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Effects of irradiation on the electronic conductance in nanowires, for field-free conditions and under the
influence of applied longitudinal magnetic fields, were investigated. The nanowires were modeled within the
free-electron framework with a parabolitansversgconfining potential. Our results for the dependence of the
photoconductance of irradiated nanowires on the photon energy and/or the strength of the applied magnetic
field show that such measurements may be used as a magneto-optic spectroscopy for determiatiom of
electron Fermi energy(ii) the electron effective mass, afid) the number of quantized modes in the nanow-
ire. Such measurements may also be used to assess to what degree the electron transport through the nanowire
is adiabatic. Furthermore, our results suggest a method for controlling and tuning electronic transport in
nanowires via external electromagnetic field30163-182@08)07348-3

[. INTRODUCTION spectrum andatomic, or crystallingstructure of the nanow-
ire are influenced in the process of mechanical
Materials structures with spatial dimensions reduced taelongation:=>’To this aim, methods for controlling and tun-
the nanometer-scale regime often exhibit unique structuraing the conductance in such systems, for a given nanowire
electronic, spectral, transport, and mechanical propertiegonfiguration, through the use of external fie(dsthout in-
which cannot be extrapolated from behavior at larger sizedjuencing the geometric structure of the witeave been in-
making them objects of significant fundamental and technovestigated, including magnetic fiefdand finite voltagesin
logical interest. Early predictions pertaining to formation conjunction with magnetic field® or under field-free
mechanisms, energetics, mechanical response, and structucahditions@-3?)),
evolution of three-dimensional3D) crystalline nanowires In the present paper we suggest the use of microwave
generated upon elongation of a contact between materiaradiation for spectroscopy of quantum electronic states and
bodies*? led to intensive theoretical and experimental inves-transport in nanowire¥ We show that the use of irradiation
tigations of such systenfs. Measurements corroborated the in conjunction with an appliedstatio magnetic field may
early theoretical predictions, through studies of mechanicalprovide a tool for investigations of the following electronic
structural, and transport properties in nanowires formedind transport properties of nanowirds: adiabacity of the
through contact elongation, using tip-based methods, corelectronic transport(ii) the value of the Fermi energy of
trollable break junctions, and pin-plate technig@i€acusing electrons in the nanowirdjii) the value of the electronic
our discussion on electronic transport, it has been found, asffective mass, an@v) the number of quantized electronic
anticipatedl,’4 that indeed such nanowires can be used tanodes in the nanowire. Issués) and (iii) are of special
study quantum effects on the conductance in 3D narrow corimportance because, due to band bending and strong struc-
strictions, via exhibiting room-temperature conductanceural and mechanical deformations of the material in the
quantization(in units of the conductance quantura®h), in nanowire, these parameters could be different from those in
analogy with conductance quantization found under cryothe bulk. Point(iv) may serve as an additional tool to esti-
genic conditions in two-dimensional electron gag2SEG) mate the cross-sectional sizes of metallic nanoconstrictions.
in semiconductor heterostructures controlled by electrostatic The main advantage of the use of microwave irradiation
gates in investigations of nanowires originates from the strong sen-
As in the 2DEG case, it is convenient to analyze the quansitivity of the nature of electronic transport on the adiabacity
tum transport of electrons in 3D nanowires in the frameworkof the electronic propagation in the wire. Electromagnetic
of the adiabatic approximation; that is, when the variation ofirradiation cannot typically affect transport properties of bulk
the nanowire’s shapg@long its longitudinal axjsoccurs ona metals because the momentum transfer caused by electron-
scale larger than the electron Fermi wavelength resulting  photon scattering events is very small. The situation is dif-
in no mode mixing between the conducting chanfidis.  ferent in nanowires where, due to the reduced dimensions,
order to investigate the nature of electronic transport in 3Delectronic states transverse to the axis of the wire direction
nanowires, as well as to assess the validity of the adiabatiare quantized. In this case photon-assisted transitions be-
transport mode, it is of special importance to probe the electween such quantized states become possible. It is particu-
tronic quantum states and transport characteristics in sudarly important that in the case of adiabatic propagation such
systems in a controllable manner. This is a particularly dif-optical transitions strongly affect the electronic transport in
ficult task, since using current methods both the electronithe longitudinal directiot!~*® This follows from the fact

0163-1829/98/5@4)/1630510)/$15.00 PRB 58 16 305 ©1998 The American Physical Society



16 306 S. BLOM et al. PRB 58

cross section along the axis of the nanowire is adiabatic on
the scale of the electron’s wavelength, it is possible to sepa-
rate variables corresponding to the transverse and longitudi-
nal motion of the electron when solving the Sdlirmer
equation. Consequently, the quantized transverse motion can
be described in terms of transverse energy leMgls,(2)],
which are dependent on the longitudinal coordinate, and the
longitudinal motion can be described as a one-dimensional
(1D) propagation through the effective barrier set up by the
transverse energy level occupied by the electron. Addition-
ally, we consider our nanowire to be sufficiently long to
allow neglect of tunneling effects on the electron’s propaga-
tion. Under these conditions, states with the maximum value
of their transverse energie§n the narrowmost part of

: nanowirg higher than the electron’s energy are reflected,
T z while other electronic states are transmitted. We will denote

FIG. 1. Effective 1D potential barriers for the longitudinal & transmitted mode bler.) and a reflected one biyr._).
Here a=(n,m,E,) denotes the relevant quantum numbers.

propagation of an electron at the Fermi level, occupying the trans: : .
verse statdm,n. A photoinduced transition is shown only for an | N€ photoconductance, i.e., the difference between the con-
electron incident from the left. Following a transition, caused by aductance of the nanowire in the presence of irradiation and
photon of energyiw, from the transverse staten,n to the trans- the one without it, depends on the rate of transitions between
verse stateri’,n’) at the generation point, the electron encoun- transmitted and reflected states of the electron induced by the
ters a higher barrigfwith a maximumEmf‘Xn,) which may backscat- irradiation. These transitions, which may result in back-
ter the electron(see the dashed line indicating schematically theScattering processes, give negative or positive net contribu-
electronic trajectory y=1 and y’=—1 denote transmitted and tions to the current, depending on the relative position of the
reflected modes, respectively. Fermi energy with respect to the middle between two nearest
levels. We assume that the microwave field is polarized in
that in the case of adiabatic separation(whnsverse and the plane transverse with respect to the wire axis, such that
longitudina) variables in the Schoinger equation, the the energy of the absorbed photon would go entirely into
transverse electronic energies in the microconstriction servelectronic transitions between the transverse energy levels,
as scattering barriers for the longitudinal motion of thewith no transfer of longitudinal momentum. Nevertheless,
electron§ (see Fig. 1, where the mechanism of photon-since it turns out that the longitudinal motion of the electron
induced indirect backscattering of electrons in a nanowire istrongly depends on which transverse level it occupies, such
depicted. One can therefore conclude that observation of thea microwave-induced transition between transverse energy
change in the conductance of a nanowire in the presence tgvels may drastically influence the propagation of the elec-
irradiation would strongly support the concept of adiabatictron along the wire.
guantum propagation in certain metallic and semimetallic In Fig. 1 we sketch the effective 1D potential barriers for
nanowires. In this paper we will assume that such adiabatithe longitudinal propagation of an electron occupying a
classification of electronic states is valid, and show how photransverse level characterized by the pair of quantum num-
toconductance measurement may be used as a spectroscdjgys (n,n). A microwave-induced transition from the trans-
of such states. In our analysis we will consider microcon-verse level (n,n) to the level (’,n") implies that the elec-
strictions characterized by a sdftarmonig confining poten-  tron will encounter now a differenthighen barrier which
tial well. This model is likely to be most applicable to wires may eventually backscatter the electron. Consequently, a
made of materials characterized by weaker screening, e.gohoton-induced transition between two quantized energy lev-
bismuth nanowires. Possible effects caused by anharmongls may block charge propagation through the channel. Be-
corrections to the confining potential are discussed. cause the level spacing depends on the position along the
In the following section we present a qualitative picture ofwire, the optical transition may take place only at special
microwave transport in 3D nanowires, with and without ap-point(s) =, where resonant conditions are satisfied. We will
plied magnetic fields. A quantitative discussion of the pro-refer to such points as generation points.
posed magneto-optical spectroscopy of electronic states in In order for the optical transition to take place the initial
nanowires is given in Sec. Ill. We summarize and discusstate of the electron should be occupied while the final state

our results in Sec. IV. should be empty. In Fig. 2 we show the equilibrium distri-
bution functions at zero temperature for the righig. 2(a)]
IIl. QUALITATIVE PICTURE OF MICROWAVE-INDUCED and left[Fig. 2(b)] reservoirs. We introduce the indexto
TRANSPORT label transmitted y=1) and reflected¥=—1) modes. For

the left (right) reservoir, optical transitions between states
We consider ballistic electronic transport through a 3Dwith different v make negativeépositive) contribution to the
nanowire connecting two reservoirs. If a bias voltageés  current, while the transitions between states with the same
applied to the system the equilibrium distributions in the leftdo not change the current. One can easily see that the con-
and right reservoirs are characterized by chemical potentialgibutions to the current due to photon-induced transitions in
which differ byeV. For nanowires where the variation of the the left and right reservoirs cancel each other except for tran-
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FIG. 2. Schematic equilibrium distribution functions at zero
temperature for the righe) and left(b) reservoirs; the short vertical
marks in(a) and (b) denote the position of the Fermi enerBy .
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where « is taken at the Fermi level, antf, is the Fermi-
Dirac equilibrium electron distribution function. In E¢3)

one can easily recognize the aforementioned two types of
transitions in the left and right reservoirs.

Let us consider the dependence of the photoconductance
on the frequency of the photons, We will limit our dis-
cussion to the transition between the two electron states il-
lustrated in Fig. 1. As we will see below, this limitation is
justified in the framework of a parabolic confining potential
model by the selection rules imposed by the matrix elements
of the microwave field operatdsee Eq(3)]. In the absence
of such selection rules optical transitions between several
electronic states should be included; this makes quantitative
analysis of the photoconductance more complicated, but
yields qualitatively similar results as we discuss in Sec. IV.
As we noted earlier, only optical transitions between trans-
mitted and reflected electron staige., yy’ = —1) contrib-
ute to the photocurrent.

For small values ob (i.e., w<wq; see Fig. ], transitions
between states incident from both reservoirs contribute to the
photocurrent, essentially canceling each offié@n the other
hand, foro>w,, where

Em‘?xn’ —Ef
S 5 @

w1=

Photon-induced transitions occur from the shaded areas and are

schematically represented by arrows. The contributions to the curan electron state with enerdy=+7%w is transmitted ¢y’
rent due to transitions between states incident from the left and right- 1) - and the transitions in the left reservoir do not contrib-

reservoirs cancel each other except for transitions frometfei-

cinity of Eg-# w between the states incident from the right reservoir

[shaded area iric)], and for theeV vicinity of Ex between the
states incident from the left reservéshaded area ifd)].

sitions from theeV vicinity of Ex-f w in the right reservoir
[Fig. 2(c)] and for transitions from theV vicinity of E in
the left reservoifFig. 2(d)]. The first(second type of tran-
sitions, which is allowed only in the righteft) reservoir,
makes a positivénegative contribution to the current.

In order to determine the transmission probability ampli-
tudes between the electron’s states we express the Hamg

tonian as a sum of two ternié:

H=H0+Hint, (1)
where7:(0 is the Hamiltonian in the absence of irradiation,
and

~ ~

Ho =V, codwt), V,=

w

m* @

Py )

Here&, is the amplitude of the applied electromagnetic field

which is assumed to be polarized in tfimnsversgy direc-
tion (the z direction corresponds to the axis of the wjrand

ute to the photocurrent.
For o> w,, where

Er— gmax
0=, ()
an electron state with enerdy-—7%w is reflected ¢y’ =
—1), and the transitions in the right reserv(as well as the
ones in the left reservgido not contribute to the photocur-
rent, such that the photoconductance vanisheswforw,.

For w;<w<w, the photoconductance is maximal due to
ontributions of the transitions in the right reservoir, which
are not balanced by those in the left one. This results in a
steplike structure for the dependen@®" on w, as shown
schematically in Fig. &).

In the above discussion of the qualitative behavior of the
photoconductance as a function®fwe assumed thdg is
located closer to the maximum value of the upper level than
to the one of the lower levelas shown in the Fig.)li.e.,

Emr n —Er<Ep—En%, which determined the major contri-
butions to the photocurrent of the transitions in the right
reservoir foro<w<w,.

In the opposite case, whe" , —E->E-—Eqny, (i.e.,
for w,<w;), one easily obtains a similar steplike depen-
dence forGP(w), where forw,< w< w; only transitions in

m* is the effective mass of the electron. To first order inthe left reservoir contribute to the photocurrent, resulting in a

perturbation theory? one obtains for the photoconductance

negative step ItG"\(w) [see Fig. &)].
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FIG. 4. Splitting of the transverse energy levels in a longitudinal
magnetic field. Allowed transition@lue to selection rules imposed
by the parabolic confining potential, i.&An=0,1, andAm=*1)
. o between the transverse energy levels characterized by the numbers
conductgnce on the frequency of the mlcrowave_ﬂeI(The case of  the magnetic-field-free case displayed in Fig. 1 shows that under the
w1<w, is shown in(a), wherew; and w, are defined by Eqs4) influence of a longitudinal magnetic field the critical frequengy

and(5), respectively(see also Fig. )1 Transitions withw<w; be- g split ;- times, and the frequenay, is split ng times.
tween states incident from both reservoirs contribute to the photo-

current, canceling each other and resulting in zero photoconduc-
tance. Fow, < w<w,, transitions between states incident from the

left reservoir do not contribute to the photocurrent, and the tOtatheren,:=2n+|m| +1, w,=eH/m*c is the cyclotron fre-

photoconductance is maximal. Finally, far>w, transitions be- uency, andso(2) is the frequency parameter characterizin
tween the states incident from both reservoirs do not contribute t y,_ . o0 . q yp 9
e confining potentidlsee Eq(9) below; also see Ref. 16

the photocurrent, resulting in zero photoconductance. An analogo h fth ic field th
steplike dependencéwith negative stepsoccurs for the case of n the absence of the mlagnetlc ield t e.transverse energy
1> w, shown in(b). levels are degenerate, with theth level beingng-fold de-
generate. In a weak magnetic field (< wg) this degeneracy
Determination of the critical frequencies, andw, may S removed, and the transverse energy levels are split into

provide important information about the electronic energySublevels with spacings dfw. (see Fig. 4 Due to the se-

Emn(2)=A[ w24+ o§(2) "N+ imliwe,  (8)

levels in the constriction. For example, from E¢8.and(5), lection rules in a parabolic potenti@described in Sec. IJJ
it follows that only transitions withAn=0,1 andAm==1 are allowed.
Consequently, for any given split level, characterized by the
men' —E"— f ot hwy (6) in,diex ng, there are only two allowed transition; to thg level
ng=ng+1 (see Fig. 4 Now we can repeat our discussion of
and the dependence G""(w) on the photon frequenay, taking
into account the splitting of transverse energy levels due to
Er— %(Em,axn,ﬂgman =i fw,—hw). (7) presence of the magnetic field. It is easily obseriéd. 4)

that the frequencyw for which upper f) levels become
Expression6) allows us to evaluate the level spacing in thetransmitted modes is now different for each level; i.e., the
bottleneck of the constriction. This allows us to estimate thecritical frequencyw, discussed above is now spiif times.
effective size of the narrowmost part of the nanowire, e.g.Similarly, the frequencyw, is split ng times. This splitting
for a parabolic confining potentiaEm?f(n,—Emi"zﬁwg‘ax, results in the appearance of microstepsitt as a function
where 0§ is the characteristic parameter of the parabolicof the photon frequencw (see Fig. $. The number of mi-
confining potential in the narrowmost part of the constric-crosteps corresponding to the splitting of the critical fre-
tion. Furthermore, expressidi) allows one to estimate the quencyw; (“ascending” microstepsis equal ton, while
position of the electron Fermi energy in the constriction relathe number of microsteps corresponding to the splitting of
tive to the middle point between two neighboring energythe critical frequency, (“descending” microstepsis equal
levels. to ng; i.e., for a parabolic confining potential the difference
Additional spectroscopic information can be obtained if abetween the numbers of “ascending” and “descending” mi-
static magnetic field is applied along the nanowire. In thecrosteps should be equal to 1. This result may be used to
presence of a longitudinal magnetic fidld) the transverse assess “the softness” of the confining potential as we dis-
energy level spectrum in a parabolic confining potential iscuss in Sec. IV. Furthermore, from the observation of the
given by microstructure in the dependence ®f" on w one may ob-
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G Herez is the coordinate along the constriction axiss the

(a) radial (transversg distance from the constriction axis, and
m* is the effective mass of the electron. The geometry of the
potential (effective length of the constrictigns determined

by the confining frequencyy(z). In order to neglect the
photocurrent in the absence of a driving voltagee Eqs(1)

and (2)], we will assume that the microconstriction is sym-
metrical with respect to the plane containing the miniragl
z=0) cross section, i.e@q(z) is taken to be an even func-
tion of z We will also assume that this function varies
slowly on the scale of the electron Fermi wavelength to en-
sure adiabacity of the electron propagation through the wire.
(b) To calculate the photoconductafteve have to evaluate

the matrix elemenva[gzl(aﬂl\?meﬂ [see Eq.(3)]. We
Q analyze the electronic transport through the constriction in
the presence of a longitudinaH(z) magnetic field. In this

¢

case, with the symmetric gauge of the vector poten&'al
=2(—Hy,Hx,0), the unperturbed part of the Hamiltonian
[see Eq(1)] is given by

2
+®(p,2). (10)

N 1 /[, e-
FIG. 5. Schematic dependence of the photoconductance on the Ho=5% (p— A
frequency of the microwave field in the presence of a longitudinal
magnetic field forw; < w, (8) andw;>w, (b). The critical frequen- The slow variation of the functiomy(z) describing the
ciesw; andw, are splitn+ 1 andng times, respectivelycompare  (axial) shape of the constriction allows us to use the adia-
to Fig. 4), resulting in the appearance of microsteps in the depenbatic method of separation of transverse and longitudinal
dence of the photoconductance an The number of ascending variables, and the wave function can be written in the form
microsteps corresponds to the splitting of the critical frequangy
and equals tong=ng+1, while the number of descending mi- Y(p,0,2)=x""(p,9)Z(2). (11

crosteps corresponds to the splitting of the critical frequengcgand nm . .
is equal ton. The width of the microsteps corresponds to the €€ Xz (P, ¢) is the transverse part of the wave function

cyclotron frequencys. and can be used to determine the electrons’Which can be expressed in terms of the confluent hypergeo-

effective mass in the constriction. metric functionF,

. . . . . i 1/2
tain ng, which allows one to estimate the Fermi energy in oy )= eme 1 (Jm[+n)! 1
the constriction. Additionally, the width of the microsteps Xz AP )= o QT | oy [m|!

corresponds ta., and hence it could be used to determine
the effective massn(*) of the electrons in nanowire. In Sec. —(p2I4a?) |m| P
Il we formulate a quantitative approach for the magneto- xe pF —n,|m|+l,ﬁ - (12

optical spectrosco of nanowires which we described
agove. P by where a=A/m*©*, and w*(Z)=\/wC2+4w02(Z), n

=0,1,2,..., andn=0,£1,+2,... . The spectrum of the trans-
verse eigenvalues, given by @), is a straightforward gen-
eralization of the Fock-Darwin spectrdfto an adiabatically
varying confinement characterized by a frequengyz) [see
Eq. (9)]. Calculation of the matrix element between the

2

lll. MAGNETO-OPTICAL SPECTROSCOPY
OF ELECTRONIC STATES
IN NANOCONSTRICTIONS

A. Formulation of the problem transverse parts of the wave functions yields
We consider ballistic electronic transport through a 3D * 202
constriction with a cylindrical symmetry, modeled by a har- mn YR 2 —hw ety "n’
. 'V yin Y Y y Ko, ) IVu X3 (P, @) P =g~ S(m,n,m",n’),
monic confining potential m* (133

D(p,2)=Do+ 3M* w§(2)p% 9  where

S(m,n,m’,n")= 6 m—1{ (M )H)[(M"+Nn") 8, +(N"+1) 8 1]+ 0(—m' +D)[(|M'[+n"+1) 6 n+0" 6y 1]}
+ Smm+ 11 O(—m)(|M'[+n") 8 nr+ (N +1) 5 e 1]+ O(M +1)[(M' +n"+1) 8, +0' 811},
(13b
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and #(x) is the Heaviside step function, i.e(x)=1 for x m* w* (1) ‘

>0 and#(x)=0 otherwise. (Za(2)|Z4(2))]?= At 3K NmE
The longitudinal wave functions for the transmittggi. o T)wo(7) wo(7) m’ n’

(14)] and reflectedEqg. (15] modes are taken as 17

m* 12 (2 where Dm, ",=2(n"—n)+|m’|—|m|, and wj(7) denotes
Zaﬁ(2)=(m) exp( f «(2")dz ) (14 the derivative ofwy(z) with respect toz evaluated at the
“ generation poing=r.

and As a concrete example, we take fog(z) an exponential
form
. B 2m* ] fz K (z"1d7 T
p (D)= oK) sin # o2)dZ'+ 1, i
(15 we(2)= w?%xp{ - Iz) , (18)
with

J , wherel is the effective length of the constriction. For con-
_ * _ . R . X

- m

Ko(2)=V2m*[E,—Emnn(2)]/% (16)  venience we introduce several dimensionless parameters

and similarly fork,(z) with E, replaced byE;. The point

Z’B on the axis of the wire denotes the classical turning point. Q 2@ zﬁ_“’ o= Ee (19)
When evaluating the matrix element between the longitu- HO B TROER” fog®”

dinal parts of the wave functions we use the stationary phase

approximation. The stationary phase poinithe generation Heres has the meaning df:r/2 wherer, is the effective

point, see Sec. Il and Fig,) 1s the point where the photon- radius of the constriction for an electron at the Fermi level.

induced transition occurs and the longitudinal momentum isThe parameter§),, and )z characterize the strength of the

conserved? i.e., Ko(7)=Kkg(7). The part of the matrix ele- magnetic field and the energy of the photons, respectively.

ment between the longitudinal components of the wave func- For the chosen geometry of the constricti@&. (18)] one

tions is given by easily finds for the generation points

=2 L\—21n(s)—In{[ (Qr— Qu(m' —m)/2)/D " 12— Q&/4}. (20)

For the sake of convenien¢see Eq.23) below], we introduce a couple of auxiliary quantities

Kas= ke 1+5—[2Qr—Qu(m' —m)1(n+|m'[/2+1/2)/D" . — Qm' /2 (21)

and

m,n 1
s 0[1+s—Qg— +4/s(n+|m|/2+ —Oym
3 m’.n’ [1 Q \/Qﬁ 4ls?( 12+1/2)— Qym/2]
a,s

X O[ QG+ 420" +|m'|/2+ 1/2) + Qym' 12— s—1]}, (22)

wheres=0 or Qg.
When the electronic state characterized by the quantum 2e2 (eé’ )2 L2

7'2 ]
4+ Q0% exp(L )

|7D" |

m’,n’

numbersn’ and m’ corresponds to the Fermi ener@¢, GPN(g)=— s TW E
then the longitudinal wave-vector at the generation point

z= 7 is given by Eq(21) with s=0, and when that electronic m’
state corresponds to the eneffgy+#% w then the longitudi-
nal wave vector at the generation poiris given by Eq(21)
with s=Qg. In Eq.(22) the product of the step functions for

n’

mn
XS(m,n,m’,n")

—&a,

m,n
m’,n’

s

s=0 ensures that the state characterized by the energy 23
—fiw and quantum numbersandm s a transmitted one

while the state with energlf)r and quantum numbers and _ _

m’ is not. Similarly, fors=Qg, Eq. (22) ensures that the B. Results and discussion

state with energyEr and quantum numbens and m is a Using the expression derived for the photoconductance in

transmitted one while the state wih-+#%w, n’, andm’ is  nanowires/Eq. (23)] we analyzed it quantitatively for vari-

not. ous conditions. In Fig. 6 we display the dependence of the

Combining the above expressions the photoconductangeghotoconductance on the dimensionless frequédgyf the
can be written as microwave field for zero temperature and in the absence of a
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positive and negative contributions to the photocurtént.
(a) The behavior ofGP(QR) for w;<w<w, is determined by

the matrix element for the transitions of electrons incident
from the right reservoir. In the case when the Fermi energy is
— closer to the lower energy level the photoconductance step is
| negative[Fig. 6b)], as was discussed earlieccompare to

I Fig. 3.

I In Fig. 7 we display results for the photoconductance as a
| function of Qg in the presence of an applied longitudinal
|

I

I

—

GP"(2e2/h)

o
N
1

|
I
|
|
I
I
I
I

magnetic field(compare to the qualitative picture given in
Fig. 5. As aforementioned, the number of descending mi-
crosteps allows one to findg, and, thus to evaluate the
' ' ' ' ! ' ' absolute value of the Fermi energy in the constriction. The
0.12 015 018 021 024 027 030 033 . .
width of the microsteps corresponds to the cyclotron fre-
0.1 guencyw. wWhich allows evaluation of the electronic effec-
T =245 (b) tive mass in the constrictiofsee Sec. I
We note here that in both Figs. 6 and 7 the photoconduc-
tance at smalffinite) values ofQg [=h w/Efg; see Eq(19)]
is positive. To explain this behavior we observe from &j.
that a transition from a state with enerfy —7% w to a state
with energyEr makes a positive contribution to the current,
while a transition from a state with ener@y to one with an
energyEr+ % w results in a negative contribution to the cur-
rent. Let us compare the matrix elements corresponding to
these transitions for small values ofli.e., v<w;; see Eq.
05 4 (4) for the definition ofw, ], where both types of transitions
, | : ‘ : : , contribute to the current. For a givesnthe matrix elements
012 0415 0418 021 024 027 030 033 between the transverse parts of the wave functions are the
Oy same for both types of photon-induced transitipsse Egs.
(139 and (13b)], since they occur at the same generation
point. The matrix element between the longitudinal compo-
nents of the wave functionsee Eq.(17)] is inversely pro-
portional to the longitudinal momentutwave vector at the
generation poink,(7) which follows from the normalization
of the semiclassical longitudinal wave functions used in our
(2.55 and 2.6bwere chosen such that the Fermi level is closer tomode.I.[Eqs.(14) and (15).]' It is easily seer(Fig. 1) that_a
the upper transverse energy level in the narrowmost part of thganSItlon from a state with energiyp—ﬁw_to t_he state with
constriction, while in(b) the values of; (2.45 and 2.35correspond ~ €N€rgyEg corresponds to a smaller longitudinal momentum
to the Fermi level lying closer to the lower transverse energy levePt the generation point than the transition from a state with

in the bottleneck of the constriction. Note the steplike behavior ofeN€rgyE to a state with energir + 7 . Consequently, the
the photoconductance as a function(®. matrix element pertaining to the first type of transitions is

larger than the one pertaining to the second type of transi-

magnetic field. In Fig. @) the ratio of the Fermi energy of tions. The(efore f0.m<.wl positive canributions to the cur-
the electron to the maximum energy-level spacitig pa- rent prevail, resultmg in a sm_all positive phot(_)current mo_le-
rameters) was taken to be 2.65 and 2.3Be., the Fermi pendent of the relative posIt|0n of the Fermi energy Wlt_h
energy is closer to the upper-energy léyelhile in Fig. 6b) rgspect to the energy levels in the bottleneck of the constric-
it was taken to be 2.35 and 2.4be., the Fermi energy is UOM- _ _

closer to the lower energy levelThe qualitative picture dis- 10 illustrate tmaex method of data analysis we will compute
cussed in Sec. Il is portrayed in Fig. 6; that is, the photoconth€ ratioEg/fiwg™ [the parametes in Eq. (19)] from the
ductance as a function &by (or w) has a well-pronounced calculated phptoconductance data, given in Figs. 6 an_d 7,
steplike structure with two characteristic frequencies which@nd compare it to what was used as input to the calculations.
as discussed in Sec. Il, can be used to determine the levEfom the data given by the solid line in Figa§ we deter-
spacing in the bottleneck of the constriction and the positiofnine thatQ); =% w;/Eg~0.132, and(},=% w,/Er~0.245.

of the Fermi energy with respect to the middle between twdJsing Eg. (6) we obtain Q;+Q,=(E " —En3)/Er
nearest levels. Note that the positions of the edge frequenciesfiwy/Ex=1/s, i.e., s=1/(Q1+Q,)=1/0.37%2.65. Thus,

are related to the electronic parameters as discussed in coaralyzing the datdsolid line) in Fig. 6@ we recover the
nection with Egs.(6) and (7). The precise behavior of ratio Eg/%wg®*=s=2.65 used in the calculations that gener-
GPN(QR) is governed by the combination of matrix elementsated this data.

in Eq.(3), i.e., the nonzero photoconductance for srililis Let us now estimate the position of the Fermi energy with
due to incomplete compensation between the transitions withespect to the middle between the closest energy levels.

o
=
1

¢=2.55|

—_————

o
=)

0.0 +

-0.1 H

-0.2 H

GPh(2e?/h)

-0.3

-0.4

FIG. 6. Photoconductancén units of 2e?/h) plotted vsQg
=hwl/Eg for zero temperature and no magnetic field. In our calcu-
lations we usekg=2x10° cm 1, m*=0.1m, (bismuth, an am-
plitude of the microwave fieldc,=140 V/cm, and an effective
length of the constrictioh =3x10~° cm. Values of the parameter
s=Er/hw{® are indicated in the figure. I8), the values ofs



16 312 S. BLOM et al. PRB 58

06 tion of the quantum states of the electrons in a nanosize
(a) conductor. An important conclusion is that the very appear-
ance of a regular structure in the dependence of the photo-
current on the photon frequency is a manifestation of the
ballistic and adiabatic character of the electronic propagation
in the nanowire, although we expect that such behavior will
be maintained for circumstances where deviations from adia-
batic character occur as long as they do not cause strong
mode mixing. Moreover, we have demonstrated theoretically
a method for determining from photoconductance measure-
ments(with and without an applied magnetic figldnportant
physical parameters of the system, such as the Fermi energy
. and effective mass of the electrons in nanowires, as well as
012 015 0.18 O.Zd 024 027 030 033 the number of Conducting modes.

R The details of the spectroscopy discussed above were for-

mulated for a harmonic confining potential, where the fre-

(b) quency dependence of the photoconductance is described by
two characteristic frequencies; andw, (see Figs. 3 and)4
The existence of only two characteristic frequencies origi-
nates from the fact that with a harmonic confinement poten-

GPh(2e2/h)

0.1

0.0

-0.1 +

< . ; . . :

N tial only two electronic modes are involved in an optical
o 027 transition affecting the photoconductance; this is a direct
) consequence of the selection rules for intermode transitions

037 which are strictly valid only for a harmonic confining poten-

tial. Deviations from harmonicity would cause violation of

0.4 1 these selection rules, resulting in the appearance of a com-
plicated fine structure in the vicinity of the edgesGR'(w),
-0.5 ‘ ‘ T . . | | which could complicate the spectroscopic analysis. How-
012 015 018 021 024 027 030 033 ever, for realistic potentials we believe that such a scenario is
g not the case, since calculations sh®what for a hard-wall

confining potential the additional optical transitions resulting
in the presence of a longitudinal magnetic field. The strength of thérom violation of the s_electlon ruIe@ompared toa fSOft po-
magnetic field is characterized by the parametar=r w,/Er , tentia) are characterlzgd by matrix elements which are at
which was taken to be 0.02. The solid lines correspond to the phd€ast an order of magnitude smaller than the ones for transi-
toconductance at zero temperature, and the dashed lines correspdins allowed by the selection rules. Therefore, we expect
to the photoconductance at a temperatkg®/E-=0.002. In(a),  that the proposed spectroscopic probe would be a useful tool
s=2.65, and in(b) s=2.35. The values of the parameteis L, for realistic potentials, that is confinement potentials inter-
andkg were taken to be the same as in Fig. 6. mediate between the soft- and hard-wall confinement limits.
One should expect the soft-wall confineméat near-soft-
From Eq.(7) we have[(Emf"Xn,vLEm")/Z— Ee 1/h o™= (0, wall confingmer)tuse_d _by us here to be valid pa_rticular_ly fc_>r
max ; ' . systems with less efficient screening, e.g., semimetallic wires
__Ql)_EFlz_ﬁwO ZQ(QZ_Q})/Z’ 22)9 fronr;r; the data(sonig where the screening length is not as small as in ordinary
line) in Fig. 6) we obtain[(Ey, ", +En7)/2—Erl/hwg metals. Moreover, our analysisee Secs. Il and lllsuggests
=0.15. Thus, the ratio between the position of the Fermign independent check of the assumption that the confining
energy with respect to the middle point between the closesjotential is harmonic. The staircase in tB®(w) curve
energy levels, and the level spacinfg«g™), is found to be  (Fig. 5), appearing in the vicinity of the edgesaj and w,
0.15 which corresponds to=2.65 (s=2.5 corresponds to in the presence of a longitudinal magnetic field, originates
the Fermi energy being in the middle between two closesfrom magnetic-field-induced splitting of the degenerate elec-
energy levels tronic levels and the number of steps appearing near each

As a final illustration, we note that from the photoconduc-edge is equal to the number of degenerate states correspond-
tance in the presence of a magnetic field shown in Fig. 7, onghg to the two levels involved in the optical transition. Thus,
can easily determin@=2 as the number of descending experimental observations where those two numbers differ
microsteps(compare to Figs. 4 and)5Moreover, the width by 1, would correspond to a linear dependence of the level
of microsteps § wy/Er=0.02) allows one to determine the degeneracy on the level number, which is a direct manifes-
effective electron mass in the constriction. tation of the harmonicity of the potential.

Another assumption which we made pertains to the axial
symmetry of the nanowire, which was taken to have a cylin-
drical symmetry. Such an assumption seems to be natural for

The analysis presented above shows that magneto-opticadres with nanosize cross sections where the surface energy
measurements on current carrying nanowires can in principlsakes an important contribution to the total energy of the
be used as a spectroscopic tool, enabling probing and detegire. Small deviations from a cylindrical shape would result

FIG. 7. Photoconductandé the units of 2%/h) plotted vsQg

IV. CONCLUSION
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in modifications of the transverse level degenera‘bi‘@and stant(in Eq. 6.71 of Ref. 21g~1 was takeh The factor

in the appearance of a steplike structureGP(w) even in  (kgT/Eg)? originates from the Pauli principle. In our case

the absence of a magnetic field. Our results, nevertheleskzT may be replaced by the excitation energy of the electron

will be valid in this case for strong enough magnetic fields(by the microwave fielg Aw. Since the energy spacing be-

where field-induced splittings of energy-level degeneraciesween conducting modes is of the ordersf divided by the

may exceed those caused by the geometrical anisotropy. number of modes, for nanowires with only a few conducting
As aforementioned, the picture of photoconductance demodestiw~Eg and thusve ¢~ (1/4) a’Ef .

veloped in this paper is based on an adiabatic approach, Consequently, in order for relaxation via electron-electron

which implies negligible mode mixing. Usually this condi- collisions to be ineffective we require th@j L <l (where

tion is valid for ballistic wires of adiabatic shapes. In our L is the length of the wire antl. . is the electron-electron

case one should formulate stronger conditions to prevent inmean free path and(ii) v, .<w.. Using the above expres-

termode relaxation of photoexited, “hot” electrons; i.e., in- sion for v, , we obtain, for criterion(i)

elastic relaxations due to electron-electron and electron-

phonon collisions may become operative and one should L<\g/a® (253

ensure that the length of the wire is smaller than the COMeEor A narrow wire with only a few conducting modzs

sponding relaxation length. For 2D wires the correspondinerO, wherer  is the radius of the wire. For criterialii) we

criteria were formulated in Ref. 10. For our purposes, approg, - ;

. s y write
priate modifications need to be made to account for the three
dimensionality of our system, as well as for the presence of a Era’<ho;. (25b

magnetic field. The latter circumstance implies that the typi- N .
cal frequency of electronic relaxations,., should be also From these conditions we observe that our analysis should

smaller than the electronic level splitting in a magnetic field.2Pply for materials with a suppressed Coulomb interaction
Electron-phonon relaxation appears to be inefficient fol@<1). For metalsp~10° cm/s ande®/fivg~1, and there-
metallic nanowires with few conducting modes because th&re the conditiona<1 can occur for>1 (at a frequency
typical level spacing in microconstrictiorise., of the order ~ Of the order ofEr /7). Consequently, semimetallic wires are
of Er divided by the number of modgss larger than the More promising for studies using the magneto-optical spec-
Debye energy of the phonoriiswy . For semimetals where troscopy which we propose here. Taking parameters typical
E is of the order offiwp the corresponding momentum for bismuth [with a Fermi velocity ve~10° cm/s and
transfer(of the order of Fermi momentum of the electrons, ¢~ 10 (Ref. 22] one obtainsx~10"2 and thus conditions
pg) is much smaller tharkgp and therefore the electron- (258 and(25b) may be easily fulfilled for a bismuth nanow-
phonon relaxation frequencyye.,,, becomes very small: ire with only a few modedi.e., wires with cross-sectional

-3 20 ii
Ve_ph/wDN.()\FqD) 3 . N radii of the order of several hundred) A
Relaxation processes via electron-electron collisions may
be the most important mechanism of electron relaxation in ACKNOWLEDGMENTS
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