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Interaction enhanced thermopower in a Luttinger liquid
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The thermopowerSL(T) of a finite Luttinger liquid~LL ! wire containing an impurity and connected to leads
of noninteracting electrons is calculated. It is shown that at low temperatureskBT!DL.\vF /gL ~L is the
length of the wire,vF is the Fermi velocity of the electrons, andg is the correlation parameter of the LL!,
SL(T) is described by a Mott-type formula. However, at higher temperatures, that is, whenDL<kBT!«F , the
expression forSL(T) contains an interaction-dependent factor. For strong interelectron interaction, the en-
hancement of the thermopower is large and it is much more pronounced for spinless electrons.
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Thermopower expresses the ability of a system of char
particles to generate an electromotive force when a temp
ture gradient is applied across the system. For noninterac
electrons the thermopower coefficientS0(T) can be repre-
sented by Mott’s formula as a logarithmic derivative of t
conductivity,s, evaluated at the Fermi energy«F ~see, e.g.,
Ref. 1!,

S0~T!.2
p2

3

kB
2T

e S ] ln s~«!

]« D
«5«F

. ~1!

In ordinary metals, the conductivity is a smooth function
the energy near«F and the thermopower coefficient is ve
small,

S0~T!.2
p2

3

kB
2T

e«F
. ~2!

An appreciable value of the thermopower coefficient m
develop in a system with a strong energy dependence o
electron scattering processes, such as, for example, in Ko
systems.2 A change in the thermopower behavior may a
take place in a ballistic wire~constriction! connecting bulk
reservoirs, and the thermopower of such a wire may also
described by Eq.~1! with the conductanceG replacing the
conductivity,3,4 that is,

SW~T!.2
p2

3

kB
2T

e S ] ln G~«!

]« D
«5«F

. ~3!

In the following, we will refer to Eq.~3! as a Mott-type
formula. In the classical limit~i.e., when the electron Ferm
wavelength is much smaller than the constriction size!, the
conductance of the constriction is a smooth function of
energy and the above expression for the thermopower@Eq.
~2!# maintains.5 In a quantum wire, the thermopower exhibi
a peaklike behavior both in two-dimensional6 and
three-dimensional4 systems due to the steplike energy dep
dence of the electronic transmission probabilities. It is a
known that in a Luttinger liquid~LL ! with an impurity, the
conductance for a strong repulsive interaction is a sh
function of the energy~that is, temperature or bias voltag!
near«F ~see Ref. 7 and a review in Ref. 8!. Assuming the
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validity of Eq. ~3! for interacting electrons, one would ex
pect strong thermoelectric response in certain LL syste
such as long quantum wires or in carbon nanotubes. W
the above simple local relation between the thermopo
and conductivity does not hold for interacting particles, w
show below that under certain conditions the thermopow
of a LL wire can be expressed through the derivative of
conductance of noninteracting electrons multiplied by
interaction- and spin-dependent factor which takes large
ues for strong repulsive interactions.

In contrast to the ‘‘diagonal’’ transport coefficients~elec-
tric and thermal conductance! of a LL, the off-diagonal co-
efficients, which determine thermoelectric effects in a L
~i.e., the Seebeck and Peltier effects!, remain largely unex-
plored. It is known~see, e.g., Ref. 8! that for an ideal~with-
out impurities! LL, the dc conductance does not depend
the energy parameters~e.g., temperature and bias voltag!
and the thermopower vanishes9 as a direct consequence o
the linearized spectrum of electrons in the LL model. Ho
ever, consideration of the small electronic band curvat
leads to a finite result for the thermopower9 which is de-
scribed by an expression analogous to Eq.~1! but renormal-
ized by an interaction-dependent factorg21, whereg is the
correlation parameter of a spinless LL~see below!. It has
been noted also that the thermopower of a Hubbard chai
the vicinity of a Mott-Hubbard phase transition to a dielect
phase can be calculated using a Mott-type formula@see Eq.
~3!# for noninteracting fermions.10 This observation was
exploited11 in a derivation of the thermopower of a homog
neous infinite Hubbard chain in the limits when the Hubba
model could be mapped onto a model of spinless Dirac
mions.

For noninteracting electrons, the thermopower in t
linear-response regime can be represented as a ratio of tL
and G transport coefficientsS(T,m)52L(T,m)/G(T,m),
where G is the electric conductance andL is the cross-
transport coefficient which connects the electric current
the temperature difference. Both these coefficients can
calculated using the formalism developed in Ref. 5 a
adapted in Ref. 12 to the Landauer scheme.13 In this ap-
proach, the transport coefficients are expressed throug
transmission probabilityt j («) for an electron to arrive at the
drain electrode in thej th channel as
©2001 The American Physical Society01-1
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G~T,m!5G0(
j 51

N E
0

`

d«S 2
] f F

]« D t j~«! ~4!

and

L~T,m!5G0

kB

h (
j 51

N E
0

`

d«S 2
] f F

]« D «2m

kBT
t j~«!. ~5!

Here G05e2/h is the conductance quantum for each sp
direction, f F(«2m) is the Fermi-Dirac distribution function
of the electrons in the leads, andm is the chemical potential

Equations~4! and ~5! cannot be applied to an infinite LL
where the electrons are not the propagating particles and
conventional scattering problem is ‘‘ill-defined.’’ A gener
approach for calculating transport coefficients in a system
strongly interacting particles is the Kubo formalism, whi
as aforementioned has been used for calculation of the t
mopower for a Hubbard chain.11 With the Kubo approach it
is difficult to calculate the thermopower for the entire ran
of external parameters~temperature, interaction strengt
density of particles, etc.!, and indeed the final analytic ex
pressions for the desired quantities were derived10,11 only in
the limits when the Hubbard model can be mapped ont
model of noninteracting fermions for which a Mott-type e
pression for the thermopower@Eq. ~3!# could be used.

To obtain results for the thermopower pertaining to tra
port properties of systems of strongly interacting electro
and to consider thermoelectric effects for quantum wi
which could be tested experimentally, we chose to invoke
a first step certain simplified~yet physically reliable! models
of strongly interacting electron systems. Such physical m
els of charge transport in LL’s with strongly interacting ele
trons were proposed in Ref. 14 and they were shown to y
the same results as those obtained from more conventi
~and rigorous! treatments of LL effects.7,15 In the following,
we apply these ideas to study the thermopower in a LL c
nected to Fermi liquid~FL! leads with an impurity located in
the middle of the wire.

For a LL connected to FL reservoirs with given tempe
tures and chemical potentials, one can make use of Eqs~4!
and~5!, with t j («) regarded now as the probability of tran
mission of the electrons~in the j th channel! through theef-
fectivepotential barrier formed by the LL part of the wire
Consider first a wire which is adiabatically connected to
leads~that is, a LL constriction, see Fig. 1!. For this arrange-

FIG. 1. A schematic of a Luttinger liquid~LL ! nanowire of
lengthL connected to Fermi liquid~FL! reservoirs held at differen
temperatures. The impurity~denoted byX! is placed in the middle
of the LL wire.
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ment, the transmission coefficient is unity as long as we
glect the backscattering of the electrons by the confin
potential. For a perfect wire, the backscattering effect is
ponentially small for practically all values of the chemic
potential, except at the narrow regions in the vicinity of t
conductance jumps~steps! where an additional mode is con
verted from being an evanescent mode to becoming a pr
gating one. This physical picture results in a staircase
behavior of the conductance as a function of the chem
potential and it is often modeled by abrupt jumps of t
electron transmission coefficient from zero~reflected mode!
to one ~fully transmitted mode!. For strongly interacting
electrons, this simple model, which does not depend on
details of thebare scattering potential, may serve as an a
propriate first approximation. Indeed, the transmission
electrons through a long but finite LL is determined by t
effective scattering potential, which includes the effects
electron-electron interactions. For sufficiently long wires a
for temperatureskBT!«F , this effective potential quenche
all modes whose bare transmission coefficientst0 are not
very close to unity~see discussion in Ref. 19!. Since accord-
ing to Eqs.~4! and ~5! the thermopowerS(T,m)}]G/]m,
we observe that for a multimode LL constriction the the
mopower vanishes on the conductance plateaus and it p
at the conduction steprises as in the case of noninterac
electrons;6 the ‘‘oscillations’’ of the thermopower in a LL
are distinguished from those expected for noninteract
electrons~see, e.g., Ref. 16! by the shape of the thermopowe
peaks. Consequently, for strongly interacting electrons
simple approximation where the~effective! transmission co-
efficient is modeled by a Heaviside step function could b
rather reliable procedure, and in this case the tempera
behavior of the peaks will be universal~i.e., independent of
the concrete shape of the confining potential!.

FIG. 2. The renormalization parameterC(g) and the dimension-
less electron interaction parameterg plotted as functions of the
dimensionless electron-electron interaction strength,U0 /(p\vF),
for spinless and spin-1

2 electrons.
1-2



r a
s
e
-

f
th
al
d

:

r

,
-

ion

a

nt
he
r a

ts

BRIEF REPORTS PHYSICAL REVIEW B 63 113101
To proceed with our calculation of the thermopower fo
quantum wire with a single impurity, we require first an e
timate for the electron transmission coefficient renormaliz
by the interelectron interaction~that is, the transmission co
efficient of the LL piece of the electrical circuit!. For a weak
interaction, the renormalized transmission probability o
LL with an impurity has been evaluated in Ref. 17. When
interaction is not weak and the tunneling probability is sm
one could use the semiclassical approximation develope
Ref. 14~see also the review in Ref. 18!. The above allows us
to model the effective transmission coefficient as follows19

teff~«!5t0~«!H S DL

L D a

for u«2«Fu!DL

U«2«F

L Ua

for u«2«Fu@DL .

~6!

Here t0(«)!1 is the bare transmission coefficient dete
mined by the unrenormalized scattering potential~we restrict
ourselves to a single-mode LL!, DL5\vF /gL is the charac-
teristic low-energy scale~g is the LL correlation parameter
see below!, and L is the cutoff energy which for a one
dimensional LL is of the order of the Fermi energy«F . The
exponent a depends on the electron-electron interact
strength,U0 , and is different for spinless and spin-1

2 elec-
trons ~see, e.g., Ref. 20!,

a52S 1

g
21D , g5S 11

U0

p\vF
D 21/2

for s50 ~7!
e-

-

n
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2
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21, gs52S 11

2U0

p\vF
D 21/2

for s5 1
2 . ~8!

Note that the transmission probabilityteff in Eq. ~6! results in
an expression for the linear conductance which coincides~up
to an irrelevant numerical constant! with that obtained in
Ref. 21 via a renormalization-group calculation.

When evaluating Eq.~1! in the Landauer-Bu¨ttiker formal-
ism, it is assumed that the transmission coefficient is
smooth function of the energy near«F . While this is an
adequate approximation for a bare tunneling probability,

t0~«!.t0~«F!1~«2«F!S ]t0

]« D
«5«F

, ~9!

it is not so for the renormalized transmission coefficie
given in Eq.~6!. Hence, a simple local relation between t
thermopower and the conductivity ceases to be valid fo
LL with an impurity.

In a LL constriction, both of the transport coefficien
given in Eqs.~4! and ~5! are power-law functions of the
temperature. By substituting Eqs.~6! and ~9! into Eqs. ~4!
and ~5!, one readily obtains
GLL~T!5G0t0~«F!H S DL

L D a

, kBT!DL

2~12212a!G~11a!z~a!S kBT

L D a

, DL<kBT!L

~10!

and

LLL~T!5G0S p2kB
2T

3e D t08~«F!H S DL

L D a

, kBT!DL

6

p2 ~122212a!G~31a!z~21a!S kBT

L D a

, kBT>DL ,

~11!
-
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whereG(x) andz(x) are the Gamma function and the Ri
mann zeta function, respectively.

From Eqs.~10! and ~11!, we conclude that at low tem
peratureskBT!DL , the thermopower of a LL constriction
with an impurity is not renormalized by the interelectro
interactions, i.e.,

SLL~T!DL /kB!.SW
~0!~T!, ~12!

and the thermopower coefficient,SW
(0)(T), is described by a

Mott-type formula for noninteracting electrons, Eq.~3!, with
G being the corresponding~bare! conductance of the nonin
teracting electrons. This finding is not surprising, since
kBT!DL the noninteracting electrons in the leads determ
the transport properties of the LL constriction. However,
temperatureskBT@DL , the thermopower, being still a linea
function of temperature, undergoes a strong multiplicat
renormalization,

SLL~T>DL /kB!.Cs~g!SW
~0!~T!,
1-3
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Cs~g!5
3

p2

122212a

12212a

z~a12!

z~a!
~a11!~a12!. ~13!

Note that unlike the electric conductanceGLL(T) and the
cross coefficientLLL(T), the thermopowerSLL(T) does not
depend on the cutoff parameter and therefore the interac
and spin-dependent factorCs(g) cannot be absorbed into
redefinition ofL.

For noninteracting electronsCs(g51)51 and the Mott-
type formula@Eq. ~3!# holds ~as it should! for all tempera-
tures kBT!«F . In the limit of strong interactionU0
@p\vF , we have

C1/2~g!1!56
U0

p3\vF
@1, C0~g!1!52C1/2~g!1!.

~14!

The numerical factorCs(g) is shown in Fig. 2 for a range o
values of the electron-electron interaction strengthU0 . We
observe that the LL effects on the thermopower are m
significant in the regime of strong interactionsU0@p\vF ,
and that they are more pronounced for spinless particles
for spin-12 electrons.

Since for the thermopower the interaction dependenc
factorizable, Eq.~13! can be readily generalized for the ca
of wires with dilute impurities where the average spac
between the impurities is sufficiently large so that the
effects develop independent of each other and the impur
act incoherently. In this case the thermopower is still d
scribed by Eq.~13! at temperatureskBT.\sn̄, where n̄ is
the mean concentration of the impurities ands is the sound
ls

k.

e

k.

11310
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velocity. We also note that for a junction made of a perfe
LL wire of length L connected to leads through a potent
barrier at the contacts, the thermopower is described for t
peratureskBT>DL by Eq. ~13! with the total~bare! conduc-
tance G05G1

0G2
0/(G1

01G2
0), where G1

0 and G2
0 are the

~bare! conductances of the contacts.
The Peltier coefficient of a LL wire~defined as the ratio

between the heat and electric currents in the absence
temperature gradient across the system! obeys in the linear
response regime (eV!kBT) the Thompson relationPLL
52kBTSLL . Consequently, the linear Peltier coefficient c
be also described using Eqs.~12!–~14!.

In conclusion, we note that the efficiency of a thermoele
tric system is characterized by the dimensionless param
ZT, where Z5S2G/K5S2/TL0 is the so-called figure of
merit, K is the thermal conductance, andL0 is the Lorentz
number~see, e.g., Ref. 22!. Since at ‘‘high’’ temperature in a
LL constriction with an impurity the thermopower coeffi
cient S;1/g2 @see Eqs.~13! and ~14! and Eqs.~7! and ~8!#
and L0;g,23 the parameterZT;1/g5 may be rather large
The latter suggests that the LL systems considered here
be of interest for certain thermoelectric applications.
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