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Interaction enhanced thermopower in a Luttinger liquid
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The thermopowe$, (T) of a finite Luttinger liquid(LL ) wire containing an impurity and connected to leads
of noninteracting electrons is calculated. It is shown that at low temperatyiies A, =#Ave /gL (L is the
length of the wirevg is the Fermi velocity of the electrons, amgdis the correlation parameter of the L
S (T) is described by a Mott-type formula. However, at higher temperatures, that is,AyhekgT<<ef, the
expression forS (T) contains an interaction-dependent factor. For strong interelectron interaction, the en-
hancement of the thermopower is large and it is much more pronounced for spinless electrons.
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Thermopower expresses the ability of a system of chargedalidity of Eq. (3) for interacting electrons, one would ex-
particles to generate an electromotive force when a tempergect strong thermoelectric response in certain LL systems,
ture gradient is applied across the system. For noninteractinguch as long quantum wires or in carbon nanotubes. While
electrons the thermopower coefficieB§(T) can be repre- the above simple local relation between the thermopower
sented by Mott’s formula as a logarithmic derivative of theand conductivity does not hold for interacting particles, we
conductivity, o, evaluated at the Fermi energy (see, e.g., show below that under certain conditions the thermopower
Ref. 1), of a LL wire can be expressed through the derivative of the

conductance of noninteracting electrons multiplied by an
(1) interaction- and spin-dependent factor which takes large val-
ues for strong repulsive interactions.
In contrast to the “diagonal” transport coefficienislec-
In ordinary metals, the conductivity is a smooth function oftric and thermal conductancef a LL, the off-diagonal co-
the energy neasr and the thermopower coefficient is very efficients, which determine thermoelectric effects in a LL
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small, (i.e., the Seebeck and Peltier effgctemain largely unex-
)2 plored. It is known(see, e.g., Ref.)&hat for an idealwith-
Tye— ™ kB_T 5 out impuritieg LL, the dc conductance does not depend on
So(T)= 3 egr’ 2) the energy parametelg.g., temperature and bias voltage

and the thermopower vanisfeas a direct consequence of

An appreciable value of the thermopower coefficient maythe linearized spectrum of electrons in the LL model. How-
develop in a system with a strong energy dependence of thever, consideration of the small electronic band curvature
electron scattering processes, such as, for example, in Kondeads to a finite result for the thermopowevhich is de-
systemg. A change in the thermopower behavior may alsoscribed by an expression analogous to g.but renormal-
take place in a ballistic wiréconstriction connecting bulk ized by an interaction-dependent factpr®, whereg is the
reservoirs, and the thermopower of such a wire may also beorrelation parameter of a spinless l(kee beloyw. It has
described by Eq(1) with the conductanc& replacing the been noted also that the thermopower of a Hubbard chain in
conductivity>* that is, the vicinity of a Mott-Hubbard phase transition to a dielectric
phase can be calculated using a Mott-type forniske Eq.
(3)] for noninteracting fermion¥’ This observation was
exploited? in a derivation of the thermopower of a homoge-
neous infinite Hubbard chain in the limits when the Hubbard
In the following, we will refer to Eq.(3) as a Mott-type model could be mapped onto a model of spinless Dirac fer-
formula. In the classical limiti.e., when the electron Fermi mions.
wavelength is much smaller than the constriction sitiee For noninteracting electrons, the thermopower in the
conductance of the constriction is a smooth function of thdinear-response regime can be represented as a ratio af the
energy and the above expression for the thermopd&gr and G transport coefficientsS(T,u)=—L(T,u)/G(T,u),
(2)] maintains’ In a quantum wire, the thermopower exhibits where G is the electric conductance arid is the cross-
a peaklike behavior both in two-dimensiohaland transport coefficient which connects the electric current to
three-dimensionAlsystems due to the steplike energy depenthe temperature difference. Both these coefficients can be
dence of the electronic transmission probabilities. It is alsacalculated using the formalism developed in Ref. 5 and
known that in a Luttinger liquidLL) with an impurity, the —adapted in Ref. 12 to the Landauer schéfmn this ap-
conductance for a strong repulsive interaction is a sharproach, the transport coefficients are expressed through a
function of the energythat is, temperature or bias voltgge transmission probability;(e) for an electron to arrive at the
nearer (see Ref. 7 and a review in Ref).8Assuming the drain electrode in th¢th channel as
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FIG. 1. A schematic of a Luttinger liquidLL) nanowire of
lengthL connected to Fermi liqui¢FL) reservoirs held at different
temperatures. The impuritidenoted byX) is placed in the middle
of the LL wire.
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L(T,u) Go h E KT ti(e). (5 FIG. 2. The renormalization parametgfg) and the dimension-

less electron interaction parametgrplotted as functions of the

Here Go= e?/h is the conductance quantum for each Splndlmenslonless electron-electron interaction strentth/(7#hvg),
direction, f=(e — w) is the Fermi-Dirac distribution function for spiniess and spig-electrons.
of the electrons in the leads, apdis the chemical potential.

Equations(4) and(5) cannot be applied to an infinite LL ment, the transmission coefficient is unity as long as we ne-
where the electrons are not the propagating particles and trgect the backscattering of the electrons by the confining
conventional scattering problem is “ill-defined.” A general potential. For a perfect wire, the backscattering effect is ex-
approach for calculating transport coefficients in a system oponentially small for practically all values of the chemical
strongly interacting particles is the Kubo formalism, which potential, except at the narrow regions in the vicinity of the
as aforementioned has been used for calculation of the theconductance jump&steps where an additional mode is con-
mopower for a Hubbard chaif.With the Kubo approach it verted from being an evanescent mode to becoming a propa-
is difficult to calculate the thermopower for the entire rangegating one. This physical picture results in a staircaselike
of external parametergtemperature, interaction strength, behavior of the conductance as a function of the chemical
density of particles, etg. and indeed the final analytic ex- potential and it is often modeled by abrupt jumps of the
pressions for the desired quantities were deri%&tionly in  electron transmission coefficient from zereflected mode
the limits when the Hubbard model can be mapped onto & one (fully transmitted mode For strongly interacting
model of noninteracting fermions for which a Mott-type ex- electrons, this simple model, which does not depend on the
pression for the thermopowgEq. (3)] could be used. details of thebare scattering potential, may serve as an ap-

To obtain results for the thermopower pertaining to trans{propriate first approximation. Indeed, the transmission of
port properties of systems of strongly interacting electronsglectrons through a long but finite LL is determined by the
and to consider thermoelectric effects for quantum wiresffective scattering potential, which includes the effects of
which could be tested experimentally, we chose to invoke aslectron-electron interactions. For sufficiently long wires and
a first step certain simplifieyet physically reliablemodels  for temperature&gT<<ef, this effective potential quenches
of strongly interacting electron systems. Such physical modall modes whose bare transmission coefficieitsaare not
els of charge transport in LL’s with strongly interacting elec- very close to unitysee discussion in Ref. 19Since accord-
trons were proposed in Ref. 14 and they were shown to yieléhg to Egs.(4) and (5) the thermopoweS(T, w) <3G/ du,
the same results as those obtained from more conventionale observe that for a multimode LL constriction the ther-
(and rigorouy treatments of LL effecté!® In the following, mopower vanishes on the conductance plateaus and it peaks
we apply these ideas to study the thermopower in a LL conat the conduction steprises as in the case of noninteracting
nected to Fermi liquidFL) leads with an impurity located in electrons the “oscillations” of the thermopower in a LL
the middle of the wire. are distinguished from those expected for noninteracting

For a LL connected to FL reservoirs with given tempera-electrongsee, e.g., Ref. 2&y the shape of the thermopower
tures and chemical potentials, one can make use of Bjjs. peaks. Consequently, for strongly interacting electrons, a
and(5), with t;(e) regarded now as the probability of trans- simple approximation where theffective) transmission co-
mission of the electron&n the jth channel through theef-  efficient is modeled by a Heaviside step function could be a
fective potential barrier formed by the LL part of the wire. rather reliable procedure, and in this case the temperature
Consider first a wire which is adiabatically connected to thebehavior of the peaks will be univers@le., independent of
leads(that is, a LL constriction, see Fig).1For this arrange- the concrete shape of the confining potential
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To proceed with our calculation of the thermopower for aand
guantum wire with a single impurity, we require first an es-
timate for the electron transmission coefficient renormalized
by the interelectron interactiofthat is, the transmission co-
efficient of the LL piece of the electrical circlit-or a weak o 1, 9s=2
interaction, the renormalized transmission probability of a
LL with an impurity has been evaluated in Ref. 17. When the
interaction is not weak and the tunneling probability is small,Note that the transmission probabili§f' in Eq. (6) results in
one could use the semiclassical approximation developed ian expression for the linear conductance which coincidps
Ref. 14(see also the review in Ref. 1.8The above allows us to an irrelevant numerical constanwith that obtained in
to model the effective transmission coefficient as folldWs: Ref. 21 via a renormalization-group calculation.

When evaluating Eq.1) in the Landauer-Bitiker formal-

2U,
7TﬁU|:

—-1/2
) for s=1. (8)

A _ ism, it is assumed that the transmission coefficient is a
—_— fOI’ |8 8F|<AL . . L
. smooth function of the energy neag. While this is an
t*(e) =to(e) a (6)  adequate approximation for a bare tunneling probability,

EEF for le—eg|>A, .

Here ty(e)<<1 is the bare transmission coefficient deter-
mined by the unrenormalized scattering poterttiae restrict
ourselves to a single-mode VLA, =#Avg /gL is the charac-
teristic low-energy scalég is the LL correlation parameter,
see below, and A is the cutoff energy which for a one- it is not so for the renormalized transmission coefficient
dimensional LL is of the order of the Fermi energy. The  given in Eq.(6). Hence, a simple local relation between the
exponenta depends on the electron-electron interactionthermopower and the conductivity ceases to be valid for a
strength,U,, and is different for spinless and spjrelec- L with an impurity.
trons(see, e.g., Ref. 20 In a LL constriction, both of the transport coefficients
1 U |12 given in Egs.(4) and (5) are power-law functions of the
azz(__l)’ g=(1+ 0 ) for s=0 (7) temperature. By _substltL_ltlng Eqg&®) and (9) into Egs. (4)
g mhug and(5), one readily obtains
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GLL(T)=Goto(er) T (10)
2(1—21_“)F(1+a)§(a)(%) . A skgT<A
and
Syl
22K2T) A KkeT=AL
L (T =Go| —35—|toler) (11

kgT)\
?(1—2_1_“)F(3+a)§(2+a) %) ., keT=4,

whereI'(x) and{(x) are the Gamma function and the Rie- G being the correspondin@pare conductance of the nonin-
mann zeta function, respectively. teracting electrons. This finding is not surprising, since at
From Egs.(10) and (11), we conclude that at low tem- kgT<A, the noninteracting electrons in the leads determine
peratureskgT<A| , the thermopower of a LL constriction the transport properties of the LL constriction. However, at
with an impurity is not renormalized by the interelectron temperaturekgT>A, , the thermopower, being still a linear

interactions, i.e., function of temperature, undergoes a strong multiplicative
0) renormalization,
SLL(T<A /kg)=Sy'(T), (12
and the thermopower coefficier{.)(T), is described by a o
Mott-type formula for noninteracting electrons, Eg), with S (T=A /kg)=C4(9)SK'(T),
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31-2"Y*fa+2) velocity. We also note that for a junction made of a perfect
Ci9)= 2751 ) (a+1)(a+2). (13  LL wire of length L connected to leads through a potential
m @ barrier at the contacts, the thermopower is described for tem-
Note that unlike the electric conductanGg, (T) and the peraturekgT=A, by Eqg.(13) with the total(bare conduc-
cross coefficient (T), the thermopowe, (T) does not tance G°=GGY/(GJ+GY), where G? and G are the
depend on the cutoff parameter and therefore the interactionbare conductances of the contacts.
and spin-dependent fact@y(g) cannot be absorbed into a  The Peltier coefficient of a LL wirédefined as the ratio
redefinition ofA. between the heat and electric currents in the absence of a
For noninteracting electronSs(g=1)=1 and the Mott-  temperature gradient across the systemeys in the linear
type formula[Eq. (3)] holds (as it should for all tempera-  response regimee(V<kgT) the Thompson relatiorl

tures kgT<ep. In the limit of strong interactionU,  =—k,TS, . Consequently, the linear Peltier coefficient can
>mfive, we have be also described using Eq42)—(14).
Uo In conclusion, we note that the efficiency of a thermoelec-
Cufg<l)=6— >1, Cy(g<1)=2C,(g<l). tric system is characterized by the dimensionless parameter
T hog ZT, where Z=S*G/K=S?/TL, is the so-called figure of

(14 merit, K is the thermal conductance, ahg is the Lorentz
The numerical facto€4(g) is shown in Fig. 2 for a range of number(see, e.g., Ref. 22Since at “high” temperature in a
values of the electron-electron interaction strendéh We LI constriction with an impurity the thermopower coeffi-
observe that the LL effects on the thermopower are mosgient S~ 1/g? [see Eqs(13) and (14) and Egs.(7) and (8)]
significant in the regime of strong interactiobg> whvg, and Ly~g,?® the parameteZ T~1/g°> may be rather large.
and that they are more pronounced for spinless particles thaf,e |atter suggests that the LL systems considered here may

Ho
for Spin electrons. : . be of interest for certain thermoelectric applications.
Since for the thermopower the interaction dependence is
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