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Magneto-optics of electronic transport in nanowires
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Effects of irradiation on the electronic conductance in nanowires, for field-free conditions and under the
influence of applied longitudinal magnetic fields, were investigated. The nanowires were modeled within the
free-electron framework with a parabolic~transverse! confining potential. Our results for the dependence of the
photoconductance of irradiated nanowires on the photon energy and/or the strength of the applied magnetic
field show that such measurements may be used as a magneto-optic spectroscopy for determination of~i! the
electron Fermi energy,~ii ! the electron effective mass, and~iii ! the number of quantized modes in the nanow-
ire. Such measurements may also be used to assess to what degree the electron transport through the nanowire
is adiabatic. Furthermore, our results suggest a method for controlling and tuning electronic transport in
nanowires via external electromagnetic fields.@S0163-1829~98!07348-2#
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I. INTRODUCTION

Materials structures with spatial dimensions reduced
the nanometer-scale regime often exhibit unique structu
electronic, spectral, transport, and mechanical proper
which cannot be extrapolated from behavior at larger siz
making them objects of significant fundamental and tech
logical interest. Early predictions pertaining to formatio
mechanisms, energetics, mechanical response, and stru
evolution of three-dimensional~3D! crystalline nanowires
generated upon elongation of a contact between mat
bodies1,2 led to intensive theoretical and experimental inve
tigations of such systems.2,3 Measurements corroborated th
early theoretical predictions, through studies of mechani
structural, and transport properties in nanowires form
through contact elongation, using tip-based methods, c
trollable break junctions, and pin-plate techniques.3 Focusing
our discussion on electronic transport, it has been found
anticipated,1,4 that indeed such nanowires can be used
study quantum effects on the conductance in 3D narrow c
strictions, via exhibiting room-temperature conductan
quantization~in units of the conductance quantum 2e2/h), in
analogy with conductance quantization found under cr
genic conditions in two-dimensional electron gases~2DEG!
in semiconductor heterostructures controlled by electrost
gates.5

As in the 2DEG case, it is convenient to analyze the qu
tum transport of electrons in 3D nanowires in the framew
of the adiabatic approximation; that is, when the variation
the nanowire’s shape~along its longitudinal axis! occurs on a
scale larger than the electron Fermi wavelengthlF , resulting
in no mode mixing between the conducting channels.6 In
order to investigate the nature of electronic transport in
nanowires, as well as to assess the validity of the adiab
transport mode, it is of special importance to probe the e
tronic quantum states and transport characteristics in s
systems in a controllable manner. This is a particularly d
ficult task, since using current methods both the electro
PRB 580163-1829/98/58~24!/16305~10!/$15.00
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spectrum and~atomic, or crystalline! structure of the nanow-
ire are influenced in the process of mechani
elongation.1–3,7To this aim, methods for controlling and tun
ing the conductance in such systems, for a given nanow
configuration, through the use of external fields~without in-
fluencing the geometric structure of the wire! have been in-
vestigated, including magnetic fields8 and finite voltages~in
conjunction with magnetic fields9~a! or under field-free
conditions9~a!,9~b!!.

In the present paper we suggest the use of microw
irradiation for spectroscopy of quantum electronic states
transport in nanowires.10 We show that the use of irradiatio
in conjunction with an applied~static! magnetic field may
provide a tool for investigations of the following electron
and transport properties of nanowires:~i! adiabacity of the
electronic transport,~ii ! the value of the Fermi energy o
electrons in the nanowire,~iii ! the value of the electronic
effective mass, and~iv! the number of quantized electron
modes in the nanowire. Issues~ii ! and ~iii ! are of special
importance because, due to band bending and strong s
tural and mechanical deformations of the material in
nanowire, these parameters could be different from thos
the bulk. Point~iv! may serve as an additional tool to es
mate the cross-sectional sizes of metallic nanoconstrictio

The main advantage of the use of microwave irradiat
in investigations of nanowires originates from the strong s
sitivity of the nature of electronic transport on the adiabac
of the electronic propagation in the wire. Electromagne
irradiation cannot typically affect transport properties of bu
metals because the momentum transfer caused by elec
photon scattering events is very small. The situation is d
ferent in nanowires where, due to the reduced dimensio
electronic states transverse to the axis of the wire direc
are quantized. In this case photon-assisted transitions
tween such quantized states become possible. It is par
larly important that in the case of adiabatic propagation s
optical transitions strongly affect the electronic transport
the longitudinal direction.11–13 This follows from the fact
16 305 ©1998 The American Physical Society
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that in the case of adiabatic separation of~transverse and
longitudinal! variables in the Schro¨dinger equation, the
transverse electronic energies in the microconstriction se
as scattering barriers for the longitudinal motion of t
electrons6 ~see Fig. 1, where the mechanism of photo
induced indirect backscattering of electrons in a nanowir
depicted!. One can therefore conclude that observation of
change in the conductance of a nanowire in the presenc
irradiation would strongly support the concept of adiaba
quantum propagation in certain metallic and semimeta
nanowires. In this paper we will assume that such adiab
classification of electronic states is valid, and show how p
toconductance measurement may be used as a spectro
of such states. In our analysis we will consider microco
strictions characterized by a soft~harmonic! confining poten-
tial well. This model is likely to be most applicable to wire
made of materials characterized by weaker screening,
bismuth nanowires. Possible effects caused by anharm
corrections to the confining potential are discussed.

In the following section we present a qualitative picture
microwave transport in 3D nanowires, with and without a
plied magnetic fields. A quantitative discussion of the p
posed magneto-optical spectroscopy of electronic state
nanowires is given in Sec. III. We summarize and disc
our results in Sec. IV.

II. QUALITATIVE PICTURE OF MICROWAVE-INDUCED
TRANSPORT

We consider ballistic electronic transport through a
nanowire connecting two reservoirs. If a bias voltageV is
applied to the system the equilibrium distributions in the l
and right reservoirs are characterized by chemical poten
which differ byeV. For nanowires where the variation of th

FIG. 1. Effective 1D potential barriers for the longitudin
propagation of an electron at the Fermi level, occupying the tra
verse state~m,n!. A photoinduced transition is shown only for a
electron incident from the left. Following a transition, caused b
photon of energy\v, from the transverse state~m,n! to the trans-
verse state (m8,n8) at the generation pointt, the electron encoun
ters a higher barrier~with a maximumEm8,n8

max ) which may backscat-
ter the electron~see the dashed line indicating schematically
electronic trajectory!. g51 and g8521 denote transmitted an
reflected modes, respectively.
ve

-
is
e
of

c
c
ic
-
opy
-

g.,
ic

f
-
-
in
s

t
ls

cross section along the axis of the nanowire is adiabatic
the scale of the electron’s wavelength, it is possible to se
rate variables corresponding to the transverse and longit
nal motion of the electron when solving the Schro¨dinger
equation. Consequently, the quantized transverse motion
be described in terms of transverse energy levels@Em,n(z)#,
which are dependent on the longitudinal coordinate, and
longitudinal motion can be described as a one-dimensio
~1D! propagation through the effective barrier set up by
transverse energy level occupied by the electron. Additi
ally, we consider our nanowire to be sufficiently long
allow neglect of tunneling effects on the electron’s propa
tion. Under these conditions, states with the maximum va
of their transverse energies~in the narrowmost part of
nanowire! higher than the electron’s energy are reflecte
while other electronic states are transmitted. We will den
a transmitted mode byua→& and a reflected one byua←&.
Here a[(n,m,Ea) denotes the relevant quantum numbe
The photoconductance, i.e., the difference between the
ductance of the nanowire in the presence of irradiation
the one without it, depends on the rate of transitions betw
transmitted and reflected states of the electron induced by
irradiation. These transitions, which may result in bac
scattering processes, give negative or positive net contr
tions to the current, depending on the relative position of
Fermi energy with respect to the middle between two nea
levels. We assume that the microwave field is polarized
the plane transverse with respect to the wire axis, such
the energy of the absorbed photon would go entirely i
electronic transitions between the transverse energy lev
with no transfer of longitudinal momentum. Neverthele
since it turns out that the longitudinal motion of the electr
strongly depends on which transverse level it occupies, s
a microwave-induced transition between transverse ene
levels may drastically influence the propagation of the el
tron along the wire.

In Fig. 1 we sketch the effective 1D potential barriers f
the longitudinal propagation of an electron occupying
transverse level characterized by the pair of quantum n
bers (m,n). A microwave-induced transition from the tran
verse level (m,n) to the level (m8,n8) implies that the elec-
tron will encounter now a different~higher! barrier which
may eventually backscatter the electron. Consequently
photon-induced transition between two quantized energy
els may block charge propagation through the channel.
cause the level spacing depends on the position along
wire, the optical transition may take place only at spec
point~s! t, where resonant conditions are satisfied. We w
refer to such points as generation points.

In order for the optical transition to take place the initi
state of the electron should be occupied while the final s
should be empty. In Fig. 2 we show the equilibrium dist
bution functions at zero temperature for the right@Fig. 2~a!#
and left @Fig. 2~b!# reservoirs. We introduce the indexg to
label transmitted (g51) and reflected (g521) modes. For
the left ~right! reservoir, optical transitions between stat
with different g make negative~positive! contribution to the
current, while the transitions between states with the samg
do not change the current. One can easily see that the
tributions to the current due to photon-induced transitions
the left and right reservoirs cancel each other except for tr
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sitions from theeV vicinity of EF-\v in the right reservoir
@Fig. 2~c!# and for transitions from theeV vicinity of EF in
the left reservoir@Fig. 2~d!#. The first~second! type of tran-
sitions, which is allowed only in the right~left! reservoir,
makes a positive~negative! contribution to the current.

In order to determine the transmission probability amp
tudes between the electron’s states we express the Ha
tonian as a sum of two terms:14

Ĥ5Ĥ01Ĥint , ~1!

whereĤ0 is the Hamiltonian in the absence of irradiatio
and

Ĥint5V̂vcos~vt !, V̂v5
eEv

m* v
p̂y . ~2!

HereEv is the amplitude of the applied electromagnetic fie
which is assumed to be polarized in the~transverse! y direc-
tion ~thez direction corresponds to the axis of the wire!, and
m* is the effective mass of the electron. To first order
perturbation theory,12 one obtains for the photoconductanc

FIG. 2. Schematic equilibrium distribution functions at ze
temperature for the right~a! and left~b! reservoirs; the short vertica
marks in~a! and ~b! denote the position of the Fermi energyEF .
Photon-induced transitions occur from the shaded areas and
schematically represented by arrows. The contributions to the
rent due to transitions between states incident from the left and r
reservoirs cancel each other except for transitions from theeV vi-
cinity of EF-\v between the states incident from the right reserv
@shaded area in~c!#, and for theeV vicinity of EF between the
states incident from the left reservoir@shaded area in~d!#.
-
il-

Gph~v!5
4pe2

\ (
a,b

] f a
0

]m
@ z^b→uV̂vua←& z2d~Ea2Eb2\v!

2 z^a→uV̂vub←& z2d~Ea2Eb1\v!#, ~3!

where a is taken at the Fermi level, andf a
0 is the Fermi-

Dirac equilibrium electron distribution function. In Eq.~3!
one can easily recognize the aforementioned two types
transitions in the left and right reservoirs.15

Let us consider the dependence of the photoconducta
on the frequency of the photons,v. We will limit our dis-
cussion to the transition between the two electron state
lustrated in Fig. 1. As we will see below, this limitation
justified in the framework of a parabolic confining potent
model by the selection rules imposed by the matrix eleme
of the microwave field operator@see Eq.~3!#. In the absence
of such selection rules optical transitions between sev
electronic states should be included; this makes quantita
analysis of the photoconductance more complicated,
yields qualitatively similar results as we discuss in Sec.
As we noted earlier, only optical transitions between tra
mitted and reflected electron states~i.e., gg8521) contrib-
ute to the photocurrent.

For small values ofv ~i.e.,v,v1 ; see Fig. 1!, transitions
between states incident from both reservoirs contribute to
photocurrent, essentially canceling each other.13 On the other
hand, forv.v1 , where

v15
Em8,n8

max
2EF

\
, ~4!

an electron state with energyEF1\v is transmitted (gg8
51), and the transitions in the left reservoir do not contr
ute to the photocurrent.

For v.v2 , where

v25
EF2Em,n

max

\
, ~5!

an electron state with energyEF2\v is reflected (gg85
21), and the transitions in the right reservoir~as well as the
ones in the left reservoir! do not contribute to the photocur
rent, such that the photoconductance vanishes forv.v2 .
For v1,v,v2 the photoconductance is maximal due
contributions of the transitions in the right reservoir, whi
are not balanced by those in the left one. This results i
steplike structure for the dependenceGph on v, as shown
schematically in Fig. 3~a!.

In the above discussion of the qualitative behavior of
photoconductance as a function ofv, we assumed thatEF is
located closer to the maximum value of the upper level th
to the one of the lower level~as shown in the Fig. 1!, i.e.,
Em8,n8

max
2EF,EF2Em,n

max, which determined the major contri
butions to the photocurrent of the transitions in the rig
reservoir forv1,v,v2 .

In the opposite case, whenEm8,n8
max

2EF.EF2Em,n
max, ~i.e.,

for v2,v1), one easily obtains a similar steplike depe
dence forGph(v), where forv2,v,v1 only transitions in
the left reservoir contribute to the photocurrent, resulting i
negative step inGph(v) @see Fig. 3~b!#.
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16 308 PRB 58S. BLOM et al.
Determination of the critical frequenciesv1 andv2 may
provide important information about the electronic ener
levels in the constriction. For example, from Eqs.~4! and~5!,
it follows that

Em8,n8
max

2Em,n
max5\v21\v1 ~6!

and

EF2 1
2 ~Em8,n8

max
1Em,n

max!5 1
2 ~\v22\v1!. ~7!

Expression~6! allows us to evaluate the level spacing in t
bottleneck of the constriction. This allows us to estimate
effective size of the narrowmost part of the nanowire, e
for a parabolic confining potentialEm8,n8

max
2Em,n

max5\v0
max,

wherev0
max is the characteristic parameter of the parabo

confining potential in the narrowmost part of the constr
tion. Furthermore, expression~7! allows one to estimate th
position of the electron Fermi energy in the constriction re
tive to the middle point between two neighboring ener
levels.

Additional spectroscopic information can be obtained i
static magnetic field is applied along the nanowire. In
presence of a longitudinal magnetic field~H! the transverse
energy level spectrum in a parabolic confining potentia
given by

FIG. 3. Schematic description of the dependence of the ph
conductance on the frequency of the microwave fieldv. The case of
v1,v2 is shown in~a!, wherev1 andv2 are defined by Eqs.~4!
and ~5!, respectively~see also Fig. 1!. Transitions withv,v1 be-
tween states incident from both reservoirs contribute to the ph
current, canceling each other and resulting in zero photocon
tance. Forv1,v,v2 , transitions between states incident from t
left reservoir do not contribute to the photocurrent, and the t
photoconductance is maximal. Finally, forv.v2 transitions be-
tween the states incident from both reservoirs do not contribut
the photocurrent, resulting in zero photoconductance. An analog
steplike dependence~with negative steps! occurs for the case o
v1.v2 shown in~b!.
y

e
.,

c
-

-

e

s

Emn~z!5\@vc
2/41v0

2~z!#1/2nF1 1
2 m\vc , ~8!

wherenF52n1umu11, vc5eH/m* c is the cyclotron fre-
quency, andv0(z) is the frequency parameter characterizi
the confining potential@see Eq.~9! below; also see Ref. 16#.
In the absence of the magnetic field the transverse en
levels are degenerate, with thenFth level beingnF-fold de-
generate. In a weak magnetic field (vc!v0) this degeneracy
is removed, and the transverse energy levels are split
sublevels with spacings of\vc ~see Fig. 4!. Due to the se-
lection rules in a parabolic potential~described in Sec. III!,
only transitions withDn50,1 andDm561 are allowed.
Consequently, for any given split level, characterized by
indexnF , there are only two allowed transitions to the lev
nF85nF11 ~see Fig. 4!. Now we can repeat our discussion
the dependence ofGph(v) on the photon frequencyv, taking
into account the splitting of transverse energy levels due
presence of the magnetic field. It is easily observed~Fig. 4!
that the frequencyv for which upper (nF8 ) levels become
transmitted modes is now different for each level; i.e., t
critical frequencyv1 discussed above is now splitnF8 times.
Similarly, the frequencyv2 is split nF times. This splitting
results in the appearance of microsteps inGph as a function
of the photon frequencyv ~see Fig. 5!. The number of mi-
crosteps corresponding to the splitting of the critical fr
quencyv1 ~‘‘ascending’’ microsteps! is equal tonF8 , while
the number of microsteps corresponding to the splitting
the critical frequencyv2 ~‘‘descending’’ microsteps! is equal
to nF ; i.e., for a parabolic confining potential the differenc
between the numbers of ‘‘ascending’’ and ‘‘descending’’ m
crosteps should be equal to 1. This result may be use
assess ‘‘the softness’’ of the confining potential as we d
cuss in Sec. IV. Furthermore, from the observation of
microstructure in the dependence ofGph on v one may ob-

o-

o-
c-

l

to
us

FIG. 4. Splitting of the transverse energy levels in a longitudi
magnetic field. Allowed transitions~due to selection rules impose
by the parabolic confining potential, i.e.,Dn50,1, andDm561)
between the transverse energy levels characterized by the num
nF andnF85nF11 are denoted by vertical lines. Comparison wi
the magnetic-field-free case displayed in Fig. 1 shows that unde
influence of a longitudinal magnetic field the critical frequencyv1

is split nF8 times, and the frequencyv2 is split nF times.
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tain nF , which allows one to estimate the Fermi energy
the constriction. Additionally, the width of the microstep
corresponds tovc , and hence it could be used to determi
the effective mass (m* ) of the electrons in nanowire. In Se
III we formulate a quantitative approach for the magne
optical spectroscopy of nanowires which we describ
above.

III. MAGNETO-OPTICAL SPECTROSCOPY
OF ELECTRONIC STATES
IN NANOCONSTRICTIONS

A. Formulation of the problem

We consider ballistic electronic transport through a
constriction with a cylindrical symmetry, modeled by a ha
monic confining potential

F~r,z!5F01 1
2 m* v0

2~z!r2. ~9!

FIG. 5. Schematic dependence of the photoconductance on
frequency of the microwave fieldv in the presence of a longitudina
magnetic field forv1,v2 ~a! andv1.v2 ~b!. The critical frequen-
ciesv1 andv2 are splitnF11 andnF times, respectively~compare
to Fig. 4!, resulting in the appearance of microsteps in the dep
dence of the photoconductance onv. The number of ascending
microsteps corresponds to the splitting of the critical frequencyv1

and equals tonF85nF11, while the number of descending m
crosteps corresponds to the splitting of the critical frequencyv2 and
is equal tonF . The width of the microsteps corresponds to t
cyclotron frequencyvc and can be used to determine the electro
effective mass in the constriction.
-
d

-

Herez is the coordinate along the constriction axis,r is the
radial ~transverse! distance from the constriction axis, an
m* is the effective mass of the electron. The geometry of
potential~effective length of the constriction! is determined
by the confining frequencyv0(z). In order to neglect the
photocurrent in the absence of a driving voltage@see Eqs.~1!
and ~2!#, we will assume that the microconstriction is sym
metrical with respect to the plane containing the minimal~at
z50) cross section, i.e.,v0(z) is taken to be an even func
tion of z. We will also assume that this function varie
slowly on the scale of the electron Fermi wavelength to
sure adiabacity of the electron propagation through the w

To calculate the photoconductance10 we have to evaluate

the matrix elementVab[u^a→uV̂vub←&u @see Eq.~3!#. We
analyze the electronic transport through the constriction
the presence of a longitudinal (Hi ẑ) magnetic field. In this

case, with the symmetric gauge of the vector potentiaAW

5 1
2 (2Hy,Hx,0), the unperturbed part of the Hamiltonia

@see Eq.~1!# is given by

Ĥ05
1

2m* S p¢2
e

c
AW D 2

1F~r,z!. ~10!

The slow variation of the functionv0(z) describing the
~axial! shape of the constriction allows us to use the ad
batic method of separation of transverse and longitud
variables, and the wave function can be written in the fo

C~r,w,z!5xz
mn~r,w!Z~z!. ~11!

Here xz
nm(r,w) is the transverse part of the wave functio

which can be expressed in terms of the confluent hyperg
metric functionF,

xz
mn~r,w!5

eimw

A2p

1

a11umu S ~ umu1n!!

2umun! D 1/2 1

umu!

3e2~r2/4a2!r umuFS 2n,umu11,
r2

2a2D , ~12!

where a5A\/m* v* , and v* (z)5Avc
214v0

2(z), n
50,1,2,..., andm50,61,62,... . The spectrum of the trans
verse eigenvalues, given by Eq.~8!, is a straightforward gen-
eralization of the Fock-Darwin spectrum17 to an adiabatically
varying confinement characterized by a frequencyv0(z) @see
Eq. ~9!#. Calculation of the matrix element between th
transverse parts of the wave functions yields

z^xz
mn~r,w!uV̂vuxz

m8n8~r,w!& z25
\v* e2Ev

2

8m* v2 S~m,n,m8,n8!,

~13a!

where

he

n-

’

S~m,n,m8,n8!5dm,m821$u~m8!@~m81n8!dn,n81~n811!dn,n811#1u~2m811!@~ um8u1n811!dn,n81n8dn,n821#%

1dm,m811$u~2m8!@~ um8u1n8!dn,n81~n811!dn,n811#1u~m811!@~m81n811!dn,n81n8dn,n821#%,

~13b!



in
itu
a

-

n

n-
s

el.
e
ly.

16 310 PRB 58S. BLOM et al.
andu(x) is the Heaviside step function, i.e.,u(x)51 for x
.0 andu(x)50 otherwise.

The longitudinal wave functions for the transmitted@Eq.
~14!# and reflected@Eq. ~15!# modes are taken as

Za→
~z!5S m*

2p\2ka~z! D
1/2

expS i Ez

ka~z8!dz8 D ~14!

and

Zb←
~z!5S 2m*

p\2kb~z! D
1/2

sinS E
zr
b

z

ka~z8!dz81
p

4 D ,

~15!

with

ka~z!5A2m* @Ea2Emn~z!#/\2 ~16!

and similarly forkb(z) with Ea replaced byEb . The point
zr

b on the axis of the wire denotes the classical turning po
When evaluating the matrix element between the long

dinal parts of the wave functions we use the stationary ph
approximation. The stationary phase pointt ~the generation
point, see Sec. II and Fig. 1! is the point where the photon
induced transition occurs and the longitudinal momentum
conserved,10 i.e., ka(t)5kb(t). The part of the matrix ele-
ment between the longitudinal components of the wave fu
tions is given by
tu

in
c

r
er

n

t.
-
se

is

c-

u^Za~z!uZb~z!&u25U m* v* ~t!

4p\3ka~t!v0~t!v08~t!Dm8,n8
m,n U,

~17!

where Dm8,n8
m,n [2(n82n)1um8u2umu, and v08(t) denotes

the derivative ofv0(z) with respect toz evaluated at the
generation pointz5t.

As a concrete example, we take forv0(z) an exponential
form

v0~z!5v0
maxexpS 2

z2

2L2D , ~18!

whereL is the effective length of the constriction. For co
venience we introduce several dimensionless parameter

VH5
\vc

EF
, VR5

\v

EF
, §5

EF

\v0
max. ~19!

Here § has the meaning ofkFr 0/2 wherer 0 is the effective
radius of the constriction for an electron at the Fermi lev
The parametersVH andVR characterize the strength of th
magnetic field and the energy of the photons, respective

For the chosen geometry of the constriction@Eq. ~18!# one
easily finds for the generation points
t56LA22 ln~§!2 ln$@„VR2VH~m82m!/2…/Dm8,n8
m,n

#22VH
2 /4%. ~20!

For the sake of convenience@see Eq.~23! below#, we introduce a couple of auxiliary quantities

ka,s5kFA11s2@2VR2VH~m82m!#~n81um8u/211/2!/Dm8,n8
m,n

2VHm8/2 ~21!

and

jsS m,n
m8,n8 D5

1

ka,s
$u@11s2VR2AVH

2 14/§2~n1umu/211/2!2VHm/2#

3u@AVH
2 14/§2~n81um8u/211/2!1VHm8/22s21#%, ~22!
e in
-
the

of a
wheres50 or VR .
When the electronic state characterized by the quan

numbersn8 and m8 corresponds to the Fermi energyEF ,
then the longitudinal wave-vector at the generation po
z5t is given by Eq.~21! with s50, and when that electroni
state corresponds to the energyEF1\v then the longitudi-
nal wave vector at the generation pointt is given by Eq.~21!
with s5VR . In Eq.~22! the product of the step functions fo
s50 ensures that the state characterized by the en
EF2\v and quantum numbersn andm is a transmitted one
while the state with energyEF and quantum numbersn8 and
m8 is not. Similarly, fors5VR , Eq. ~22! ensures that the
state with energyEF and quantum numbersn and m is a
transmitted one while the state withEF1\v, n8, andm8 is
not.

Combining the above expressions the photoconducta
can be written as
m

t

gy

ce

Gph~§!5
2e2

h S eEv

\v D 2 L2p

8 (
m,n

m8,n8

F41VH
2 §2expS t2

L2D G
utDm8,n8

m,n u

3S~m,n,m8,n8!Fj0S m,n
m8,n8 D2jVR

S m,n
m8,n8 D G .

~23!

B. Results and discussion

Using the expression derived for the photoconductanc
nanowires@Eq. ~23!# we analyzed it quantitatively for vari
ous conditions. In Fig. 6 we display the dependence of
photoconductance on the dimensionless frequencyVR of the
microwave field for zero temperature and in the absence
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magnetic field. In Fig. 6~a! the ratio of the Fermi energy o
the electron to the maximum energy-level spacing~the pa-
rameter§! was taken to be 2.65 and 2.55~i.e., the Fermi
energy is closer to the upper-energy level!, while in Fig. 6~b!
it was taken to be 2.35 and 2.45~i.e., the Fermi energy is
closer to the lower energy level!. The qualitative picture dis-
cussed in Sec. II is portrayed in Fig. 6; that is, the photoc
ductance as a function ofVR ~or v! has a well-pronounced
steplike structure with two characteristic frequencies whi
as discussed in Sec. II, can be used to determine the
spacing in the bottleneck of the constriction and the posit
of the Fermi energy with respect to the middle between t
nearest levels. Note that the positions of the edge frequen
are related to the electronic parameters as discussed in
nection with Eqs.~6! and ~7!. The precise behavior o
Gph(VR) is governed by the combination of matrix elemen
in Eq. ~3!, i.e., the nonzero photoconductance for smallVR is
due to incomplete compensation between the transitions

FIG. 6. Photoconductance~in units of 2e2/h) plotted vsVR

[\v/EF for zero temperature and no magnetic field. In our cal
lations we usedkF523106 cm21, m* 50.1me ~bismuth!, an am-
plitude of the microwave fieldEv5140 V/cm, and an effective
length of the constrictionL5331025 cm. Values of the paramete
§5EF /\v0

max are indicated in the figure. In~a!, the values of§
~2.55 and 2.65! were chosen such that the Fermi level is closer
the upper transverse energy level in the narrowmost part of
constriction, while in~b! the values of§ ~2.45 and 2.35! correspond
to the Fermi level lying closer to the lower transverse energy le
in the bottleneck of the constriction. Note the steplike behavior
the photoconductance as a function ofVR .
-

,
vel
n
o
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on-

th

positive and negative contributions to the photocurren13

The behavior ofGph(VR) for v1,v,v2 is determined by
the matrix element for the transitions of electrons incide
from the right reservoir. In the case when the Fermi energ
closer to the lower energy level the photoconductance ste
negative@Fig. 6~b!#, as was discussed earlier~compare to
Fig. 3!.

In Fig. 7 we display results for the photoconductance a
function of VR in the presence of an applied longitudin
magnetic field~compare to the qualitative picture given
Fig. 5!. As aforementioned, the number of descending m
crosteps allows one to findnF , and, thus to evaluate th
absolute value of the Fermi energy in the constriction. T
width of the microsteps corresponds to the cyclotron f
quencyvc which allows evaluation of the electronic effec
tive mass in the constriction~see Sec. II!.

We note here that in both Figs. 6 and 7 the photocond
tance at small~finite! values ofVR @5\v/EF ; see Eq.~19!#
is positive. To explain this behavior we observe from Eq.~3!
that a transition from a state with energyEF2\v to a state
with energyEF makes a positive contribution to the curren
while a transition from a state with energyEF to one with an
energyEF1\v results in a negative contribution to the cu
rent. Let us compare the matrix elements corresponding
these transitions for small values ofv @i.e., v,v1 ; see Eq.
~4! for the definition ofv1#, where both types of transition
contribute to the current. For a givenv the matrix elements
between the transverse parts of the wave functions are
same for both types of photon-induced transitions@see Eqs.
~13a! and ~13b!#, since they occur at the same generati
point. The matrix element between the longitudinal comp
nents of the wave functions@see Eq.~17!# is inversely pro-
portional to the longitudinal momentum~wave vector! at the
generation pointka(t) which follows from the normalization
of the semiclassical longitudinal wave functions used in o
model @Eqs. ~14! and ~15!#. It is easily seen~Fig. 1! that a
transition from a state with energyEF2\v to the state with
energyEF corresponds to a smaller longitudinal momentu
at the generation point than the transition from a state w
energyEF to a state with energyEF1\v. Consequently, the
matrix element pertaining to the first type of transitions
larger than the one pertaining to the second type of tra
tions. Therefore forv,v1 positive contributions to the cur
rent prevail, resulting in a small positive photocurrent ind
pendent of the relative position of the Fermi energy w
respect to the energy levels in the bottleneck of the cons
tion.

To illustrate the method of data analysis we will compu
the ratioEF /\v0

max @the parameter§ in Eq. ~19!# from the
calculated photoconductance data, given in Figs. 6 and
and compare it to what was used as input to the calculatio
From the data given by the solid line in Fig. 6~a!, we deter-
mine thatV1[\v1 /EF'0.132, andV2[\v2 /EF'0.245.
Using Eq. ~6! we obtain V11V25(Em8,n8

max
2Em,n

max)/EF

5\v0 /EF51/§, i.e., §51/(V11V2)51/0.377'2.65. Thus,
analyzing the data~solid line! in Fig. 6~a! we recover the
ratio EF /\v0

max5§52.65 used in the calculations that gene
ated this data.

Let us now estimate the position of the Fermi energy w
respect to the middle between the closest energy lev
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From Eq.~7! we have@(Em8,n8
max

1Em,n
max)/22EF#/\v0

max5(V2

2V1)EF/2\v0
max5§(V22V1)/2, and from the data~solid

line! in Fig. 6~a! we obtain@(Em8,n8
max

1Em,n
max)/22EF#/\v0

max

50.15. Thus, the ratio between the position of the Fe
energy with respect to the middle point between the clos
energy levels, and the level spacing (\v0

max), is found to be
0.15 which corresponds to§52.65 (§52.5 corresponds to
the Fermi energy being in the middle between two clos
energy levels!.

As a final illustration, we note that from the photocondu
tance in the presence of a magnetic field shown in Fig. 7,
can easily determinenF52 as the number of descendin
microsteps~compare to Figs. 4 and 5!. Moreover, the width
of microsteps (\v0 /EF50.02) allows one to determine th
effective electron mass in the constriction.

IV. CONCLUSION

The analysis presented above shows that magneto-op
measurements on current carrying nanowires can in princ
be used as a spectroscopic tool, enabling probing and de

FIG. 7. Photoconductance~in the units of 2e2/h) plotted vsVR

in the presence of a longitudinal magnetic field. The strength of
magnetic field is characterized by the parameterVH[\vc /EF ,
which was taken to be 0.02. The solid lines correspond to the p
toconductance at zero temperature, and the dashed lines corre
to the photoconductance at a temperaturekBT/EF50.002. In ~a!,
§52.65, and in~b! §52.35. The values of the parametersEv, L,
andkF were taken to be the same as in Fig. 6.
i
st

st

-
e

cal
le
ec-

tion of the quantum states of the electrons in a nanos
conductor. An important conclusion is that the very appe
ance of a regular structure in the dependence of the ph
current on the photon frequency is a manifestation of
ballistic and adiabatic character of the electronic propaga
in the nanowire, although we expect that such behavior w
be maintained for circumstances where deviations from a
batic character occur as long as they do not cause st
mode mixing. Moreover, we have demonstrated theoretic
a method for determining from photoconductance meas
ments~with and without an applied magnetic field! important
physical parameters of the system, such as the Fermi en
and effective mass of the electrons in nanowires, as wel
the number of conducting modes.

The details of the spectroscopy discussed above were
mulated for a harmonic confining potential, where the f
quency dependence of the photoconductance is describe
two characteristic frequenciesv1 andv2 ~see Figs. 3 and 4!.
The existence of only two characteristic frequencies or
nates from the fact that with a harmonic confinement pot
tial only two electronic modes are involved in an optic
transition affecting the photoconductance; this is a dir
consequence of the selection rules for intermode transit
which are strictly valid only for a harmonic confining pote
tial. Deviations from harmonicity would cause violation o
these selection rules, resulting in the appearance of a c
plicated fine structure in the vicinity of the edges inGph(v),
which could complicate the spectroscopic analysis. Ho
ever, for realistic potentials we believe that such a scenar
not the case, since calculations show18 that for a hard-wall
confining potential the additional optical transitions resulti
from violation of the selection rules~compared to a soft po
tential! are characterized by matrix elements which are
least an order of magnitude smaller than the ones for tra
tions allowed by the selection rules. Therefore, we exp
that the proposed spectroscopic probe would be a useful
for realistic potentials, that is confinement potentials int
mediate between the soft- and hard-wall confinement lim
One should expect the soft-wall confinement~or near-soft-
wall confinement! used by us here to be valid particularly fo
systems with less efficient screening, e.g., semimetallic w
where the screening length is not as small as in ordin
metals. Moreover, our analysis~see Secs. II and III! suggests
an independent check of the assumption that the confin
potential is harmonic. The staircase in theGph(v) curve
~Fig. 5!, appearing in the vicinity of the edges atv1 andv2
in the presence of a longitudinal magnetic field, origina
from magnetic-field-induced splitting of the degenerate el
tronic levels and the number of steps appearing near e
edge is equal to the number of degenerate states corresp
ing to the two levels involved in the optical transition. Thu
experimental observations where those two numbers d
by 1, would correspond to a linear dependence of the le
degeneracy on the level number, which is a direct manif
tation of the harmonicity of the potential.

Another assumption which we made pertains to the a
symmetry of the nanowire, which was taken to have a cy
drical symmetry. Such an assumption seems to be natura
wires with nanosize cross sections where the surface en
makes an important contribution to the total energy of
wire. Small deviations from a cylindrical shape would res

e
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ond
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in modifications of the transverse level degeneracies,4,19 and
in the appearance of a steplike structure inGph(v) even in
the absence of a magnetic field. Our results, neverthe
will be valid in this case for strong enough magnetic fie
where field-induced splittings of energy-level degenerac
may exceed those caused by the geometrical anisotropy

As aforementioned, the picture of photoconductance
veloped in this paper is based on an adiabatic appro
which implies negligible mode mixing. Usually this cond
tion is valid for ballistic wires of adiabatic shapes. In o
case one should formulate stronger conditions to preven
termode relaxation of photoexited, ‘‘hot’’ electrons; i.e., i
elastic relaxations due to electron-electron and electr
phonon collisions may become operative and one sho
ensure that the length of the wire is smaller than the co
sponding relaxation length. For 2D wires the correspond
criteria were formulated in Ref. 10. For our purposes, app
priate modifications need to be made to account for the th
dimensionality of our system, as well as for the presence
magnetic field. The latter circumstance implies that the ty
cal frequency of electronic relaxations,n inel , should be also
smaller than the electronic level splitting in a magnetic fie

Electron-phonon relaxation appears to be inefficient
metallic nanowires with few conducting modes because
typical level spacing in microconstrictions~i.e., of the order
of EF divided by the number of modes! is larger than the
Debye energy of the phonons\vD . For semimetals where
EF is of the order of\vD the corresponding momentum
transfer~of the order of Fermi momentum of the electron
pF) is much smaller than\qD and therefore the electron
phonon relaxation frequency,ne-ph, becomes very small
ne-ph/vD;(lFqD)23.20

Relaxation processes via electron-electron collisions m
be the most important mechanism of electron relaxation
nanowires. The electron-electron collision frequency is p
portional to21

ne-e;
1

\
a2EFS kBT

EF
D 2

, ~24!

where the interaction strength is characterized by the dim
sionless parametera5e2/«\vF , and« is the dielectric con-
n
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stant ~in Eq. 6.71 of Ref. 21,«;1 was taken!. The factor
(kBT/EF)2 originates from the Pauli principle. In our cas
kBT may be replaced by the excitation energy of the elect
~by the microwave field!, \v. Since the energy spacing be
tween conducting modes is of the order ofEF divided by the
number of modes, for nanowires with only a few conducti
modes\v;EF and thusne-e;(1/\)a2EF .

Consequently, in order for relaxation via electron-electr
collisions to be ineffective we require that~i! L! l e-e ~where
L is the length of the wire andl e-e is the electron-electron
mean free path!, and~ii ! ne-e!vc . Using the above expres
sion for ne-e we obtain, for criterion~i!

L!lF /a2. ~25a!

For a narrow wire with only a few conducting modeslF
;r 0 , wherer 0 is the radius of the wire. For criterion~ii ! we
may write

EFa2!\vc . ~25b!

From these conditions we observe that our analysis sho
apply for materials with a suppressed Coulomb interact
(a,1). For metalsvF'108 cm/s ande2/\vF'1, and there-
fore the conditiona!1 can occur for«@1 ~at a frequency
of the order ofEF /\). Consequently, semimetallic wires a
more promising for studies using the magneto-optical sp
troscopy which we propose here. Taking parameters typ
for bismuth @with a Fermi velocity vF'108 cm/s and
«'102 ~Ref. 22!# one obtainsa'1022 and thus conditions
~25a! and~25b! may be easily fulfilled for a bismuth nanow
ire with only a few modes~i.e., wires with cross-sectiona
radii of the order of several hundred Å!.
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