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Temperature scales of magnetization oscillations in an asymmetric quantum dot

E. N. Bogachek, A. G. Scherbakov, and Uzi Landman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30032-0430

~Received 22 September 2000; published 2 March 2001!

The temperature scales of different types of magnetization oscillations in a quantum dot, formed in a
two-dimensional electron gas by circularly symmetric or asymmetric confining potentials, are studied.
Aharonov-Bohm~AB! oscillations, with a superimposed fine structure caused by magnetic-field-induced shifts
of the electronic energy levels, develop at low magnetic fieldsvc!vx,y ~wherevc is the cyclotron frequency
andvx,y are the harmonic confining frequencies that determine the shape and effective size of the dot!. The
characteristic scale of the fine-structure fluctuations isf0 /(«F /\v0) ~wheref0 is the flux quantum,«F is the
Fermi energy, andv05Avxvy) and they are smeared at temperaturesT.(\v0)2/«F , with restoration of the
pure AB picture forT<\v0 . At high magnetic fields,vc@vx,y , de Haas–van Alphen oscillations develop
~for T<\vc), with a superimposed AB oscillatory structure which undergoes temperature smearing forT
>\v0(v0 /vc). Effects of the asymmetry of the confining potential on the magnetization oscillations are
discussed. The magnetic moment of the dot as a function of the chemical potential exhibits a series of
paramagnetic peaks superimposed on a diamagnetic background, and the influence of the magnetic-field
strength and asymmetry of the dot on these features is discussed.

DOI: 10.1103/PhysRevB.63.115323 PACS number~s!: 73.23.2b, 73.61.2r
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I. INTRODUCTION

The behavior of metallic and semiconducting systems
der the influence of magnetic fields may exhibit new featu
in the submicron range when the system’s size beco
comparable to the typical length of the electronic traject
in it. In sufficiently small systems coherent motion of th
electrons may be achieved, and this leads to the appear
of new quantum phenomena. One of the most interes
effects occurring in such systems under appropriate co
tions is the Aharonov-Bohm~AB! effect. Predicted first for
electron beams in vacuum,1 the AB effect may be realized
as found theoretically2 and subsequently demonstrated in e
periments on bismuth wiskers,3 in simply connected solids
In such systems the character of the motion of the electr
near the boundaries changes significantly, resulting in
formation of a new type of electronic states localized n
the surface. Such surface states form whispering gal
states in the case of weak magnetic fields,2 i.e., when r c
@a ~where r c is the cyclotron radius corresponding to th
cyclotron frequencyvc , anda is the size of the system!, or
edge states in the opposite case of a strong magnetic
~see, e.g., Ref. 4!. The electronic surface states may effe
tively change the topology of the sample, transforming
simply connected geometry~e.g., a solid cylinder or a disk!
into a doubly connected one~e.g., a ring! where the AB
effect may occur~see Refs. 5 and 6 and the reviews in Re
4, 7, and 8!. In solids, the AB effect is manifested by a
oscillatory dependence of the thermodynamic proper
~magnetization or persistent current! and the transport~con-
ductance! coefficients on the magnetic flux, with the perio
of the oscillations determined by the flux quantumf0
5hc/e. The AB effect in various simply connected system
such as dots, wires, and quantum contacts has been st
quite extensively.9–17

In this paper we investigate the temperature depende
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of magnetization oscillations~mainly the AB oscillations! in
circularly symmetric or asymmetric quantum dots.18 The dot
is modeled by a~symmetric or asymmetric! harmonic con-
fining potential, which allows us to obtain an expression
the spectrum of the electrons in the presence of an app
magnetic field, and to calculate analytically the magneti
tion of the dot. We demonstrate the existence of four diff
ent temperature scales of magnetization oscillations:~i! At
low magnetic fields the AB oscillations and a~superim-
posed! oscillating fine structure~with oscillations of smaller
period and amplitude!, are characterized by the temperatu
scales\vF /a and \2/ma2, respectively, wherevF is the
Fermi velocity of the electrons andm is the electronic mass
~ii ! At high magnetic fields the de Haas–van Alphen oscil
tions and the AB oscillatory structure have temperat
scales\vc and (\vF /a)(vF /avc), respectively; the latter
temperature scale for the AB oscillations is less than the
corresponding to the case of low magnetic fields. Additio
ally, we study the effects of the asymmetry of the confini
potential on the magnetization in the limit of low temper
tures and weak magnetic fields.

The paper is organized as follows. In Sec. II we discu
the model used for the description of the quantum dot, a
calculate the magnetization both analytically and nume
cally. We summarize our results in Sec. III.

II. MODEL AND RESULTS

We study a dot formed in a two-dimensional electron g
with an asymmetric harmonic confining potentialUD ,

UD~x,y!5
m

2
~vx

2x21vy
2y2!, ~1!

wherem is the electronic mass and the characteristic con
ing frequenciesvx,y may be related to the chemical potenti
©2001 The American Physical Society23-1
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z and the effective size of the dot~L is the effective boundary
of the dot! as

UD~x,y!uL5z, ~2a!

or, equivalently,

UD~ax,0!5UD~0,ay!5z, ~2b!

whereax anday are the semimajor axes of the elliptical do
Note thatvx,y5vF /ax,y .

We place the dot in a magnetic field perpendicular to
plane of the dot, and choose a symmetric gauge for the
tor potential

A5 1
2 ~2Hy,Hx,0!. ~3!

In this model the energy levels of the electrons in the dot
given by19

En1n2
5\v1~n11 1

2 !1\v2~n21 1
2 ! ~4!

and

v65 1
2 @Avc

21~vx1vy!26Avc
21~vx2vy!2#, ~5!

where n1 and n2 are non-negative integers andvc
5eH/mc is the cyclotron frequency. The energy leve
En1n2

given by Eqs.~4! and ~5! transform to the Fock-

Darwin levels20 in the symmetric case (vx5vy5v0), with

v6
s 5 1

2 ~Avc
214v0

26vc!. ~6!

In a grand canonical ensemble~i.e., an ensemble charac
terized by a constant chemical potential! the magnetic prop-
erties are determined by the thermodynamic potential21 V

V522T(
n1n2

ln@11e~z2En1n2
!/T#, ~7!

whereT is the absolute temperature~here we expressT in
units of energy with the Boltzmann constantkB51). Intro-
ducing the density of states and integrating twice by pa
we obtain

V52
1

T E dE
g~E!e~E2z!/T

@11e~E2z!/T#2 , ~8!
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where

g~E!52(
n1n2

~E2En1n2
!u~E2En1n2

!. ~9!

Hereu(x) is the Heavisideu function, and the multiplication
by 2 is due to the electron spin.

Differentiation of the thermodynamic potential in Eq.~8!
with respect to the magnetic field gives the magnetization
the quantum dot

M52
]V

]H
. ~10!

Expressions~4!, ~5!, and ~8!–~10! allow us to calculate
the magnetic response of the quantum dot. Successively
plying the Poisson summation formula in the form

(
n

f S n1
1

2D5 (
k52`

`

~21!kE dn f~n!e2p ikn ~11!

to the double sum in Eq.~9!, we obtain

g~E!5
E3

3\2vxvy
2

E~vx
21vy

21vc
2!

12vxvy
1

i\v1
2

4p3v2

3 ( 8
s52`

`

~21!s
e2ipsE/\v1

s3 1
i\v2

2

4p3v1

3 ( 8
k52`

`

~21!k
e2ipkE/\v2

k3 1
i\

4p3

3 ( 8
k52`

`

~21!k ( 8
s52`

`

~21!s

3
s2v2

2 e2ipkE/\v22k2v1
2 e2ipsE/\v1

k2s2~kv12sv2!
, ~12!

where(8 denotes summation excluding the termsk50 and
s50.

Substituting the functiong(E) into Eq. ~8!, and integrat-
ing over the energy in the limitT!z, for the thermodynamic
potential we obtain the expression
V'2
z3

3\2vxvy
1

1

12
z

vx
21vy

21vc
2

vxvy
2

i\v1
2

4p3v2
( 8

s52`

`

~21!s
e2ipsz/\v1

s3 c~2p2sT/\v1!

2
i\v2

2

4p3v1
( 8

k52`

`

~21!k
e2ipkz/\v2

k3 c~2p2kT/\v2!

2
i\

4p3 ( 8
k52`

`

~21!k ( 8
s52`

`
~21!s

k2s2~kv12sv2!
@s2v2

2 e2ipkz/\v2c~2p2kT/\v2!

2k2v1
2 e2ipsz/\v1c~2p2sT/\v1!#, ~13!

wherec(x)5x/sinh(x).
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In the first approximation with respect to the parameterz/\v6 we obtain the expressions for the monotonic and oscillat
terms of the magnetic moment:

M'2
zvc

2

6Hvxvy
1

z

2p2v2

]v1

]H ( 8
s52`

`

~21!s
e2ipsz/\v1

s2 c~2p2sT/\v1!

1
z

2p2v1

]v2

]H ( 8
k52`

`

~21!k
e2ipkz/\v2

k2 c~2p2kT/\v2!

1
z

2p2 ( 8
k52`

`

( 8
s52`

`
~21!k1s

ks~kv12sv2! Fs
]v2

]H
e2ipkz/\v2c~2p2kT/\v2!

2k
]v1

]H
e2ipsz/\v1c~2p2sT/\v1!G . ~14!
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The monotonic part of the magnetic moment@the first term
on the right-hand side of Eq.~14!# describes the Landa
diamagnetism of the dot. Taking into account Eq.~2b!, for
the non oscillatory part of the magnetic susceptibility w
obtainx5M /SH, whereS5pab is the effective area of the
dot, the expression

Xs52
e2

12pmc2 52
1

3
b0

2ns . ~15!

Hereb05e\/2mc is the Bohr magneton, andns5m/p\2 is
the two-dimensional density of states. In the following w
focus mostly on the oscillatory part of the magnetic mom
and its temperature dependence.22 The oscillations of the
magnetization are described by the functions exp(2ipz/\v6)
and their combinations. The amplitudes of the magnetic
cillations decrease with increase of the temperature an
high temperatures they are exponentially small, i.e.,c(x)
'e2x for x@1, wherex52p2T/\v6 . In the numerical cal-
culations discussed below of the magnetic response of a
formed in GaAs we use the data4 «F514 meV andvF52.7
3107 cm/s, and the electronic massm50.067m0 .

A. Symmetric dot

First we analyze the magnetic response of a symme
dot, i.e., a dot formed by a symmetric confining potent
with vx5vy5v0 ; we takez/\v0570, which corresponds
to a dot with a radiusR'0.831024 cm. In Fig. 1 we display
the magnetic moment as a function of the strength of
applied magnetic field~expressed asvc /v0) for different
values of the temperature~expressed in units of\v0 , with
the energy\v0 corresponding in our case to a temperatu
of 2.2 K!. The magnetic moment exhibits a strong oscillato
behavior in the entire range of the magnetic-field streng
We analyze this behavior in detail below, both in the regi
of weak (vc!v0) and strong (vc@v0) magnetic fields.

Weak magnetic fields

Since in a weak magnetic field the frequencies of the e
tronic motion can be written asv6'v06vc/2, the func-
11532
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tions z/\v6 that enter the expression determining the os
latory dependence of the magnetization@see Eq.~14!# have
the form

z/\v6'~z/\v0!~17vc/2v0!. ~16!

The first term on the right-hand-sidez/\v05kFR/2, where
kF is the Fermi wave number, describes quantum size os
lations due to the harmonic confinement potential. The s
ond term on the rightzvc/2\v0

25pR2H/2(hc/e), is respon-

FIG. 1. The magnetization~in units of the Bohr magnetonmB)
of a symmetric quantum dot displayed as a function of the magn
field ~in dimensionless units ofvc /v0 , wherevc is the cyclotron
frequency andv05vF /R with R the effective radius of the dot!,
plotted for various values of the temperature~T, in units of\v0). In
our calculations we usedz/\v0570 which corresponds to approx
mately 2500 electrons in the dot. Note that the AB oscillatio
vanish first in the region of strong magnetic fields~see text!.
3-3



e
o

a
al
iu
il-

e
-

le
de
d
-
B
tu

fts

n
f

e
in
-
re

et

ee
tum
tial

to

ture
s–

ers

of
ng-

AB
dis-

a
e

-

tic
he

E. N. BOGACHEK, A. G. SCHERBAKOV, AND UZI LANDMAN PHYSICAL REVIEW B63 115323
sible for the AB oscillations; the factor 2 in the period of th
AB oscillations is due to the chosen harmonic confining p
tential model @see Eqs.~1! and ~2a!#; compare with the
proper AB period,hc/e, of the oscillations in the limit of
weak fields in simply connected systems with a hard w
confining potential2. Note that using quantum mechanic
definition of the average square of the effective rad
^Reff

2 &5R2/2 we can restore the proper AB period of osc
lations,hc/e.

The temperature decay of the AB oscillations is describ
by e22p2T/\v0 @the c function in Eq.~14!# and the tempera
ture scale of the decay (\v05\vF /R) does not depend on
the magnetic field because in a weak magnetic field the e
tronic states are formed by the confining potential. The
pendence of the magnetic moment on the magnetic fiel
the limit vc /v0!1, is shown in Fig. 2 for different tempera
tures. It is of interest to note that in addition to the A
oscillations there appears a superimposed superfine fluc
ing structure~‘‘grass’’! with a ‘‘period’’ of the order of
(hc/e)/kFR, that is caused by magnetic-field-induced shi
of the electronic levels through the Fermi level~compare
with a similar fine structure occurring in the conductance a
thermopower of nanowires13,23!. The temperature scale o
such mesoscopic oscillations iseF /N ~N is the number of
electronic states in the dot! which in our model is of the
order of (\v0)2/eF'2\2/mR2. The ratio of the temperatur
scales of the AB oscillations and the superfine oscillat
structure is of the order ofz/\v0 . An increase of the tem
perature smears the fine structure and restores the ‘‘pu
AB oscillations ~see the two bottom curves in Fig. 2!. At
very low temperatures and in an extremely weak magn

FIG. 2. Same as in Fig. 1, but focusing on the region of we
magnetic fields (vc!v0). Note that the superfine structur
~‘‘grass’’ superimposed on the AB oscillations! fluctuating with a
‘‘period’’ of the order of (hc/e)/kFR, vanishes at high tempera
tures.
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field the magnetization exhibits a paramagnetic behavior24,25

~see the upper curve in Fig. 2 forvc /v0,0.0025). Such a
strong paramagnetic ‘‘singularity’’ is due to the high degr
of degeneracy of the electronic energy levels in a quan
dot modeled by a symmetric harmonic confining poten
~see below!.

Strong magnetic fields

In a strong magnetic field magnetic quantization starts
dominate. In this limitv1'vc , andv2'v0

2/vc , and for
the functionsz/\v6 we have

z

\v1
'

z

\vc
~17a!

and
z

\v2
'

pR2H

hc/e
. ~17b!

These functions describe the de Haas–van Alphen@Eq.
~17a!# and the AB@Eq. ~17b!# effects, with the AB oscilla-
tions superimposed on the de Haas–van Aplhen struc
~see Fig. 3!.9,10,15,26The temperature scales of the de Haa
van Alphen and AB effects are\vc and \v0

2/vc , respec-
tively; the latter depends on the magnetic field and diff
from the corresponding temperature scale (\v0) for the AB
effect in the case of weak fields. Note that with increase
the temperature the AB oscillations vanish first in the stro
field region ~at T>\v0

2/vc), and then~at T>\v0) in the
weak-field region~see Fig. 1!. A similar effect, pertaining to
different scales characterizing the temperature decay of
oscillations in the conductance of nanowires has been
cussed in Ref. 16.

k FIG. 3. Same as in Fig. 2, but in the region of strong magne
fields (vc@v0). Note that the AB oscillations superimposed on t
de Haas–van Alphen ones vanish at high temperatures.
3-4
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B. Asymmetric dot

To study effects caused by the asymmetry of a quan
dot we employ a confining potential withvxÞvy @see Eq.
~1!#. The effects of the asymmetry of the dot on the magne
oscillations are more pronounced in the weak-magnetic-fi
region, i.e., when the size of the dot is comparable with
cyclotron radius. In Fig. 4 we display the magnetic mom
of an asymmetric dot as a function of the magnetic fi
~expressed asvc /v0) for different values ofvx /vy , while
e-
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maintaining a constant value for the area of the dot, i
vxvy is held constant.

We now analyze the dependence of the magnetic mom
of the quantum dot on the chemical potentialz and the in-
fluence of the anisotropy of the confining potential on t
magnetic moment in the regime of low temperatures a
weak magnetic fields. After simple algebraic transform
tions, the expression for the magnetic moment@Eqs.~7! and
~10!# may be rewritten as
M522mB

vc

Avc
21v0

2~a214!
(

n1>0
n2>0

~n11n211!
1

11expS En1n2
2z

T
D

12mB

vc

Avc
21a2v0

2 (
n1.0

n1.n2>0

~n12n2!

expS En1n2
2z

T
D 2expS En2n1

2z

T
D

F11expS En1n2
2z

T
D GF11expS En2n1

2z

T
D G , ~18!
try
e

the
g

wherea5(vy2vx)/v0 is the dimensionless parameter d
fining the anisotropy of the confining potential. In the fo
lowing we consider the case of weak magnetic fie
(vc /v0!1) and the small anisotropy of the confining pote
tial (a!1). The first term on the right in Eq.~18! describes
a diamagnetic background of the magnetic moment, an
the low-temperature regime it is of the order of (mB/3)
3(z/\v0)3(vc /v0). For a small anisotropy the diamagnet
background does not depend ona, and it is proportional to
the strength of the magnetic field~Landau diamagnetism!.
The second term in Eq.~18! describes paramagnetic peaks
the magnetic moment, occurring when the chemical poten
coincides with the energy levelEn1n2

uH50 . The heights of
the paramagnetic peaks are of the order
1
2 (vc /Avc

21a2v0
2)(z/\v0)2, and for a cylindrically sym-

metric confining potential~i.e.,a50) they do not depend on
the magnetic field. Note that in the low temperature regi
neither the diamagnetic background nor the heights of
paramagnetic peaks depend on the temperature.

To illustrate the above analysis, in Fig. 5 we show t
behavior of the magnetic moment of the dot in the lo
temperature regime (T!\v0) as a function of the dimen
sionless parameterz/\v0 , for various values of the anisot
ropy parametera and the strength of the magnetic fie
characterized byvc /v0 . As in the previous figure, the
change of the shape of the confining potential is perform
while keeping the area of the dot constant, i.e., (vxvy)

1/2

5v05const. The magnetic moment of the dot exhibits
series of paramagnetic peaks superimposed on a diamag
background. Paramagnetic peaks occur whenz5En1n2

, i.e.,

whenz/\v0 is an integer number. The peaks are more p
nounced in the case of weak magnetic fields@compare Figs.
s
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etic
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5~a! and 5~b!# and small asymmetry@compare different
curves corresponding to different values of the asymme
parametera in Fig. 5~a!#. The heights of the peaks increas
as (z/\v0)2/2, with an increase of the value ofz/\v0 , and
in the case of a symmetric dot they do not depend on
magnetic-field strength@compare the curves correspondin
to a50 in Figs. 5~a! and 5~b!#. On the other hand, in an

FIG. 4. The magnetization~in units of mB) of an asymmetric
quantum dot displayed as a function of the magnetic field~in di-
mensionless units ofvc /v0), plotted for different values of
vx /vy . The area of the dot, i.e.,vxvy , is held constant.
3-5
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asymmetric dot the magnetic field may significantly infl
ence the heights of paramagnetic peaks@compare the curves
corresponding toa50.01 in Figs. 5~a! and 5~b!# as the am-
plitude of the peaks is proportional tovc /Avc

21a2v0
2 ~see

above!. The width of the peaks depends strongly on t
asymmetry of the dot as well as on the strength of the m
netic field as the electronic energy levels, which are hig
degenerate in a symmetric harmonic confining potentia
the absence of the magnetic field, split under the influenc
the magnetic field, and the asymmetry of the potential. T
diamagnetic background is proportional to the magnetic-fi
strength; note the increase in the magnitude of the diam
netic background in Fig. 5~b! compared to the one in Fig
5~a!, exhibiting a (z/\v0)3 dependence.

III. SUMMARY

In this paper we have studied the magnetization of a
cularly symmetric and asymmetric quantum dot modeled
a harmonic confining potential. The magnetization exhibit

FIG. 5. The magnetization~in units of mB) of an asymmetric
quantum dot displayed as a function ofz/\v0 , plotted in the low-
temperature limit (T50.001\v0) for several values of the asym
metry parametera5(vx2vy)/v0 and for different magnetic fields
@vc /v050.001 in~a! andvc /v050.01 in ~b!#. Note the decrease
and smearing of the paramagnetic peaks of the magnetization
increase of the asymmetry parametera.
11532
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strong oscillatory behavior as a function of the magnetic fi
~Fig. 1!, and the decay of the oscillations as a function of t
temperature is characterized by four temperature scales.

~i! At low magnetic fields,vc!v0 , the occurrence of AB
oscillations is accompanied by a superimposed fine struc
~grass! ~Fig. 2!. The temperature scales of these oscillatio
are

DAB
L ;

\vF

R
;\v0 ~19!

and

Dgrass
L ;

«F

N
;\v0

\v0

«F
, ~20!

respectively. The AB oscillations are associated with
electronic states localized near the surface of the dot~the
analog of whispering gallery states! and their temperature
scale@Eq. ~19!# is determined by the spacing between t
surface energy levels. The grass is caused by magnetic-fi
induced shifts of the energy levels through the Fermi ener
and its temperature scale,@Eq. ~20!# is of the order of the
average spacing between the quantized energy levels in
dot. Note that both temperature scales do not depend on
magnetic field in the region of weak fields.

~ii ! At high magnetic fields,vc@v0 , the AB oscillations
are superimposed on the de Haas–van Alphen ones~Fig. 3!.
Their temperature scales are

DAB
H ;

\v0
2

vc
~21!

and

DdHnA
H ;\vc , ~22!

respectively. In this case the AB oscillations are due to e
states of the dot and their temperature scale.@Eq. ~21!# is
much smaller than in the weak magnetic fields regime,@Eq.
~19!# and it is strongly dependent on the magnetic-fie
strength. Finally, we note that an asymmetry of the quant
dot influences in a substantial way both the oscillatory p
of the magnetization~Fig. 4! and its steady part~paramag-
netic peaks superimposed on a diamagnetic background! in
the limit of low temperature and weak magnetic fiel
~Fig. 5!.
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