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Shapes of2He clusters
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Triaxial deformations are considered for determining the binding energies of open-shell, unpolarized
3Hey clusters. The shapes 6He clusters are found to be close to spherical, in contrast to the well-deformed
shapes of alkali-metal clusters. As a result, odd-even alternations and subshell closures between major shells
are absent in the size evolution of the chemical potentials, and the second-energy differences associated with
3Hey, clusters[S0163-182(6)00735-7

It has been established that a dominant factor controlling The general backgroufiéind formulation of this method
the ground-state properties and shapes of disparate finifer the case of neutral and charged simple-metal clusters has
fermion systemgsuch as nuclei and simple-metal clusters,been described in Refs(l and 3. Prior to presenting our
whose nature of bonding and cohesion are of very differentesults for *He clusters, we discuss the relevant parameters

origins with widely differing characteristic energetic and used in our calculationas well as other needed modifica-
spatial scalgsare the shell effects resulting from level de- tions).

generacies in conjunction with the Pauli principle.g., For a deformed neutral cluster, the liquid-drop mod-
for nuclei see Ref. 1; for simple metal clusters see Refs. 2203 (LDM) expresses themoothpart E,p of the total
and 3. energy as the sum of three contributions, namely, a volume,

In contrast to heavier noble-gas clustéPswhere geo- g surface, and a curvature term,
metrical packing of the atoms controls the stability properties
of the ground state, helium atoms remain delocalized within
the volume of the cluster, being confined by an average
mean-field potential wefi.In particular, since®He obeys  Eip=Eyot+ Esurt Ecurv:AvJ’ dT+UJ dS+Acf dS«,
fermion statistics 2Hey, clusters may be expected to exhibit )
certain analogies with atomic nuclei. Indeed, such analogies,
pertaining to the short-range character of both the helium-
helium and nucleon-nucleon interactions, have motivated thevheredr is the volume elementSis the surface differen-
development of theoretical Kohn-Sham-ty(l€S) density- tial element, andk is the local curvature of the droplet which
functional approaches for investigations #fle cluster®’  models the cluster. In the case Hfley clusters, the coeffi-
Such density-functional approaches have yielded a wealth dfients of the three contributions have been determined by
information about several properties dfley clusters. The fitting® the total energy from KS-type calculations for closed-
deformations of open-shefHe, clusters, however, have not shell, magic spherical clustefse., for N=20, 40, 70, 112,
been included as yet in such treatments. 168, 240, and 330, which happen to be the magic numbers
In this paper, we calculate the shell effects’ey open-  corresponding to an isotropic harmonic-oscillator central po-
shell clusters in conjunction with their equilibrium deformed tentia) to the following parametrized expression as a func-
shapegthe influence of deformation needs to be accountedion of the numbeiN of atoms in the cluster,
for, since it is well known that the ground state of both
open-shell nucléiand metallic clustef$”?® does not pre-
serve spherical symmeiryln these calculations, we use a ESP= o, N+ aNZP+ a N3+ aq. ®)
semiempirical shell-correction meth¢8E-SCM, which ac-
counts for ellipsoidal(triaxial) deformations. This method
was introducedl by us earlier in the context of studies of The following expressions relate the coefficieAts, o, and
metal clusters, where it provided a successful interpretatiod\. to the corresponding coefficientsa’§), in Eq. (3):
of experimentally observed systematic size-evolutionary patA,=3a, /(47r3), o=a/(47rd), andA.=a./(47T,), Io
terns of ground-state properties, such as ionization potentialbeing the unit radiugsee Eq.(7) below]. In Ref. 6, it was
electron affinities, monomer and dimer separation energiesound that o,=—2.49 K, @;=8.42 K, «.=4.09 K, and
and fission energetics. ap=—19.8 K. How to calculate the integrals entering into
According to the SE-SCM, the total energy of the clustergq. (2) in the case of ellipsoidal shapes is described in detail
E+ (usually also denoté®® as Eg, to emphasize the fact in Sec. Il A of Ref. 3.
that shell corrections have been inclugleid given as the Since the magic numbers dHey, clusters correspond to
sum of two terms, a liquid-drop-type smooth contributionmajor closures of an isotropic harmonic-oscillator
E.p. and a Strutinsky-tygeshell correctionAESY, namely,  potential®*°a natural choice for the external model potential
st to be used for calculating shell corrections in the SE-SCM is
Er=Ewpn+AEg,. () an anisotropicthree-dimensional oscillator,
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FIG. 1. The Hill-Wheeler parameters specifying the equilibrium
shapes(corresponding to the global minima of the PBESGf
3Hey clusters according to the ellipsoidal model in the range
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6=<N=60. Observe that the dashed circle corresponds to a value of

B=0.10, compared to a much larger value@#* 0.70 for Na clus-
ters(see Fig. 22 in Ref. 3
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FIG. 2. Theoretical results for the chemical potentigh™, of
3Hey clusters. Solid line: SE-SCM results with triaxial deforma-
tions. Shell closures occur &=20, 40, 70, 112, 168, and 240.
Dashed line: Liquid drop results for corresponding spherical shapes.
Energies in units of degrees K. Inset: Monomer separation energies
DIN for singly charged, cationic Ng@ clusters in the range
5<N=39. Solid dots: Theoretical results derived from the SE-
SCM method with triaxial deformations. Open squares: Experimen-
tal measurements from Ref. 15. Energies are in units of eV.

The oscillator frequencies can be related to the principal

semiaxesa’, b’, and ¢’ of the ellipsoid via the volume-

conservation constraint, and the requirement that the surface

of the cluster is an equipotential one, namely,

©)

where the frequency, for the spherical shap@vith radius
Ry) was taken according to Ref. 11 to be

wla’ = a)zb, = (1)30, = woRO ,

2
hwo(N)=——
0 m*rg

11?.46N_1/3 A
0

5

213N - 1/3_
43 N (6)
where Ry=r N3 The effective mass is twice the bare
3He mass! i.e, m*=2m. The unit radiusr, is a slowly
varying functiort? of N, namely,

ro(N)=2.44+12.66N"2°— 0.2 8 A, (7)
The single-particle energies; of the anisotropic har-

monic Hamiltonian(4) are used to obtaitas described in

detail in Sec. Il C of Ref. Bthe semiempirical Strutinsky

shell correctiorAES", namely,

occ

Ei Si_Espa

Str__

AEg =

)

where Eg, is the Strutinsky average of the single-particle
spectrum.

Systematics of the equilibrium triaxial shapes ey
clusters in the rang&l<60 are shown in Fig. 1. These re-

sults are presented using the Hill-Wheeler paramktess
and v, which are related to the semiaxes of the ellipsoid as
follows:

|

2
a'= Roexp{ Vvol(4m)B CO{ Y-

3
2
b’ =R0ex;{ V5/(4m)B cos( v+ 3 } , 9

¢’ =Rpexd v5/(47)B cosy],

whereg is unrestricted, and€ y< 7/3. A valuey# 0 indi-
cates a triaxial shape, whilg=0 corresponds to a prolate
shape, andy= /3 denotes an oblate deformation. The pa-
rameterB provides a measure of the magnitude of the defor-
mation (the origin, i.e., =0, corresponds to a spherical
shape.

Using Hill-Wheeler parameters, the cluster potential-
energy surfacesPES’'S Eq(8,v;N) in deformation space
may be easily mapped and studied. In this manner, one can
analyze the topography of the PES’s and identify the global
minimum E;(N) and the corresponding and y for each
size N. The equilibrium deformations associated with the
global minima are plotted in Fig. 1 for the case #ie.

We observe that although thg parameter takes values
between 0 andr/3 in the case ofHe clusters, thgg param-
eter exhibits values noticeably smaller than corresponding
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FIG. 4. Second-energy differencAsE for singly charged, cat-
ionic Nay™ clusters. Solid line: Theoretical results derived from the
SE-SCM method with triaxial deformations. Open squares: Experi-
mental results extracted from Ref. 15. Energies are in units of eV.

FIG. 3. Theoretical second-energy differencesE, for *Hey
clusters derived from the SE-SCM method with triaxial deforma-
tions. Energies are in units of degrees K.

values for Na clustertsee Fig. 22 in Ref. B As a result, the extracted® from the measurements of Ref. 15. In contrast to
shapes OszeN clusters are much less deformed than thoses'He clusters, the importance of fine structure between magic
of Nay clusters. These differences in equilibrium shapes re- X P 9

sult in marked differences in the various S|ze-evolutionar)/"umberS 'S |mmeg|ately n0t||ceak?lle.h Thzdflne strulcture be-
patterns of3He and alkali-metal cluster@s was the case We€N magic numbers, namely, all the odd-even alternations

with previous investigation®we find that®He clusters with @nd their modulationsi.e., the attenuation in the range
15<N<30 are metastable, namely, they hazg>0 and N=16-19 or the enhancements at the subshell closures

wt<0. ®He clusters witiN<14 are unstable, i.e., they have N=15, 27, 31, and 35apparent in the experimental results
E;+>0 andu*>0). are very well reproduced by the theory.

Figure 2 displays the size evolution of the chemical po- From the above comparisons, we conclude that, even
tential, u* = E+(N+1)—E(N) (solid line), of 3He clusters, though both®He and Na clusters are fermionic microsys-
along with the liquid drop contributiofdashed ling Apart  tems, the size-evolutionary patterns of their ground-state
from the prominent features at major-shell closures, the fingroperties are substantially different. Underlying the differ-
structure in between is practically insignificant. This behav-ent behaviors of these two systems are the relatively high
ior is characteristic of spherical fermionic clustérand cor-  surface and curvature LDM coefficients 8fle compared to
relates with the weak deformation 8He clusters. those of Na cluster§for *He clusters, these coefficients are

In contrast, the monomer separation energies.42 and 4.09 K, respectively; for sodium they *afe541
D;n=E7(N—1)—E{(N)+E(1) associated with the pro- and 0.154 eV, respectively
cess Na"—Nay_;"+Na in the case of singly charged  For Na, the effective mass* is equal to the bare elec-
clusters exhibit a rich fine structure between major-shell clotron massm, and the unit radius, corresponds to the
sures. This behavior, which is a consequence of the SignifWigner-Seitz radius=4.0 a.u. If one defineg as the ratio

cant deformations of N@ clusters, is displayed in the inset petween the surface-energy coefficient and the major-shell
of Fig. 2, where theoretical results are confronted with ex'energy spacing namelyq=a5/(ﬁwON1’3) one finds

perimental measuremerlfsIn addition to features associ- q(3He)=3.47 (assumingro=2.44 &), q(Na)=0.18, and a

ated with major-shell closurgs.e., forN=9 and 2}, odd- . .3 _ .

A relative ratioq(*He)/q(Na)=19.3. Thus the weight of the
g\ée;rgsi'gﬁ:ggitand subshell closuredlat 15, 27, 31, and surface energy compared to the weight of the shell correction
Anotfler uaﬁtit which reflects shell effects in is about 20 times larger ifHe than it is in the case of Na
fermion mic?osysteyms is the second-energy diﬁerencézlusters. This relatively much higher surface energy yields
AE=E7(N+1)+E(N—1)—2E7(N). For the case of Substantially less deformedHe clusters, and is the reason

3He clusters, this quantity is displayed in Fig. 3. Again, asﬁ;tgﬁscig:grem size-evolutionary patterns betwefe and

was the case with the chemical potential, only the features at

major-shell closures are important. This research was supported by the U.S. Department of
The second-energy differences for the case of singlfEnergy (Grant No. FG05-86ER-45234 Studies were per-

charged Na* clusters are displayed in Fig. &olid line  formed at the Georgia Institute of Technology Center for

and compared to experimental resulispen squargs Computational Materials Science.
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