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Triaxial deformations are considered for determining the binding energies of open-shell, unpolarized
3HeN clusters. The shapes of

3He clusters are found to be close to spherical, in contrast to the well-deformed
shapes of alkali-metal clusters. As a result, odd-even alternations and subshell closures between major shells
are absent in the size evolution of the chemical potentials, and the second-energy differences associated with
3HeN clusters.@S0163-1829~96!00735-7#

It has been established that a dominant factor controlling
the ground-state properties and shapes of disparate finite
fermion systems~such as nuclei and simple-metal clusters,
whose nature of bonding and cohesion are of very different
origins with widely differing characteristic energetic and
spatial scales! are the shell effects resulting from level de-
generacies in conjunction with the Pauli principle~e.g.,
for nuclei see Ref. 1; for simple metal clusters see Refs. 2
and 3!.

In contrast to heavier noble-gas clusters,4,5 where geo-
metrical packing of the atoms controls the stability properties
of the ground state, helium atoms remain delocalized within
the volume of the cluster, being confined by an average
mean-field potential well.6 In particular, since3He obeys
fermion statistics,3HeN clusters may be expected to exhibit
certain analogies with atomic nuclei. Indeed, such analogies,
pertaining to the short-range character of both the helium-
helium and nucleon-nucleon interactions, have motivated the
development of theoretical Kohn-Sham-type~KS! density-
functional approaches for investigations of3He clusters.6,7

Such density-functional approaches have yielded a wealth of
information about several properties of3HeN clusters. The
deformations of open-shell3HeN clusters, however, have not
been included as yet in such treatments.

In this paper, we calculate the shell effects in3HeN open-
shell clusters in conjunction with their equilibrium deformed
shapes~the influence of deformation needs to be accounted
for, since it is well known that the ground state of both
open-shell nuclei1 and metallic clusters2 ~b!,3 does not pre-
serve spherical symmetry!. In these calculations, we use a
semiempirical shell-correction method~SE-SCM!, which ac-
counts for ellipsoidal~triaxial! deformations. This method
was introduced3 by us earlier in the context of studies of
metal clusters, where it provided a successful interpretation
of experimentally observed systematic size-evolutionary pat-
terns of ground-state properties, such as ionization potentials,
electron affinities, monomer and dimer separation energies,
and fission energetics.

According to the SE-SCM, the total energy of the cluster
ET ~usually also denoted2 ~b!,3 asEsh to emphasize the fact
that shell corrections have been included!, is given as the
sum of two terms, a liquid-drop-type smooth contribution
ELD , and a Strutinsky-type

8 shell correction,DEsh
Str, namely,

ET5ELD1DEsh
Str. ~1!

The general background9 and formulation of this method
for the case of neutral and charged simple-metal clusters has
been described in Refs. 2~b! and 3. Prior to presenting our
results for 3He clusters, we discuss the relevant parameters
used in our calculations~as well as other needed modifica-
tions!.

For a deformed neutral cluster, the liquid-drop mod-
el2 ~b!,3 ~LDM ! expresses thesmoothpart ELD of the total
energy as the sum of three contributions, namely, a volume,
a surface, and a curvature term,

ELD5Evol1Esurf1Ecurv5AvE dt1sE dS1AcE dS k,

~2!

wheredt is the volume element,dS is the surface differen-
tial element, andk is the local curvature of the droplet which
models the cluster. In the case of3HeN clusters, the coeffi-
cients of the three contributions have been determined by
fitting6 the total energy from KS-type calculations for closed-
shell, magic spherical clusters~i.e., for N520, 40, 70, 112,
168, 240, and 330, which happen to be the magic numbers
corresponding to an isotropic harmonic-oscillator central po-
tential! to the following parametrized expression as a func-
tion of the numberN of atoms in the cluster,

ELD
sph5avN1asN

2/31acN
1/31a0 . ~3!

The following expressions relate the coefficientsAv , s, and
Ac to the corresponding coefficients, (a ’s!, in Eq. ~3!:
Av53av /(4pr 0

3), s5as /(4pr 0
2), andAc5ac /(4pr 0), r 0

being the unit radius@see Eq.~7! below#. In Ref. 6, it was
found that av522.49 K, as58.42 K, ac54.09 K, and
a05219.8 K. How to calculate the integrals entering into
Eq. ~2! in the case of ellipsoidal shapes is described in detail
in Sec. II A of Ref. 3.

Since the magic numbers of3HeN clusters correspond to
major closures of an isotropic harmonic-oscillator
potential,6,10a natural choice for the external model potential
to be used for calculating shell corrections in the SE-SCM is
ananisotropicthree-dimensional oscillator,
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The oscillator frequencies can be related to the principal
semiaxesa8, b8, and c8 of the ellipsoid via the volume-
conservation constraint, and the requirement that the surface
of the cluster is an equipotential one, namely,

v1a85v2b85v3c85v0R0 , ~5!

where the frequencyv0 for the spherical shape~with radius
R0) was taken according to Ref. 11 to be

\v0~N!5
\2

m* r 0
2

5

4
31/3N21/35

14.46

r 0
2 N21/3 K Å 2, ~6!

where R05r 0N
1/3. The effective mass is twice the bare

3He mass,11 i.e, m*52m. The unit radiusr 0 is a slowly
varying function12 of N, namely,

r 0~N!52.44112.66N22/320.23N21/3 Å. ~7!

The single-particle energies« i of the anisotropic har-
monic Hamiltonian~4! are used to obtain~as described in
detail in Sec. II C of Ref. 3! the semiempirical Strutinsky
shell correctionDEsh

Str, namely,

DEsh
Str5(

i

occ

« i2Ẽsp, ~8!

where Ẽsp is the Strutinsky average of the single-particle
spectrum.

Systematics of the equilibrium triaxial shapes of3HeN
clusters in the rangeN<60 are shown in Fig. 1. These re-

sults are presented using the Hill-Wheeler parameters13 b
andg, which are related to the semiaxes of the ellipsoid as
follows:

a85R0expFA5/~4p!b cosS g2
2p

3 D G ,
b85R0expFA5/~4p!b cosS g1

2p

3 D G , ~9!

c85R0exp@A5/~4p!b cosg#,

whereb is unrestricted, and 0<g<p/3. A valuegÞ0 indi-
cates a triaxial shape, whileg50 corresponds to a prolate
shape, andg5p/3 denotes an oblate deformation. The pa-
rameterb provides a measure of the magnitude of the defor-
mation ~the origin, i.e.,b50, corresponds to a spherical
shape!.

Using Hill-Wheeler parameters, the cluster potential-
energy surfaces~PES’s! ET(b,g;N) in deformation space
may be easily mapped and studied. In this manner, one can
analyze the topography of the PES’s and identify the global
minimum ET(N) and the correspondingb and g for each
size N. The equilibrium deformations associated with the
global minima are plotted in Fig. 1 for the case of3He.

We observe that although theg parameter takes values
between 0 andp/3 in the case of3He clusters, theb param-
eter exhibits values noticeably smaller than corresponding

FIG. 2. Theoretical results for the chemical potential2m1, of
3HeN clusters. Solid line: SE-SCM results with triaxial deforma-
tions. Shell closures occur atN520, 40, 70, 112, 168, and 240.
Dashed line: Liquid drop results for corresponding spherical shapes.
Energies in units of degrees K. Inset: Monomer separation energies
D1,N

1 for singly charged, cationic NaN
1 clusters in the range

5<N<39. Solid dots: Theoretical results derived from the SE-
SCM method with triaxial deformations. Open squares: Experimen-
tal measurements from Ref. 15. Energies are in units of eV.

FIG. 1. The Hill-Wheeler parameters specifying the equilibrium
shapes~corresponding to the global minima of the PES’s! of
3HeN clusters according to the ellipsoidal model in the range
6<N<60. Observe that the dashed circle corresponds to a value of
b50.10, compared to a much larger value ofb50.70 for Na clus-
ters ~see Fig. 22 in Ref. 3!.
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values for Na clusters~see Fig. 22 in Ref. 3!. As a result, the
shapes of3HeN clusters are much less deformed than those
of NaN clusters. These differences in equilibrium shapes re-
sult in marked differences in the various size-evolutionary
patterns of 3He and alkali-metal clusters~as was the case
with previous investigations,6 we find that3He clusters with
15<N<30 are metastable, namely, they haveET.0 and
m1,0. 3He clusters withN<14 are unstable, i.e., they have
ET.0 andm1.0!.

Figure 2 displays the size evolution of the chemical po-
tential,m15ET(N11)2ET(N) ~solid line!, of 3He clusters,
along with the liquid drop contribution~dashed line!. Apart
from the prominent features at major-shell closures, the fine
structure in between is practically insignificant. This behav-
ior is characteristic of spherical fermionic clusters14 and cor-
relates with the weak deformation of3He clusters.

In contrast, the monomer separation energies
D1,N

1 5ET
1(N21)2ET

1(N)1ET(1) associated with the pro-
cess NaN

1→NaN21
11Na in the case of singly charged

clusters exhibit a rich fine structure between major-shell clo-
sures. This behavior, which is a consequence of the signifi-
cant deformations of NaN clusters, is displayed in the inset
of Fig. 2, where theoretical results are confronted with ex-
perimental measurements.15 In addition to features associ-
ated with major-shell closures~i.e., for N59 and 21!, odd-
even oscillations and subshell closures atN515, 27, 31, and
35 are prominent.

Another quantity which reflects shell effects in
fermion microsystems is the second-energy difference
D2E5ET(N11)1ET(N21)22ET(N). For the case of
3He clusters, this quantity is displayed in Fig. 3. Again, as
was the case with the chemical potential, only the features at
major-shell closures are important.

The second-energy differences for the case of singly
charged NaN

1 clusters are displayed in Fig. 4~solid line!
and compared to experimental results~open squares!

extracted16 from the measurements of Ref. 15. In contrast to
3He clusters, the importance of fine structure between magic
numbers is immediately noticeable. The fine structure be-
tween magic numbers, namely, all the odd-even alternations
and their modulations~i.e., the attenuation in the range
N516–19 or the enhancements at the subshell closures
N515, 27, 31, and 35! apparent in the experimental results
are very well reproduced by the theory.

From the above comparisons, we conclude that, even
though both 3He and Na clusters are fermionic microsys-
tems, the size-evolutionary patterns of their ground-state
properties are substantially different. Underlying the differ-
ent behaviors of these two systems are the relatively high
surface and curvature LDM coefficients of3He compared to
those of Na clusters~for 3He clusters, these coefficients are
8.42 and 4.09 K, respectively; for sodium they are3 0.541
and 0.154 eV, respectively!.

For Na, the effective massm* is equal to the bare elec-
tron massme and the unit radiusr 0 corresponds to the
Wigner-Seitz radiusr s54.0 a.u. If one definesq as the ratio
between the surface-energy coefficient and the major-shell
energy spacing, namelyq5as /(\v0N

1/3), one finds
q(3He)53.47 ~assumingr 052.44 Å!, q(Na)50.18, and a
relative ratioq(3He)/q(Na)519.3. Thus the weight of the
surface energy compared to the weight of the shell correction
is about 20 times larger in3He than it is in the case of Na
clusters. This relatively much higher surface energy yields
substantially less deformed3He clusters, and is the reason
for the different size-evolutionary patterns between3He and
Na clusters.

This research was supported by the U.S. Department of
Energy ~Grant No. FG05-86ER-45234!. Studies were per-
formed at the Georgia Institute of Technology Center for
Computational Materials Science.

FIG. 3. Theoretical second-energy differencesD2E, for
3HeN

clusters derived from the SE-SCM method with triaxial deforma-
tions. Energies are in units of degrees K.

FIG. 4. Second-energy differencesD2E for singly charged, cat-
ionic NaN

1 clusters. Solid line: Theoretical results derived from the
SE-SCM method with triaxial deformations. Open squares: Experi-
mental results extracted from Ref. 15. Energies are in units of eV.
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