28!, ~34!, and ~36! by g2U. Then
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SLL(g);S(g)/g2 ——→g!1
S0 /g. This means that for a rea

situation, when the voltage dropU is measured between th
leads, the interaction enhances the thermopower. This
ports our claim based on the calculations done in the p
nomenological approach. Notice that there is still a discr
ancy~by a factorg21 @1! between the above estimates a
Eq. ~40! in the limit of strong interaction. This inconsistenc
could be attributed to the qualitative nature of our estim
tions based on the phenomenological model~Sec. 3!.

5. NONLINEAR PELTIER EFFECT IN A LUTTINGER LIQUID

According to the Thompson relation for the cros
coefficients of the 232 matrix of transport coefficients in th
linear response theory, the Peltier coefficientP(T,V) ~de-
fined as the ratio of heat current to the electric current in
absence of a temperature gradient across the system!.

P~T,V!5S JQ

Je
D

DT50

, ~41!

obeys the relationP52kBTS, whereS is the thermopower.
It is rather easy to verify that this relation also holds for a
if eV!kBT, and thus the linear Peltier coefficient in the L
can be described using Eqs.~17!–~22!. In the nonlinear re-
gime, eV!kBT, the Onsager symmetry relations betwe
the transport coefficients cease to be valid. For noninter
ing electrons the nonlinear Peltier effect has been studie
Ref. 29, and here we remark on its behavior for a LL with
impurity.

In the Landauer-Buttiker approach the electric and h
currents between reservoirs of noninteracting electrons
fixed temperatures and chemical potentialsm1(2) are given
by18,19

Je~T,V!5
G0

e E
0

`

d«teff~«!@ f 1~«!2 f 2~«!#. ~42!

JQ~T,V!5
1

h E0

`

d« teff~«!~«2m!@ f 1~«!2 f 2~«!#, ~43!

where

f 1~2!~«!5FexpS «2m1~2!

kBT D11G21

are the distribution functions of the electrons in the res
voirs,m1(2)5m6eV/2 for a symmetric LL wire, andV is the
voltage drop across the wire. In the following we will us
Eq. ~12! ~as in Sec. 3! to model the transmission probabilit
teff(E) for a finite LL with an impurity placed in the middle
of the wire.

Prior to proceeding with our analysis we note that t
J2V characteristics of a finite LL connected to FL reservo
were studied in Refs. 30 and 22 using different approac
In Ref. 22 the current–voltage dependence was calcul
using a qualitative physical approach, similar to that e
ployed by us in the present study, while a more rigoro
treatment of charge transport through a finite LL with
impurity, based on renormalization group analysis, w
elaborated in Ref. 30. Unlike the linear-response trans
regime, where the above two approaches arrived at sim
results, in the nonlinear regime they yield different behavi
p-
e-
-

-

e

t-
in

t
at

r-

s.
ed
-
s

s
rt
ar
s

for the current as a function of voltage at low temperatu
(T→0). Since the backscattering of the electrons by a lo
impurity in an infinite LL leads to a power-law dependen
of the electric current on the voltage,5 it may be expected,
and is indeed found in our model, that for a finite LL th
behavior would cross over to ordinary OhmicJ2V behavior
for eV!DL . However, the analysis given in Ref. 30 re
vealed the occurrence of additional oscillations of the curr
as a function of the bias voltage, which do not appear in
model. Underlying these oscillations is the multiple scatt
ing of the plasmon by the impurity potential and at t
boundaries of the LL, and the phase of these oscillation
sensitive to the position of the impurity. While our approx
mation scheme does not reveal these mesoscopic os
tions, one may expect that such fine structure in theJ2V
characteristics would be obliterated upon averaging over
position of the impurity.

With the above assumptions, and using Eq.~12! in Eq.
~42!, we obtain for the differential electric conductance
kBT!eV,

]Je

]V
5G0t0~EF!S DL

L D a

for eV!DL , ~44!

and

]Je

]V
5G0t0~EF!S DL

2L D a

for eV>DL . ~45!

In a similar fashion we obtain for the heat current
kBT!eV

]JQ

]V
.

e

h
t08~EF!S eV

2 D 2S DL

L D a

for eV!DL , ~46!

and

]JQ

]V
.

e

h
t08~EF!S eV

2 D 2S eV

2L D a

for eV>DL . ~47!

From Eqs.~44!–~47! it is readily seen that within the
framework of our calculations the nonlinear Peltier coe
cient for a symmetric LL constriction with an impurit
placed at the middle of the LL wire does not depend on
interelectron interactions, and the differential Peltier coe
cient is given by~at kBT!eV!

P~V![
]JQ /]V

]Je /]V
.

1

e S eV

2 D 2S ] ln t0~«!

]« D
«5EF

. ~48!

We remark, however, that an influence of the interel
tron interactions on the Peltier coefficient may occur
asymmetric LL wires or when the aforementioned mes
copic oscillations are included.

6. CONCLUSIONS

In this paper we have used physically motivated mod
to investigate the heat transport through a multichannel
wire and also the thermopower and Peltier effect in a sing
channel LL with an impurity.

~i! For a multichannel LL wire, we predict that electron
electron interactions would stabilize the staircase-like beh
ior of the thermal conductanceK(T,m) as a function of the
chemical potential~which can be controlled through the us
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of a gate voltage!. For strongly interacting particles th
jumps in the thermal conductance at each valuem5mn at
which a new propagating channel is allowed to enter
constriction remain sharp even at comparatively ‘‘high’’ tem
peratures.

~ii ! For a perfect ~impurity-free! LL wire the ther-
mopower~Seebeck coefficient! vanishes on the conductanc
plateaus and it peaks sharply at the conductance jumps
also considered the thermopower effect for a single-chan
LL constriction with an impurity placed at the middle of th
constriction. For this system the Mott expression for the th
mopower holds at low temperatureskBT!DL5\s/L, where
s is the plasmon velocity andL is the length of the LL wire.
However, atkBT.DL the thermopower is multiplicatively
renormalized by the electron-electron interactions. The ef
of this renormalization is predicted to be more pronounc
for spinless particles than for spin-1/2 electrons. This conc
sion is supported by an evaluation of the thermopower for
infinite LL with an impurity by the tunnel Hamiltonian
method. The Peltier coefficientP(T,V) of a LL wire, in the
linear-response regime, is determined by the thermopow
P(T)52kBTSLL(T). Unlike the thermopower~Seebeck co-
efficient! the nonlinear Peltier coefficient is found in ou
model to be unaffected by the interelectron interactions,
thus it is determined by the energy dependence of the
probability of transmission through the wire.
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