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Certain aspects of the methodology of genetic algorithms for global structural optimization of clusters were
studied. Through systematic investigations of Lennard-Jones clusters with up to 100 atoms, several
modifications were made to the genetic algorithm introduced by Deaven and Ho [Phys. ReV. Lett.1995, 75,
288]. These modifications result in improved efficiency of the search procedure and in certain cases lead to
determination of globally optimal structures that previous genetic algorithm studies have not found. The
modifications include the following: twinning mutations, add-and-etch processes where a cluster of a given
number of atoms is grown beyond that size and subsequently etched, and seeding of the initial parental
population with selected structural motifs, in conjunction with randomly chosen configurations.

I. Introduction

The development of optimization strategies (global optimiza-
tion in particular1-3) is a subject of great importance in diverse
fields, including the physical sciences (for example, protein
folding and atomistic structural determination of (macro)-
molecules and clusters), engineering (for example, design of
VLSI circuits, industrial optimization, and control of regulation
systems), and economics (for example, warehouse maintenance
and optimal transportation and distribution routes). Generically,
in optimization problems the overall performance of the system
is represented by a multivariate function called the objective
function; for example, the energy of a polyatomic aggregate
with the atomic coordinates as variables. Optimal conditions
are achieved when the objective function reaches its global
extremum, i.e., minimum energy in the above example. How-
ever, for systems characterized by a large number of parameters,
finding the extrema and, in particular, the global extremum is
a vexing problem. The main difficulty is that the global
extremum of a real multivariate function is actually a local
property, thus requiring an exhaustive search. Furthermore,
proving that the global extremum has indeed been found seems
to be a rather unattainable task for most systems of interest.3

Several methodologies aimed at global optimization have been
developed. These include gradient and Hessian methods,4

stochastic and simulated annealing,5-7 deterministic techniques,3

genetic algorithms,8,9 and other approaches (such as a basin-
hopping method applied recently in a study of Lennard-Jones
(LJ) clusters,10,11 which is very similar to a Monte Carlo
minimization method12).

As has been discussed in several recent papers,13-21 genetic
algorithms (GAs) offer a powerful tool for atomic and molecular
cluster structural optimization. It is primarily due to the recent
innovations in mating procedures13 that the GA, long an
important method in discrete optimization tasks,8,9 became
relevant to continuous variable optimization as well. Using such
extended genetic algorithms, studies of the minimum-energy
structures for C60,13 the Thomson problem,22 and Lennard-Jones
(LJ) clusters14 have been rather successful. Choosing LJ clusters
as our model system, it is the goal of this study to examine in
some detail the use of GAs for structural optimization and to

suggest several further extensions for improving the performance
of GAs in such investigations.

In the discrete GA, a binary coding for the solution space is
created first.8 With this code, random strings are generated to
serve as the initial generation. Each of these solutions is then
tested (weighted) according to some (objective) function which
reflects their “fitness” as solutions. The fittest solutions are
then chosen as parents for the next generation. The parents
are crossed (mated) in an analogue of sexual reproduction,
yielding a new generation that should share some of the desirable
traits of the parents. The process then repeats. This direct
mimicry of natural selection has proven to be very efficient in
many discrete optimization problems at finding, if not the
absolute (global) minimum, then a sufficiently low local
minimum for the application.

An innovative GA approach has been proposed13 by Deaven
and Ho (DH-GA), for structural (energetic) optimization of
cluster systems. Rather than trying to create a complicated
coding scheme that would allow one to use the traditional mating
scheme of cutting and pasting binary strings, they suggested
using the direct three-dimensional coordinate space representa-
tion of the clusters’ structures in conjunction with a particular
mating procedure. In section II, we review the DH-GA
algorithm, discuss several modifications to it, and present our
results for LJ clusters of up to 100 atoms, which are in complete
agreement with the results obtained in ref 10 (see in particular
Table 1 in that reference), including certain cases that have not
been found previously with the use of genetic algorithms. We
conclude in section III.

II. Genetic Algorithm and Application to Lennard-Jones
Clusters

II.A. The Genetic Algorithm and Modifications. In the
original DH-GA for a system of N atoms, one starts from a
population of candidate structures whose configurations are
randomly chosen subject to the constraints that no atoms lie on
top of each other and that the chosen configuration is contiguous;
that is, groups of atoms are close enough to interact. Following
relaxation of these candidates to the nearest local minimum, a
fraction of them are chosen as “parent” clusters with their
relaxed energies serving as the fitness criteria. (The number
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of parents,P, is taken to be small, though typically no smaller
than P ) 4.) These clusters are “mated” to form a new
generation of clusters by choosing (in step i) a random plane
passing through the center of mass of each of the parent clusters
and cutting the parent clusters along those planes. In the
following we call the two fragments thus generated for each
cluster the “top” and “bottom” fragments, respectively. The
planes are shifted for each parent so as to create two fragments
with N/2 atoms whenN is even and two fragments with (N -
1)/2 and (N + 1)/2 atoms whenN is odd. This step generates
a total of 2P fragments.

In step ii, all possible combinations of assembling new
“offspring” clusters (each containingN atoms) from theP “top”
fragments and theP “bottom” fragments are formed. For an
even number of atoms, each fragment could mate with the 2P
- 1 other fragments, since each of them containsN/2 atoms.
This is not the case for odd-numbered clusters. To assess the
merits of our modifications to the GA on equal footing for both
even and oddN, we only mate “top” with “bottom” for both
parities ofN.

Each child produced in this mating step is then relaxed to
the nearest local minimum through a conjugate-gradient mini-
mization, using the total energy as an objective function.
Subsequently, a new generation is produced by selecting theP
lowest energy clusters from theP2 combinations (P parents with
P(P - 1) offspring). To preserve the population’s diversity, a
minimum-energy differenceδE between the members of the
population is enforced. (That is, if two members of the
population were to have energies withinδE of each other, only
one of them would be kept.)

Finally, in step iii, occasionally (at a rate of a few percent of
the mating operation rate) mutated candidates are admitted into
the population, regardless of their energy. Two mutation
schemes have been suggested.13,14

We implemented first the original DH-GA13,14using the 6-12
LJ interatomic pair potential

whererij, 21/6σ, andε are the distance between atomsi and j,
the equilibrium LJ interatomic distance, and the equilibrium LJ
well depth, respectively. In the following we use reduced units,
whereσ ) ε ) 1. The energy of theith atom in the cluster
containingN atoms is given byEi ) 1/2∑j*i

N V(rij), and the total
energy of the cluster, given byE ) ∑i)1

N Ei, serves as an
objective function. In the calculations reported here the
population size wasP ) 4 (although calculations were also done
for P ) 5 andP ) 6), and the population diversity parameter
wasδE ) 1 × 10-2 (in reduced energy units).

Starting with this algorithm, we have experimented with
several modifications aimed at improving the efficiency of the
algorithm. We may classify these modifications as pertaining
to the following: (i) mutations, (ii) initialization, and (iii)
acceleration methods. We discuss each of these separately.

(i) Mutations. Most researchers working with the genetic
algorithm tie the mutation frequency to a random probability,
frequently around several percent of the mating operation rate.
Instead, we choose to adjust the frequency of mutation according
to the properties of the parental energy distribution. Whenever
the population stagnates, we mutate one of the parents and place
the mutated version in the parent list. We use two measures of
stagnation. The first is triggered when the standard deviation
of the parental energy distribution drops below a threshold value,

chosen to be 0.2 reduced energy units. The second criterion is
activated when the parental energy distribution remains com-
pletely unchanged for three successive generations. The
broadening of the search area in solution space (through
mutations) is thereby tied to the trapping of the parents into
“static” configurations. While in all cases mutations have been
found to be triggered by the above criteria, it is advisable to
include the option of a minimum mutation frequency of a few
percent of the mating operation rate in cases where the
stagnation criteria are not met.

The most basic mutation to perform on an atomic cluster is
to select some random number of atoms and to take them on a
random walk in configuration space,13 while ensuring that they
are not walked unphysically close to any other atom at each
step. Despite its attractive simplicity, this method does not seem
to dramatically alter the efficiency of the GA.

The next mutation that we implemented is a twinning
mutation, motivated by the prevalence of twinned structures in
clusters. A plane is randomly chosen through the center of mass
of the cluster. One side of the cluster is then rotated by a
random angle, and the two sides are then reassembled to form
a mutated (twinned) cluster. Such mutations are rather efficient
at moving the parent into a different area of solution space, as
measured by changes in system characteristics such as number
of nearest neighbors and average per-particle energy, and they
improve the convergence time over the random walk mutation
alone.

As a further class of mutations, we chose one that mimics
certain physical processes operative in the formation of clusters
and nanocrystallites. In particular, we developed etching
mutations, implemented as follows.

First, a set number of particlesM (typically M ) 10) are
randomly placed in a shell surrounding theN-atom cluster.
Precaution is taken to ensure that no pair of atoms are placed
unphysically close to one another. The configuration of the
cluster is then optimized (roughly) using a conjugate gradient
minimization of the energy to generate a reasonably compact
cluster. Through this procedure we achieve a workable ap-
proximation to an epitaxial deposition-and-growth process,
which is expected to fill in any defects that may exist in the
outer atomic shell structure of the parent cluster.

However, the epitaxial growth step leaves the mutated parent
cluster with more atoms (N + M) than the remainder of the
parental clusters (N). Consequently, the “growth” step is
followed by “etching”. To this aim the per-atom energy for each
atom in the cluster is calculated, and the highest energy particle
is etched away. As a particle is removed, the energy of the
cluster is reoptimized, and the etching process is repeated until
the cluster returns to the original number of atoms (N).
Recognizing that these two steps can go in either order, we also
created a mutation where the cluster is first etched and then
experiences epitaxial growth. Additionally, the whole etching
process can occur in sequence as described above, or it can be
stretched over several generations of the GA if all parents are
“grown” to the same size (i.e., the etching process is intertwined
with the GA mating step).

(ii) Initialization: Seeding. To initialize the GA process, one
may start from a parental population with random configurations
(as in the DH-GA). While such choice is clearly without bias,
it may, and in most cases does, lead to an increased computa-
tional effort. Our experience shows that even after an initial
conjugate-gradient minimization (∼150 steps) of randomly
chosen initial configurations, the resulting initial population often
consisted of some noncompact clusters.

V(rij) ) 4ε[(σ
rij

)12
- (σ

rij
)6] (1)
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Motivated by the above considerations, and in analogy with
the physical processes of homogeneous nucleation and growth
of materials aggregates, we have experimented with seeding
procedures for initialization of the GA search. Such seeding is
guided by the various structural motifs that are frequently
encountered in studies of small- and medium-sized atomic
aggregates.23-27 For example, for clusters in the size range 20
< N e 60 and forP ) 4, the initial parental population is seeded
in the following manner: in addition to anN-atom randomly
chosen parent, the population includes (three)N-atom clusters
seeded with a 13-atom icosahedron, a 13-atom cuboctahedron,
and a 13-atom decahedron, respectively. When seeding is used,
we start with a population ofP relaxed parental clusters; we
found that starting from a larger initial population from which
P clusters are selected, after relaxation, as described at the
beginning of section II.A, has no discernible effect on the
convergence to the global minimum when compared to the
procedure outlined here. In the seeded clusters the remaining
atoms (N - 13) are placed at random within some region
bordering the surface of the seed. When the number of parents
P is greater than 4, this pattern (random, icosahedron, cubocta-
hedron, decahedron) is cyclically repeated. For other size
ranges, the size of the seed is increased; for example, in the
range 60< N e 147 the seeds consist of a 55-atom icosahedron,
a cuboctahedron, and a decahedron.

Conjugate-gradient minimization of the seeded clusters often
results in more compact structures than minimization of the
random clusters. We remark that while seeding may be regarded
as introducing some bias into the GA, we rely on the presence
of the randomly chosen configuration in the initial parental
population, and on the action of the mutation operators described
above, to alleviate undue bias in the GA search space.

In practice, we find it advantageous to grow the parental
clusters (both random configuration and seeded ones) to a size
of 10-20% larger thanN and subsequently to etch the extra
atoms as described above. This leaves a set of (P) parental
N-atom clusters, ready for the first mating procedure. Alter-
natively, one may begin the GA mating process before etching
and perform the etching process gradually. We experimented
with several etching schemes, all of them with essentially linear
rates but having different slopes. Our best results (i.e., fastest
convergence to the optimized structure) are for a scheme where
the first atom is etched after three GA generations, and then in
each subsequent generation an atom is removed (etched) until
a cluster ofN atoms is reached.

(iii) Acceleration. As aforementioned, after a mating step
the heterozygous offspring are structurally optimized using a
conjugate-gradient (CG) minimization of the energy. This is a
time-consuming step, since it involves a large number of energy
evaluations for each of the offspring. It has been suggested21

that including information on the gradient of the total energy
in the GA weighting scheme (objective function) might help to
improve the convergence of the algorithm; in ref 21, a weighting
function biased toward those distributions with a flat gradient
was used. We have elected to utilize the gradient information
from the CG minimization to perform the total minimization in
two stages.

First, we perform an initial (approximate) minimization of
all the offspring, but with a preset maximum number of CG
evaluations (say 100). At this stage further optimization is
performed only for theP heterozygous offspring selected as
follows: (i) the norm of the gradient of each of the offspring
generated by the mating process is subtracted from the roughly
minimized energy of that structure; (ii) theP offspring clusters

that have the lowest combined weight are selected for further
minimization. The “best”P ) 4 clusters from both the parents
and the children were then chosen based on their energies alone
to become the next generation’s parents. Thus, gradient
information was not included directly in the weighting function,
but it was used as a time-saving measure in the process of
deciding which cluster configurations were worthy of further
minimization and study.

II.B. Results: Lennard-Jones Clusters AN, N < 100. (i)
Methodology. The above modified GA was used by us for
structural optimization of LJ clusters, AN (10e N e 100). Prior
to presenting these results, we illustrate the various modifications
to the GA algorithm discussed above using A55 as an example.
For the purpose of this illustration we add the various modifica-
tions and refinements progressively, allowing us to discern the
role each plays in affecting the overall performance of the search
algorithm. The code that we use in order to distinguish among
the variants of the GA procedure is specified by the parameters
(R,â,γ) with the parameters taking the values 0 or 1 depending
on the particular algorithm being used. The original DH-GA13,14

described at the beginning of section II.A is assigned an index
(0,0,0), and it includes initial parents (P ) 4) chosen from a
population of relaxed random configurations, a mating process
as described above in conjunction with CG minimization, a
population diversity parameter ofδE ) 1 × 10-2, and two types
of mutations (a random walk and a twinning mutation) which
are triggered by stagnation criteria (described under “Muta-
tions” in section II.A). This algorithm is used as the base of
our notations.

When an “add-and-etch” mutation is included in the pool of
possible mutations, we setR ) 1. When the initial population
is completely composed of random parents,â ) 0, while â *
0 if seeding of the initial population is used. When seeding is
used, it always comes in conjunction with an add-and-etch
process. The seeding and accompanying add-and-etch processes
are designated as follows:â ) 1+ or 1-, indicating whether
the etching is performed over several GA generations (+) or in
one step before the first mating procedure (-). Finally, when
gradients are included in the selection criterionγ ) 1, while a
purely energy-based criterion is represented byγ ) 0. Thus,
for example, a GA labeled by (1,1+,1) signifies an algorithm
where “add-and-etch” mutations are used (in addition to random
walk and twinning ones), the initial parental population is seeded
in conjunction with a gradual add-and-etch process, and the
selection criterion is based on both the energy and its gradient.

Typical results of energy per particle plotted versus the
number of GA generations are shown in Figure 1 for A55. These
results were obtained using the original DH-GA (0,0,0) and
several variants. It is evident that adding the “add-and-etch”
mutation (1,0,0) improves the rate of convergence to the optimal
structure (icosahedron) and that further significant enhancement
of the convergence rate is achieved through seeding of the initial
parental distribution in conjunction with an “add-and-etch”
process (with the etch performed prior to the start of the GA
mating procedure (denoted as algorithm (1,1-,0)). Finally, an
even faster rate of convergence is achieved by performing the
etch of the overgrown seeded initial population in a gradual
manner, as well as including gradients in the selection criterion
(i.e., the (1,1+,1) GA).

To illustrate the effect of the various improvements in a more
statistical manner, we show in Figure 2a-d results for the
variations in the number of GA generations needed to achieve
the optimal structure for LJ clusters in the size range of 40e
N e 50. The particular algorithms shown are the DH-GA
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(0,0,0) algorithm (Figure 2a) and the variants (1,0,0), (1,1-,0),
and (1,1+,1) (Figure 2, b, c, and d, respectively). In each case,
the results that we show were obtained from 10 runs, and the
vertical bars connect the smallest and largest number of GA
generations that were required to achieve the optimal structure
for each cluster size. When the latter exceeds 100 generations,
the vertical line terminates with an arrow. The dashed line
connects the (approximate) mean number of GA generations
needed for optimization. Due to computational constraints, any

run that had not converged within 100 generations was
terminated, and thus the mean appears artificially low for any
cluster size that has such terminated (or “escaped”) runs.

The merit of the various variants to the (0,0,0) GA can be
assessed from the decreasing pattern in the average number of
GA generations needed for convergence to the optimal struc-
tures. Furthermore, we observe that, for the majority of cluster
sizes considered here, the (0,0,0) GA (i.e., the original DH-
GA) experienced at least one run out of 10 which escaped
(number of generations was greater than 100), while such cases
are circumvented upon successive improvements of the algo-
rithm (in particular see Figure 2d corresponding to the GA
(1,1+,1) algorithm).

We conclude our discussion of the GA methodology devel-
oped here with an illustration of computations forN ) 38
pertaining to the seeding of the initial parental population
(performed in conjunction with add-and-etch processes, as
described above). As has been noted before, the energetically
optimal structure (the fcc truncated octahedron (TO), shown
on the left of Figure 3) is a difficult minimum to find through
any automated global optimization method;10,11 however, the
optimal TO structure has been found for Au38, using embedded
atoms potentials via an “educated manual” exhaustive search
(see Fig. 3 in ref 25 and Fig. 1 in ref 27). Consequently,
illustration of the evolution of the parental clusters using our
proposed GA variants, in particular (1,1-,1) and (1,1+,1),
would serve to demonstrate certain aspects pertaining to these
methods.

The initial seeded population (P ) 4) for both of these GA
variants is grown to 42 atoms as shown in the top panel of
Figure 3. In the second and third panels from the top, we show
the parental population for the (1,1-,1) GA immediately after
the fast etch (prior to GA mating steps) and the parental
population after six subsequent GA generation, respectively. In

Figure 1. Comparison between the performance of the original DH-
GA (denoted as GA (0,0,0)) and several variants (see text for the coding
of the GA variants) for a LJ cluster with 55 atoms. In each case we
display the per-particle energy (in reduced units) plotted vs the number
of genetic algorithm generations,g. The number of generations required
for convergence to the global optimal (icosahedral) structure corre-
sponds to the last point given. Note the marked effect on the
convergence rate of seeding in conjunction with add-and-etch processes
(GA (1,1-,0) and GA (1,1+,1)).

Figure 2. Information pertaining to the number of genetic algorithm generations required for convergence to the global optimal structures for LJ
clusters, AN, with 40 e N e 50. For each cluster size the results were obtained from 10 independent runs. The dashed lines connect the mean
number of generations,g, required for convergence, and the upper and lower values of each of the vertical bars correspond to the largest and
smallest number of generations (out of 10 runs) for which convergence was achieved. An arrow at the top of a vertical bar indicates failure to
achieve convergence after 100 generations. The original DH-GA (labeled GA (0,0,0)) and the GA variants are marked at the top of each panel (see
text for the coding scheme of the GA variants).
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the fourth (bottom) panel we show the parental population after
six GA generations for the (1,1+,1) GA. (Since the (1,1+,1)
GA uses a gradual etch interwoven with the GA mating
operations, with the first etch process performed after three
initial GA generations and one atom etched after each subse-
quent generation, it takes six GA generations to etch the clusters
from N ) 42 to N ) 38.) The total energies of the pictured
clusters are included in the figure. We note that with the
(1,1+,1) GA the configurations (after six generations) are of
lower energy than those generated via the (1, 1-,1) GA; while
this example illustrates a commonly observed trend, it should
not be inferred that it occurs at all instances.

Note that although the clusters resulting from the (1,1+,1)
GA are rather compact, none of them shares any strong structural
resemblance to the absolute (global) minimum forN ) 38.
While eventually the GA converges to the optimal (TO)
structure, a study of the structures in the energetic neighborhood
of the TO minimum should help us to clarify some of the
inherent difficulties encountered in many instances in structural
and energetic optimization of atomic and molecular clusters.
Such cases consist of systems for which, in certain regions of

the multidimensional potential energy surface (PES), the total
energy of the cluster only weakly differentiates between isomeric
structures, even when these belong to different structural motifs.
The energy gap between the TO and its neareststructurally
related isomer, which corresponds to a single vacancy on the
surface of the TO cluster with an adsorbed atom at a 4-fold site
(the {100} facet directly opposite the vacancy), is quite large,
i.e., about 2.5 reduced energy units. However, within that
energy gap, we have documented at least 14 other local minima
that display multitwinned fcc crystallites of the sort seen in
icosahedral and decahedral structures, rather than the pure fcc
crystal which typifies the TO. Thus, with great likelihood a
GA, or any other global minimization search, will spend a
substantial amount of time searching in the neighborhood of
these low-lying, structurally dissimilar isomers.

For the GA, this is particularly troublesome, since the GA’s
basic method involves recombining (mating) the fragments of
the preceding generation to make the following one. If there
is no way in which the structures of one set of parents can be
reassembled into an energetically competitive isomer that is
structurally related to the global minimum, then the algorithm

Figure 3. Illustration of the effect of seeding in conjunction with add-and-etch operations on the initial stages of a genetic algorithm search for A38

(the global optimal, truncated octahedral (TO), structure of the cluster is shown on the left). A seeded population (N ) 42) of initial parents (P )
4) is shown in the top panel; going from left to right, the parents were seeded with a 13-atom icosahedron, a 13-atom cuboctahedron, and a 13-atom
decahedron, and one (on the right) was not seeded (i.e., the positions of all atoms were randomly chosen). The configurations at the top panel were
recorded after the conjugate-gradient minimization as described in the text. The configurations shown in the second panel from the top correspond
to (fast) etching of the initial configurations to 38 atoms before starting the GA mating process (i.e., following the GA (1,1-,1) variant). In the third
panel from the top we display the population after six genetic algorithm generations (starting from the parents shown in the second panel). In the
bottom panel, we show the population after six genetic algorithm generations, obtained from the initial (top panel) parents through a (slow) etching
process (i.e., the GA (1,1+,1) variant). The total energies (in reduced units) are given for each of the cluster configurations. (Note that the number
of atoms in the top panel isN ) 42, whileN ) 38 in all the other panels.)
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must depend on the mutation operator to modify some parental
cluster for convergence to the global minimum to occur.

Alternatively, the parental population may be increased to
the point where the number of parents,P, is greater than the
number of intervening local minima. However, there is no a
priori way to know how many parents this would require.
Furthermore, the number of clusters to be minimized at each
generation goes up asP(P - 1), so simply increasingP to
arbitrarily large values is computationally inefficient.

Given that many such cluster problems fall into the class of
computationally hard problems, it becomes important to explore
the added information that can be extracted from GA studies,
pertaining to the nature of the potential energy surface (PES)
of a system, even if it cannot be ensured that the GA has found
the global minimum. In this respect, the genetic algorithm has
a distinct advantage over many alternative optimization methods.
Through the maintenance of parental and child energy lists, the
GA can very efficiently explore the low-lying regions of the
PES. Since each child is guaranteed to share at least some of
the geometrical characteristics of the parental local minima,
relatively little time will be spend exploring the uncompetitive
regions of the PES. For studies of ground-state behavior at
finite temperature, such local minima lists can be valuable.
Furthermore, by examining the structure of the clusters within
the energy lists, new structural classes may be found. It was
through just such an analysis that we discovered what we believe
to be a new closed-shell structure for the 55-atom cluster (see
Appendix).

(ii) Optimal Structures of LJ Clusters; Ne 100. Clusters of
atoms interacting via LJ pair potentials have been intensively
investigated theoretically10,11,13,23,28-39 and experimentally, and
they currently serve as a generic test system for global
optimization algorithms. This system, which is characterized
by a simple (nonconvex) objective function (i.e., the total energy
expressed as a sum of all the pair interactions in the cluster), is
rather challenging for global optimization since it possesses a
very large number of geometrically distinct isomeric structures,
growing with N as29 m(N) ∼ exp(0.3572N + 0.0286N2),
predictingm(N) on the order of 10140 for a cluster withN )
100 atoms. Such inflation in the number of geometrically
distinct isomers, and consequently the number of local minima
on the multidimensional potential energy surface, and the fact
that LJ interactions are often used to describe nonbonded
interactions in protein molecules lead one to suggest that there
may be certain qualitative similarities in the potential energy
landscape of systems characterized by these potentials and that
investigations and methodologies developed for global optimi-
zation of atomic LJ clusters may be of some relevance to protein
folding studies.

Most early theoretical structural studies of LJ clusters were
based on the idea of growth sequences,28 that is, sequential
buildup of structural candidates of sizeN by adding an atom to
a previously optimized structure of sizeN - 1, followed by
relaxation to the nearest local minimum. Hessian matrix
analysis was then used to determine the stability of alternative
cluster structures. Using such methodology, early explorations28

were based on a polytetrahedral growth sequence up toN )
66, with the starting seed being a regular tetrahedron (N ) 4).

Icosahedral packing sequences, constructed by adding suc-
cessive icosahedral shells around a central atom, were introduced
in 1962 by Mackay40 on the basis of geometrical arguments
without the use of a potential function. This idea provided the
basis for later work31,32 where icosahedral structures were
investigated using the LJ interaction, resulting in a list32 of

icosahedrally based structures in the size range 12e N e 147.
Since then it has been found, using various methods, that while
the majority of optimal structures in the above range are indeed
of an icosahedral motif, there are also some that are made of
face-centered-cubic lattices of particular morphologies (i.e., TO
at 38) and some that follow the Marks’ decahedral41 (m-Dh)
pattern (for a detailed discussion of Marks’ decahedra see ref
23). In this context, it is worth remarking that such studies,
including comparative investigations23 of optimal cluster struc-
tures using continuum energetics (Wulff construction) and
atomistic structural optimization, have been made for both LJ
and metal clusters. Since written accounts of these studies are
available,23 we will focus our discussion in the following mainly
on those using the GA as the global optimization method, which
is the topic of this paper.

The energies (per atom) and first energy differences∆1 )
E(N) - E(N - 1) of the structurally optimal LJ clusters AN for
10 e N e 100, found by us via application of the GA (1,1+,1),
are shown in Figure 4. All these energies and the corresponding
structures are identical to those listed in Table 1 of ref 10. From
Figure 4 it is evident that while the total energy of the LJ clusters
varies with the number of atoms in a rather monotonic manner,
it exhibits mild discontinuities at certain sizes; in particular, (i)
atN ) 13 and 55 corresponding to filled icosahedral shells (note
the flat region for 52e N e 55 in Figure 4b, indicating a “basin
of attraction” in the multidimensional configuration space
culminating atN ) 55) and (ii) at or nearN ) 19, 38, 70, 75,
79, 89, and 98.

In a recent study14using the DH-GA (denoted by us above
as GA (0,0,0)) several optimal configurations with lower energy
than published before were found for LJ clusters atN ) 38,
65, 69, 76, 88, and 98. These configurations were also found
by us42 using the GA (1,1+,1); in addition, optimal structures

Figure 4. (a) Per-particle energiesE/N (in reduced units) and (b) first
energy difference,∆1 ) E(N) - E(N - 1), for globally optimized LJ
clusters, AN, plotted vsN for 10 e N e 100.
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of slightly lower energy than those found previously using
genetic algorithm optimization were determined by us forN )
69 andN ) 75-78. Most importantly, the optimal configura-
tions found by us using the GA (1,1+,1) were generated with
a significant savings in computation time; for example, using
our GA (1,1+,1) convergence to the TO optimal structure ofN
) 38 was typically achieved in 25-50 genetic algorithm mating
steps, which is a 3-4-fold faster convergence rate than that
quoted for this cluster size in ref 14.

III. Summary

In this study, we have focused on the methodology of genetic
algorithms for global structural optimiztion of clusters and
illustrated our modifications through an investigation of LJ
clusters, AN, for N e 100. Starting from the Deaven and Ho
algorithm13 (DH-GA), we have explored various variants aimed
at improving the efficiency of the GA search. These new
variants include the following: new mutations (twinning and
add-and-etch), seeding of the initial parental population, and
certain (gradient-based) acceleration procedures. Through
systematic investigations we have assessed and demonstrated
the merits of these GA variants and the higher efficiency which
they bring in reducing significantly the number of GA genera-
tions to achieve convergence to the globally optimized struc-
tures.

Through application of our new GA procedure to LJ clusters,
we determined the globally optimal structures for clusters with
up to 100 atoms, obtaining results in agreement with those
determined via other search and optimization methods (see in
particular Table 1 in ref 10), including certain cases42 that were
not found in previous GA studies (see e.g. ref 14).
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Appendix: The DTCD

During our investigations of A55, we noticed that convergence
to the global minimum structure (Mackay icosahedron) was
often somewhat hindered by a low-lying structurally distinctive
isomer, which we have named the double twin-capped deca-
hedron (DTCD). There are many local minima lying in the
energy interval between the DTCD and the optimal 55-atom
icosahedron which are structurally directly related to the
icosahedron and which therefore provide a direct pathway to
finding the global minimum (unlike the case of the 38-atom
clusters discussed in section II.B(i)). Although overall conver-
gence was therefore not significantly impacted, we investigated
further the properties of the DTCD structure.

Like the icosahedron and the decahedron atN ) 55, the
DTCD can be viewed as being composed of multitwinned fcc
crystallites. In fact, as seen in Figure 5, the icosahedron and
the DTCD have many structural properties in common. We
have found that the easiest way to explain the structural
similarities is through a decomposition of the icosahedron by
way of a series of vertex caps.

Each of the vertex caps which we use in our construction
belongs to one of a set of infinite families, denoted here by P0,
P1, P2, and so on. Within each family, the caps come in sizes
t from t ) 0 (a single atom) tot ) ∞. The caps in family P0
we have called “decahedral caps” (Figure 6 (a)), since stacking
such caps of successive sizes yields either a perfect or an Ino’s

decahedron (see description in ref 23, Figure 4); the generaliza-
tion to Marks’ decahedra is straightforward but not relevant to
this discussion. The second family P1 we have called “twin
caps” (Figure 6 (b)). The name, and the caps’ structures, can
be easily understood in the following context. A Mackay

Figure 5. Seed for both the icosahedron and the DTCD is the 23-
atom decahedron (the bottom dark gray structure). In the next growth
step a complete twin cap (P1 cap of size 2 (see text and Figure 6 for
the cap classification scheme)) is added to the bottom of the decahedron
(the light gray atoms). In the final step for the icosahedron, a decahedral
cap rotated by 36° (or a P2 cap of size 2) is added (bright white atoms)
onto the bottom of the 39-atom structure. For the DTCD another twin
cap (P1 cap of size 2) is added (bright white atoms) to the top of the
39-atom structure, yielding a plane of reflection symmetry through the
center atom.

Figure 6. Projections onto the plane of the four smallest sizes of the
first three families of pentaradial vertex caps. Note the obvious
geometric extension to both larger sizes and higher order families.
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icosahedron can be viewed as a collection of 20 strained fcc
crystals cut along their{111} planes. If we were to cap one of
the vertexes of this icosahedron with a P1 (twin) cap, then each
of the triangular faces of the twin cap would sit on the five
adjacent fcc crystallite faces as though the triangular facet of
the icosahedron was a twinning plane in the fcc crystal.

The caps in the families Pn for n g 2 can be easily generated
from the following recursive description (refer to Figure 6 (c)).
For a cap of sizet in family Pn, the atoms in the lower triangular
faces (if any) lie in fcc stacking order with the atoms of the
lower triangular faces of the cap of sizet in Pn-1. The
rectangular regions (which correspond to a strained{110}
direction in the fcc crystallites) extend between these triangles.
Finally, the area from the central vertex to the long sides of the
rectangles is filled with a P0 (decahedral) cap, rotated by 36°,
of sizen - 1 if t > n - 1 or of sizet if t e n - 1. (If t e n
- 1, then there will not be any lower triangular or rectangular
pieces.) Since the 55-atom clusters (decahedral or icosahedral)
only call for caps of size 2 or smaller, all of these higher order
families (Pn for n g 2) appear indistinguishable from a P0

(decahedral) cap rotated by 36°.
From Figure 5, we see that the icosahedron can be constructed

by applying successive layers of both the P0 caps and the P1
caps. The root 23-atom decahedron can be viewed as a P0

(decahedral) cap of size 0 (a single atom), capped by a P0 cap
of size 1, and then capped by a P0 cap of size 2. The addition
of a P1 (twin) cap of size 2 brings the number of atoms to 39.
Up to this point the constructions of the 55-atom Mackay
icosahedron and the DTCD are identical. To create the
icosahedron, a P2 cap of size 2 (or, equivalently, a decahedral
cap of size 2 rotated by 36°) is placed over the P1 (twin) cap of
the 39-atom hybrid structure. However, by placing a second
twin cap over the opposite side of the 39-atom hybrid structure,
the DTCD is created.

Although its structure is nonconvex, the DTCD has some
compelling geometrical and symmetrical properties (see Figure
7). Because the second P1 (twin) cap restores the mirror plane
through the central atom, the DTCD belongs to the decahedral
symmetry group. However, the distribution of strain within the
crystallite is distinct from that of the Ino’s decahedron at 55

atoms (denoted asm ) n ) 3 in ref 23), as well as that of the
55-atom icosahedron.

While the DTCD is not energetically lower than the Mackay
icosahedron, it is the closest closed-shell structure at 55. Both
the cuboctahedron and the Ino’s decahedron at 55 lie substan-
tially higher in energy. This and the fact that the strain within
the DTCD is distributed in a manner distinct from that in both
the icosahedron and decahedron make the DTCD a promising
candidate for potentials that are less tolerant of strain than the
LJ potential. As previously found,37 there is a transition from
icosahedral structures to decahedral structures to strain-free
structures (like fcc or bcc) as the range of the interatomic
(pairwise) potentials become longer (and hence less tolerant of
high strain). We therefore suggest that, in that sequence of
transitions, there may be places where the DTCD or other related
multitwinned structures become energetically favorable over
their more well-known kin.
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