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Dynamics and excitations of a solvated electron in molecular clusters
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A method for investigations of the ground and excited states and the dynamical evolution of cou-
pled quantum-classical systems is presented. A time-dependent self-consistent-field procedure is
used where the time evolution of the wave function is evaluated with use of fast Fourier transforms
and the coupled classical motion is treated via classical molecular dynamics. Different modes of
simulations are demonstrated for electron attachment to NaCl and water clusters.

Quantum-mechanical Monte Carlo and molecular-
dynamics simulations of the equilibrium state of a solvat-
ed electron in noble and polar fluids (water, ammonia,
and molten KCl) have been recently carried out using the
isomorphic classical chain representation of the path-
integral expression for the quantum partition function.!
Quantum path-integral molecular dynamics (QUPID)
simulations were also carried out for alkali halide’? and
water and ammonia clusters,? yielding new information
on the structure, energetics, isomerization, and mode of
electron attachment to these clusters, at thermal equilib-
rium. There have also been several attempts"* to gen-
eralize this method to the real time domain.

In this paper we present an alternative approach for in-
vestigations of dynamical and equilibrium processes in
systems characterized by coupled quantum-mechanical
and classical components. The method is based on a
time-dependent self-consistent-field’> (TDSCF) hybridiza-
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tion of the fast—Fourier-transform (FFT) technique® for
the solution of the time-dependent Schrédinger equation
with classical molecular-dynamics (MD) evolution.”?
The method handles effectively situations of large time-
scale separation between the quantum-mechanical and
classical evolutions which would normally make such
computations prohibitively long. Furthermore, the
method yields excited-state energies, including reso-
nances above the ionization threshold. We discuss the
method and different modes of its use and demonstrate it
via studies of the ground- and excited-states energetics
and dynamics of an electron solvated in molecular clus-
ters.

The quantum time evolution in the FFT method is
based® on a repeated evaluation of the short-time propa-
gation of the wave function (in real or imaginary time) ac-
cording to
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where K.and ¥ are the kinetic and potential-energy operators, and an expansion in the plane-wave, free-particle, basis
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where m is the mass of the particle. The FFT algorithm
is applied to the discretized version of Eq. (2). The cou-
pling between the quantum and classical (denoted collec-
tively by the coordinates and masses {r.} and {m_}) sub-
systems is described within the TDSCF approximation
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the Hamiltonian of the isolated quantum particle, V is
the quantum-classical interaction potential, and U is the
interaction between the classical particles. In this ap-
proximation the classical system moves in the quantum-
averaged interaction potential (V) [integral on the
right-hand side of Eq. (4)] and the classical interaction,
U({r.}).

The method can be used in three different modes: (a)
evaluation of the time-dependent wave functions ¥(¢) for
an arbitrary initial state ¢(0) for a fixed configuration of
the classical subsystem, yielding the energy eigenvalues as
the positions of peaks in the time Fourier transform of
the correlation function
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(E, and ¢, are the corresponding eigenvalues and eigen-
functions). The ground-state energy and wave function
can be also obtained by evolving an arbitrary initial wave
function in imaginary time until convergence. (b) For
systems where a large separation between the electron
ground and excited states restricts the nuclear dynamics
(at moderate temperatures) to the (adiabatic) ground-state
electronic potential-energy surface, the dynamics can be
followed by evolving the classical system in real time
while simultaneously “quenching” the electronic wave
function to the ground state corresponding to the instan-
taneous nuclear configuration by evolving it in imaginary
time with e‘Bﬁ, where f— «, followed by normaliza-
tion. This mode, which we term ground-state dynamics
(GSD), is very effective in systems where the large time-
scale separation between the nuclear and electronic
motions makes the full dynamical simulation for both
subsystems both unnecessary (since the adiabatic approx-
imation holds) and costly. (c) When the separation of
electronic energy levels is not very large relative to the
classical (nuclear) energies, full dynamics within the
TDSCF approximation is obtained.® The results present-
ed below demonstrate the use of these different modes.
Figure 1(b) shows the eigenstate spectrum of the
(NaCl)~ molecular anion obtained as the time Fourier
transform I(E) of {(0)|(¢)). In this calculation the
neutral nuclei are static at their equilibrium position'®
Rina=4.7T4a, and we have used the e-Na™ and e-Cl™
potentials discussed earlier.!” The height of the peaks has
no physical significance and reflects the (arbitrary) choice
of the initial wave function. The peak positions show a
bound-state energy of —0.04 hartree (in good agreement
with QUPID calculations!®) and several resonance states,
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FIG. 1. (a) Contours of the excess electron density corre-
sponding to the ground-state wave function in the plane con-
taining the nuclei whose equilibrium locations are denoted. (b)
Fourier transform, I(E) in arbitrary units, of the correlation
function {¥(0)|¥(¢)) for NaCl~ showing a bound state at
—0.04 a.u. and several resonances. (1 a.u. =2 Rydbergs.)
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FIG. 2. Dynamics of the internuclear distance R, interionic
potential energy U, and energy of the electron EQ, (a), (b), and
(c), respectively, for NaCl~ at 50 K. Time in a.u.
=2.4189x 107" sec.

the lowest of which is at 0.03 hartrees above zero.

More detailed information about the structure of the
ground electronic state is obtained by using the e —#
(B— ) operation. In practice, we find that convergence
is very fast, provided that the ground state is not nearly
degenerate. This yields (after normalization) the ground-
state wave function, shown in Fig. 1(a) from which we
calculate (KQ)=0.046, (V)= —0.0866 hartree, and
((r—(r))?)2=5.4a,, in agreement with the results ob-
tained earlier'® for this system.

We turn next to studies of electron attachment to wa-
ter clusters (H,0), which have been investigated recent-
ly® using the QUPID method employing an electron-
water pseudopotential’ which includes Coulomb, polar-
ization, exclusion, and exchange contributions. It was
found® that the adiabatic electron affinity, which
expresses the balance between the electron binding and
the cluster molecular reorganization energies, favors the
formation of surface states as the stable equilibrium
configurations for cluster sizes n <60, whereas for larger
clusters an internal mode of localization is dominant.
Furthermore, the calculated vertical electron affinities are
in agreement with photoelectron data.!! Using cluster
nuclear configurations picked at random from the equi-
librium ensembles generated via the QUPID calculations
and the e-H,O pseudopotential, we have applied mode (a)
of the method, obtaining the ground- and excited-state en-
ergies.!? In Table I the ground-state energies are summa-
rized, averaged over four QUPID nuclear equilibrium
configurations, along with the equilibrium-averaged
QUPID results.> We first note the close agreement be-
tween the ground-state information obtained by the two
methods. We have found that for clusters (H,0),~ with
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n > 8 the ground-state energy (vertical binding energy) is
only weakly sensitive to the (static) cluster configuration
chosen. Excited-state energies can vary by as much as
10% for n < 32.

A strongly appealing feature of the FFT approach is
the ability to get ground- and excited-state information
from the same calculation. For (H,0),~ clusters with
n =32, 64, and 128 the first excited states are found [us-
ing mode (a)] at +0.035, —0.008 75, and —0.041 87 har-
trees, respectively. We observe that the first electronical-
ly excited state of the water cluster negative ion changes
its nature from a resonance to a bound state for
32 <n < 64. Secondly, we find that the first transition en-

e
s |
2
-0.90 Mm‘ '/\v\ W
LN (a)
-0.96 x102
201 /\’WW x10
= I
2 ‘ﬁ\\d
>
—o.o7-1 [:\4
0.061
; ) /\Wﬂ/\\ /ﬁ
C R
c  X10
PN
001 WY (c)
_00 .
3] xi07
P "/\-J.f \~
g 1 M
-0.08 A (:,‘y
T
S 130 , ]
PPy AR AYAN i Y
ES i (
10 20 30 x10°
t(a.u.)

FIG. 3. Dynamics of (H,0),”. The molecular potential-
energy U interaction energy between the excess electron and the
cluster V, kinetic energy of the electron (KQ), total energy of
the electron, and the magnitude of the total dipole of the water
molecules are shown in (a)-(e), respectively. Time in a.u.
=2.4189x 1077 sec. Note the correlation between the in-
creases in the electron binding energy (EQ) and the cluster di-
pole, as the nuclear configuration fluctuates.
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ergy is red shifted as the cluster size increases
(AE =0.1158, 0.0978, and 0.0875 hartrees for n =32, 64,
and 128, respectively). Note that AE =0.0625 hartrees
(at the peak) for bulk water.!> These results demonstrate
the effect of long-range interactions on the electronic
states (excited states, in particular) of the attached elec-
tron.

Results of a GSD calculation [mode (b)] for (NaCl)~
are shown in Fig. 2. For this system the separation be-
tween the ground and excited electronic states is large
enough (~1 eV) relative to the nuclear energies to disre-
gard electronic excitation. The electron is therefore kept
at its ground state by application of the Ne—FH operation
(N is the normalization operator and B— ) repeatedly
as the classical dynamics of the nuclei is evaluated. As
evident from the figure, the electronic binding energy
varies as the internuclear distance changes upon vibra-
tions of the negative ion. The vibrational frequency of
(NaCl)~ [see Fig. 2(a)] is 7.5X 10'? sec™! compared to
the experimental value'* of 7.94 % 10" sec .

An extreme opposite case (i.e., nonseparable time
scales for the electronic and nuclear motions) is that of
the negative water dimer (H,0),~ where the excess elec-
tron binding energy ( ~2X 10~'* hartree) is smaller than
typical nuclear energies. Figure 3 depicts the results of a
full dynamical calculation of this system [mode (c)] at a
temperature T=20 K. (In calculations involving nuclear
dynamics, constant-temperature molecular dynamics was
used.’) The electron binding in this case is affected most-
ly by the total dipole of the water dimer (due to the
diffuse nature of the electron cloud;’ see Table I), which
changes in time with the relative orientation of the two
water molecules. The correlation between the nuclear
motion and the electronic energies is clearly exhibited.
While the potential energy of the classical system U [Fig.
3(a)], in the high-dipole nuclear configurations is larger
than that in the low-dipole state, transitions into these
configurations are enhanced by the increase in the magni-
tude of the electron binding energy [Fig. 3(d)].!> The
TDSCF method, where the nuclei move on the average
electronic potential-energy surface (PES), is not appli-
cable when nonadiabatic transitions occur and the PES’s
corresponding to the electron states involved differ great-
ly. For the dynamics of (H,0),™ this is not expected to
be the case, since even if more than one electronic state is
involved the corresponding average PES’s should not
depart significantly due to the extreme diffuseness of the
excess electron distribution® (see Table I).

All the calculations reported above were done using
16° point grids (except for n =2 and 8 where the number
of points was doubled). We verified that the results are
insensitive (within 2—5 %) to the grid distance parameter
[typically chosen between 1 and 1.5 a.u., 9 a.u. for the
(H,0),~ calculation]. The method yields results in good
agreement with those of earlier calculations done by oth-
er methods. Furthermore, the method allows an efficient
determination of excited-state spectra and investigations
of dynamical evolution, at finite temperatures, of complex
systems.

Note added in proof. In our recent studies'® of the en-
ergetics and spectroscopy of (H,0), clusters we have
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TABLE I. Ground-state energies calculated via the MD-TDSCF and QUPID methods, for (H,0), ~
clusters. (V), (KQ), and {EQ) are the electron potential, kinetic, and total quantum binding ener-

gies, respectively, in hartrees. (R

2)]/2

is the electron-distribution radius of gyration in a,. Tempera-

tures in the QUPID calculations were n =2 at 20 K; n =8, 12, 18 at 79 K; n =32, 64, 128 at 300 K.
For n=2, 8, 12 the electron attachment is via a surface state. For n =18 both the surface (S) and bulk
(B) states are given [the former possesses a higher adiabatic electron affinity (Ref. 3)]. For n =32, 64,
128 the electron attachment is via bulk states. The MD-FFT results are averaged over four arbitrarily
selected equilibrium configurations taken from the QUPID simulations. For n =2 the molecular
configuration is as in the neutral cluster.

(H,0), ™ (V) (KQ) (EQ) (R2)'?
n=2 —0.00083 0.000 67 —0.00016 56
QUPID —0.0008 0.0007 —0.0001 38
n=38 —0.0216 0.0137 —0.0078 11.7
QUPID —0.0212 0.0137 —0.0074 11
n=12 —0.0666 0.0344 —0.0323 6.9
QUPID —0.0745 0.0382 —0.0363 6
n =18 (§) —0.0839 0.0462 —0.0377 59
QUPID —0.0920 0.0438 —0.0482 5.5
n =18 (B) —0.1486 0.0781 —0.0705 4.2
QUPID —0.1543 0.0823 —0.0720 4.1
n =32 —0.1667 0.0859 —0.0808 4.0
QUPID —0.1778 0.0869 —0.0908 3.8
n =64 —0.1930 0.0865 —0.1065 4.0
QUPID —0.2042 0.0866 —0.1176 3.8
n =128 —0.2146 0.0852 —0.1294 4.0
QUPID —0.2169 0.0865 —0.1304 3.9

used the imaginary-time evolution, described under mode
(b), for determination of ground-state energies, and in
conjunction with a projection operator technique, for
evaluation of successively higher excited states. GSD cal-
culations in which the above method was implemented
yield the following results for the ground, first excited-
state, and transition energies, respectively (in hartrees):
—0.1073, —0.0334, and 0.0745 for n =64; —0.1399,
—0.0612, and 0.0727 for n =128. These results are the

averages over long GSD trajectories and thus are more
accurate than the values given in this paper which were
obtained via mode (a) for a limited number of
configurations.
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