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Temperature scales of magnetization oscillations in an asymmetric quantum dot
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The temperature scales of different types of magnetization oscillations in a quantum dot, formed in a
two-dimensional electron gas by circularly symmetric or asymmetric confining potentials, are studied.
Aharonov-Bohm(AB) oscillations, with a superimposed fine structure caused by magnetic-field-induced shifts
of the electronic energy levels, develop at low magnetic fielgs o, , (Wherew, is the cyclotron frequency
and o, , are the harmonic confining frequencies that determine the shape and effective size of.tfidelot
characteristic scale of the fine-structure fluctuationggé(er /% wg) (Where gy is the flux quantumg is the
Fermi energy, and,= w,w,) and they are smeared at temperatifes(f wo)?/ e, with restoration of the
pure AB picture forT<7% w,. At high magnetic fieldsp > w, ,, de Haas—van Alphen oscillations develop
(for T<hw.), with a superimposed AB oscillatory structure which undergoes temperature smearifig for
=hwo(wglw,). Effects of the asymmetry of the confining potential on the magnetization oscillations are
discussed. The magnetic moment of the dot as a function of the chemical potential exhibits a series of
paramagnetic peaks superimposed on a diamagnetic background, and the influence of the magnetic-field
strength and asymmetry of the dot on these features is discussed.
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I. INTRODUCTION of magnetization oscillation@nainly the AB oscillationsin
circularly symmetric or asymmetric quantum d&tsThe dot
The behavior of metallic and semiconducting systems unis modeled by &symmetric or asymmetricharmonic con-
der the influence of magnetic fields may exhibit new featuredining potential, which allows us to obtain an expression for
in the submicron range when the system’s size becomei®e spectrum of the electrons in the presence of an applied
comparable to the typical length of the electronic trajectorymagnetic field, and to calculate analytically the magnetiza-
in it. In sufficiently small systems coherent motion of the tion of the dot. We demonstrate the existence of four differ-
electrons may be achieved, and this leads to the appearanégt temperature scales of magnetization oscillatiénsAt
of new quantum phenomena. One of the most interestingpw magnetic fields the AB oscillations and (guperim-
effects occurring in such systems under appropriate condiPosed oscillating fine structuréwith oscillations of smaller
tions is the Aharonov-BohmAB) effect. Predicted first for period and amplitude are characterized by the temperature
electron beams in vacuutrthe AB effect may be realized, scalesfive/a and %/ma?, respectively, whereg is the
as found theoretical?yand subsequently demonstrated in ex-Fermi velocity of the electrons and is the electronic mass.
periments on bismuth wiskefsin simply connected solids. (i) At high magnetic fields the de Haas—van Alphen oscilla-
In such systems the character of the motion of the electronons and the AB oscillatory structure have temperature
near the boundaries changes significantly, resulting in thécalesfiw. and (ivg/a)(ve/awe), respectively; the latter
formation of a new type of electronic states localized neatemperature scale for the AB oscillations is less than the one
the surface. Such surface states form whispering gallergorresponding to the case of low magnetic fields. Addition-
states in the case of weak magnetic fiélds., whenr, ally, we study the effects of the asymmetry of the confining
>a (wherer. is the cyclotron radius corresponding to the potential on the magnetization in the limit of low tempera-
cyclotron frequencyw., anda is the size of the systemor  tures and weak magnetic fields.
edge states in the opposite case of a strong magnetic field The paper is organized as follows. In Sec. Il we discuss
(see, e.g., Ref.)4 The electronic surface states may effec-the model used for the description of the quantum dot, and
tively change the topology of the sample, transforming acalculate the magnetization both analytically and numeri-
simply connected geometie.g., a solid cylinder or a digk cally. We summarize our results in Sec. IIl.
into a doubly connected ong.g., a ring where the AB
effect may occufsee Refs. 5 and 6 and the reviews in Refs. Il. MODEL AND RESULTS
4, 7, and 8. In solids, the AB effect is manifested by an
oscillatory dependence of the thermodynamic properties We study a dot formed in a two-dimensional electron gas
(magnetization or persistent currg@ind the transporcon- ~ With an asymmetric harmonic confining potentid, ,
ductance coefficients on the magnetic flux, with the period
of the oscillations determined by the flux quantudy
=hcl/e. The AB effect in various simply connected systems
such as dots, wires, and quantum contacts has been studied
quite extensively’ wherem is the electronic mass and the characteristic confin-
In this paper we investigate the temperature dependendag frequenciesv, , may be related to the chemical potential

m
Up(X,y)= §(w§x2+ oy?), 1)
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£ and the effective size of the d(t is the effective boundary where
of the do} as
Up(x,y)|L = ¢, (2a) 9(E)=22, (E~Ep,p)0(E~Ep,p). 9
12

or, equivalently, . - . L
g Y Here 6(x) is the Heaviside function, and the multiplication

Up(ay,00=Up(0ay)=¢, (2b) by 2_ is due_ to the electron spin. . o
o - Differentiation of the thermodynamic potential in E®)
wherea, anda, are the semimajor axes of the elliptical dot. \yith respect to the magnetic field gives the magnetization of

Note thatw, y=ve/ay,. the quantum dot
We place the dot in a magnetic field perpendicular to the
plane of the dot, and choose a symmetric gauge for the vec- ETe)
tor potential M=— - (10
A=3(—Hy,Hx,0). ©)

_ _ Expressiong4), (5), and (8)—(10) allow us to calculate
In this model the energy levels of the electrons in the dot arghe magnetic response of the guantum dot. Successive|y ap-

given by plying the Poisson summation formula in the form
Enlnzzhw+(n1+%)"‘hw—(nz"'%) (4) 1 *
—| = _ 1)k 2mikn
and }n) fin+3 k;w( 1) Jdnf(n)e (11)
0. =3[Voi+ (0t 0y)?+ i+ (wx—wy)?], (5) tothe double sum in Eq9), we obtain
where n; and n, are non-negative integers ana. E3 E(02+0l+wd)  ifi?
=eH/mc is the cyclotron frequency. The energy levels 9(E)= 5 x ¥ . hi
En,n, given by Egs.(4) and (5 transform to the Fock- 3hfwxwy 120wy A4mw
Darwin level$® in the symmetric caseu,= w,= wp), with ” Q2msEho, (02
! _ s —
Xs:z—oc (=1 s° 43w,

wiZ%(\/wg+4wgiwc). (6)

% 2imkElfiw_

In a grand canonical ensemiiee., an ensemble charac- % 2/ (_l)ke + ih
terized by a constant chemical potentigle magnetic prop- k== k? 43
erties are determined by the thermodynamic potetial w0 w0

S NEEIDUREETS
Q=-2T> In[1+e¢ Enpn)/T], )
n1ng SZLL)Z e2i7TkE/hw, _ k2w2 e2i71'sFJﬁwJr
- +

where T is the absolute temperatutbere we expresd in X K252 (Kw ; —Sw_) . (12

units of energy with the Boltzmann constdq=1). Intro-
ducing the density of states and integrating twice by partswhereX’ denotes summation excluding the terk¥s0 and
we obtain s=0.
E-DIT Substituting the functiog(E) into Eq. (8), and integrat-
Q=— Ef q g(E)e (8  ingover the energy in the limif<¢, for the thermodynamic
T [1+eE-9/T]2 potential we obtain the expression

{3 1 w)%-i— w§+ wg iﬁwi “ glimstihe,

e — _ ! _ s 2
3ﬁ2wxwy 12 Wy 47730)_ s:zoc ( 1) SS ¢(27T ST/hw+)

Ihw% o eZiﬂ'k{,’/hw_

> (1)K

- S — 2
47T3a)+ k€= o k3 90(277 kT/ﬁa)_)

0~-

it - ’ . ’ (_1)S i
—aa, (CLK Y] ke —sa (S @ e p2n KTl )

473 kS o

— kP2 @t (272 Tihw )], (13
where ¢(x) = x/sinh().
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In the first approximation with respect to the paramétéro.. we obtain the expressions for the monotonic and oscillatory
terms of the magnetic moment:

gwg { dw., *° e2i77$§/ha)+

> (~1)—0o— Y(2msTlho.)

~— +
M 6H w0, 2m°w_ IH s

(ot & e2imkilho_

- - 4 _ kKo 2
27w, JH kzzoo (1) iz Y@2m kT/fhw_)

g - ’ - ’ (_l)k+s dw_ ok
~ wkilho_ 2
+27T2k:Zoc S:Zoo ks(kw, —Sw_) STH € Y(2mKkTIhw_)
Jw )
_ka_l_i"'e2lwsglhw+‘//(27725-r/ﬁw+) . (14)

The monotonic part of the magnetic mométite first term  tions (/% w-. that enter the expression determining the oscil-
on the right-hand side of Eq14)] describes the Landau latory dependence of the magnetizatimee Eq.(14)] have
diamagnetism of the dot. Taking into account E2p), for  the form
the non oscillatory part of the magnetic susceptibility we
obtainy=M/SH, whereS= mrab is the effective area of the {howe~({Thwy) (1T od20g). (16)
dot, the expression
The first term on the right-hand-sidg¢#s wo=kgR/2, where
e? 1, ke is the Fermi wave number, describes quantum size oscil-
A=~ orma@ = 3B0s: (15  lations due to the harmonic confinement potential. The sec-
ond term on the right v /2% w3= wR?H/2(hc/e), is respon-
Here B,=e#A/2mc is the Bohr magneton, and,=m/7#2 is
the two-dimensional density of states. In the following we
focus mostly on the oscillatory part of the magnetic moment
and its temperature dependeriéeThe oscillations of the
magnetization are described by the functions exp{/z v-.)
and their combinations. The amplitudes of the magnetic os-
cillations decrease with increase of the temperature and at
high temperatures they are exponentially small, iyx)
~e X for x>1, wherex=27?T/f o . In the numerical cal-
culations discussed below of the magnetic response of a dot
formed in GaAs we use the ditaz=14 meV andv=2.7
x 10’ cm/s, and the electronic mass=0.067m,.

M)

0.03

A. Symmetric dot

First we analyze the magnetic response of a symmetric
dot, i.e., a dot formed by a symmetric confining potential 0.1
with w,= wy=wq; we take{/fiwy="70, which corresponds 0
to a dot with a radiu®R~0.8x 10" % cm. In Fig. 1 we display o 03
the magnetic moment as a function of the strength of the
applied magnetic fieldexpressed aw./wg) for different
values of the temperatur@xpressed in units of wy, with
the energyh wy corresponding in our case to a temperature < ®o
of 2.2 K). The magnetic moment exhibits a strong oscillatory
behavior in the entire range of the magnetic-field strength. FIG. 1. The magnetizatiotin units of the Bohr magnetopg)

We analyze this behavior in detail below, both in the regimeOf a symmetric quantum dot displayed as a function of the magnetic

of weak (w.<wp) and strong {.> wo) magnetic fields. field (in dimensionless units ab./wq, wherew, is the cyclotron
frequency andwy=v(/R with R the effective radius of the dpt

plotted for various values of the temperat(fein units ofz wg). In

our calculations we useff# wy= 70 which corresponds to approxi-
Since in a weak magnetic field the frequencies of the elecmately 2500 electrons in the dot. Note that the AB oscillations

tronic motion can be written a&.~ wy* /2, the func-  vanish first in the region of strong magnetic fieldee text

-400 - T T T T T T

Weak magnetic fields
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FIG. 2. Same as in Fig. 1, but focusing on the region of weak FIG. 3. Same as in Fig. 2, but in the region of strong magnetic
magnetic fields @.<wo). Note that the superfine structure fields (w.>wo). Note that the AB oscillations superimposed on the
(“grass” superimposed on the AB oscillationluctuating with @ de Haas—van Alphen ones vanish at high temperatures.

“period” of the order of (hc/e)/keR, vanishes at high tempera-
tures. field the magnetization exhibits a paramagnetic beh&%for

) o ) ) (see the upper curve in Fig. 2 for./wy<<0.0025). Such a
sible for the AB OSC|“at|OnS; the factor 2 in the peI‘IOd of the Strong paramagnetic “Singu|arity” is due to the h|gh degree
AB OSC|”at|0nS IS due to the Chosen harmonIC Conf|n|ng pO'Of degeneracy Of the electronic energy |eve|s in a quantum

tential model[see Eqs.(1) and (2a]; compare with the got modeled by a symmetric harmonic confining potential
proper AB period,hc/e, of the oscillations in the limit of  (see below

weak fields in simply connected systems with a hard wall
confining potentidl Note that using quantum mechanical Strong magnetic fields
definition of the average square of the effective radius

<R2ﬁ>=R2/2 we can restore the proper AB period of oscil- In a strong magnetic field magnetic quantization starts to
€

dominate. In this limitw , ~w., andw_~wd o, and for

lations, hc/e. .
The temperature decay of the AB oscillations is describedhe functions{/fiw.. we have
by e 27°T/mwo [the i function in Eq.(14)] and the tempera- ¢ ¢ (173
ture scale of the decayiwo=%vg/R) does not depend on how, hog
the magnetic field because in a weak magnetic field the elec-
tronic states are formed by the confining potential. The deand
pendence of the magnetic moment on the magnetic field in ¢ 7RH
the limit w./wy<1, is shown in Fig. 2 for different tempera- Zo_  hoe (179

tures. It is of interest to note that in addition to the AB

oscillations there appears a superimposed superfine fluctuathese functions describe the de Haas—van Alphgg.

ing structure(“grass”) with a “period” of the order of (178] and the AB[Eq. (170)] effects, with the AB oscilla-
(hc/e)/keR, that is caused by magnetic-field-induced shiftstions superimposed on the de Haas—van Aplhen structure
of the electronic levels through the Fermi levebmpare (see Fig. 3°'9'>?°The temperature scales of the de Haas—
with a similar fine structure occurring in the conductance and/an Alphen and AB effects arkw, and hwdlwe, respec-
thermopower of nanowiré$?). The temperature scale of tively; the latter depends on the magnetic field and differs
such mesoscopic oscillations & /N (N is the number of from the corresponding temperature scale() for the AB
electronic states in the dotvhich in our model is of the effect in the case of weak fields. Note that with increase of
order of (iwg)?/ ee~2/2/mR2. The ratio of the temperature the temperature the AB oscillations vanish first in the strong-
scales of the AB oscillations and the superfine oscillatindfield region(athﬁwglwc), and then(at T=%wg) in the
structure is of the order af/Zwg. An increase of the tem- weak-field regionsee Fig. 1 A similar effect, pertaining to
perature smears the fine structure and restores the “puredifferent scales characterizing the temperature decay of AB
AB oscillations (see the two bottom curves in Fig).2At oscillations in the conductance of nanowires has been dis-
very low temperatures and in an extremely weak magneticussed in Ref. 16.
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B. Asymmetric dot maintaining a constant value for the area of the dot, i.e.,
To study effects caused by the asymmetry of a quantun®x@y is held constant. _
dot we employ a confining potential with, # w, [see Eq. We now analyze the dependence of the magnetic moment

(1)]. The effects of the asymmetry of the dot on the magneti®f the quantum dot on the chemical potentfaand the in-
oscillations are more pronounced in the weak-magnetic-fieldluence of the anisotropy of the confining potential on the
region, i.e., when the size of the dot is comparable with thenagnetic moment in the regime of low temperatures and
cyclotron radius. In Fig. 4 we display the magnetic momentweak magnetic fields. After simple algebraic transforma-
of an asymmetric dot as a function of the magnetic fieldtions, the expression for the magnetic momigdgs. (7) and
(expressed as/w) for different values ofw,/w,, while  (10)] may be rewritten as

wC
M=-2u E n{+n,+1
B\/ 2 2( 2 4)n1>0( ! 2 ) Enn 4
¢ 0 n,=0 1+ex L2
= _t2 -
T

Enlnz_é Enznl_g
w0 ex T —ex T

+2upg—————s E n{—n , (18
MB\/w§+ aza)gn n>1n>00 (N 2) 1+exp( Enln2_§ 1+6X4 Enznl_g)}
1>ny= _ —_—
T T

where a=(wy— w,)/ wg is the dimensionless parameter de-5(a) and 5b)] and small asymmetrjcompare different
fining the anisotropy of the confining potential. In the fol- curves corresponding to different values of the asymmetry
lowing we consider the case of weak magnetic fieldsparameter in Fig. 5@]. The heights of the peaks increase
(w./wo<1) and the small anisotropy of the confining poten-as (/fiwg)?/2, with an increase of the value ¢ffwo, and

tial (a<1). The first term on the right in Eq18) describes in the case of a symmetric dot they do not depend on the
a diamagnetic background of the magnetic moment, and ifagnetic-field strengtficompare the curves corresponding
the low-temperature regime it is of the order gfg/3) (0 @=0 in Figs. a) and §b)]. On the other hand, in an

X ({1 wg)3(wel wg). For a small anisotropy the diamagnetic 800 | _
background does not depend anand it is proportional to ooy
the strength of the magnetic fieldlandau diamagnetism 400 |
The second term in Eq18) describes paramagnetic peaks in
the magnetic moment, occurring when the chemical potential 0 - |
coincides with the energy Ievanlnlezo. The heights of i

the paramagnetic peaks are of the order of
Hwe/Jo?+ d?wd) ({fiwy)?, and for a cylindrically sym-
metric confining potentiali.e., «=0) they do not depend on
the magnetic field. Note that in the low temperature regime 2
neither the diamagnetic background nor the heights of the
paramagnetic peaks depend on the temperature.

To illustrate the above analysis, in Fig. 5 we show the

1

(ng)

behavior of the magnetic moment of the dot in the low- 0
temperature regimeT(<#wg) as a function of the dimen- T
sionless parametefl% wy, for various values of the anisot- 400 7
ropy parametera and the strength of the magnetic field . 3

characterized byw./wy. As in the previous figure, the
change of the shape of the confining potential is performed
while keeping the area of the dot constant, i.e,d,)"?
=wp=const. The magnetic moment of the dot exhibits a
series of paramagnetic pe_aks superimposed on a dia_lmagneticFIG_ 4. The magnetizatiofin units of ug) of an asymmetric
background. Paramagnetic peaks occur whierk, n,, i-€.,  guantum dot displayed as a function of the magnetic figiddi-
when (/i wg is an integer number. The peaks are more promensionless units ofw./wy), plotted for different values of
nounced in the case of weak magnetic figldsmpare Figs. w,/w,. The area of the dot, i.ew w,, is held constant.

T T T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

12
(oc/(mxu)y)
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1200 - o=0 0=0.03 @ strong oscillatory behavior as a function of the magnetic field

—— =001 (Fig. 1, and the decay of the oscillations as a function of the
temperature is characterized by four temperature scales.

(i) At low magnetic fieldsw < wq, the occurrence of AB
800 oscillations is accompanied by a superimposed fine structure
(grass$ (Fig. 2). The temperature scales of these oscillations
600 are

1000

M(up)

400
L hUF
A~ ~hwo (19

and

600

g hwg
Agrass™ 7y ~ o ot (20

400 -

200

respectively. The AB oscillations are associated with the
electronic states localized near the surface of the (tw
analog of whispering gallery stateand their temperature
scale[Eq. (19)] is determined by the spacing between the
surface energy levels. The grass is caused by magnetic-field-
induced shifts of the energy levels through the Fermi energy,
and its temperature scalgzq. (20)] is of the order of the
‘ ! [ ' ‘ ' ‘ average spacing between the quantized energy levels in the
66 & & & 0 772 dot. Note that both temperature scales do not depend on the
Ghaoy, magnetic field in the region of weak fields.
(ii) At high magnetic fieldse.> wg, the AB oscillations
FIG. 5. The magnetizatiofin units of ug) of an asymmetric are superimposed on the de Haas—van Alphen @figs 3).
quantum dot displayed as a function @i w,, plotted in the low- ~ Their temperature scales are
temperature limit T=0.00% wg) for several values of the asym-

Mug)

metry parametet = (w,— w,)/ wg and for different magnetic fields B o2
[w./wy=0.001 in(a) and w./wy=0.01 in(b)]. Note the decrease AR~ “o (22)
and smearing of the paramagnetic peaks of the magnetization with AB we
increase of the asymmetry parameter
and
asymmetric dot the magnetic field may significantly influ-
y g y Sig y AEHVANﬁwC’ (22)

ence the heights of paramagnetic pepd@mpare the curves
corresponding taxr=0.01 in Figs. %a) and §b)] as the am-

plitude of the peaks is proportional to./\ws+ a’w; (See  respectively. In this case the AB oscillations are due to edge
above. The width of the peaks depends strongly on thestates of the dot and their temperature scii). (21)] is
asymmetry of the dot as well as on the strength of the magmuch smaller than in the weak magnetic fields regiffe.
netic field as the electronic energy levels, which are highly(19)] and it is strongly dependent on the magnetic-field
degenerate in a symmetric harmonic confining potential instrength. Finally, we note that an asymmetry of the quantum
the absence of the magnetic field, split under the influence afot influences in a substantial way both the oscillatory part
the magnetic field, and the asymmetry of the potential. Thef the magnetizatioriFig. 4) and its steady parparamag-
diamagnetic background is proportional to the magnetic-fielthetic peaks superimposed on a diamagnetic backgjonnd

strength; note the increase in the magnitude of the diamaghe limit of low temperature and weak magnetic fields
netic background in Fig. () compared to the one in Fig. (Fig. 5).

5(a), exhibiting a ¢/%wy)® dependence.
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