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Structure and Dynamics of a Metallic Glass: Molecular-Dynamics Simulations
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The glass transition, structure, and dynamics of a Cag;Mg;; metallic glass are studied via a new
molecular-dynamics method incorporating the density dependence of the potentials. Results are in
agreement with neutron-scattering data. The accessible configurational energy of the glass is found
to possess several nearly degenerate potential minima.

PACS numbers: 61.20.Ja, 61.40.Df

Metallic glasses, i.e., the amorphous solid phases
formed when segregation and crystallization are avoid-
ed by ultrarapid cooling of the liquid alloys, are the
subject of much recent research effort because of their
unique physical properties, which are of joint scientific
and technological interest.! Metallic glasses are dis-
tinct from many other glass-forming materials because
of the lack of bond-network entanglement commonly
present in nonmetal-based glasses. Their stability and
ease of formation have been correlated with electronic
effects? and with metal-alloy chemistry and eutectic
composition.?

Underlying the structural and dynamic properties of
materials are the various contributions to the total po-
te?tial energy, which for a metal alloy can be written
as

(D=Eﬂ(rs)+%‘El¢lf})(rs;|ri_rj')+. P (la)
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where r; is the position of the ith atom, Z_, and N, are
the valence and number of atoms of species o, r, is
the conduction-electron—density parameter, E,, is the
energy per electron of a uniform electron gas,’ and
¢V and ¢ are density-dependent single-particle and
effective pair-interaction potentials. For simple (i.e.,
s-p bonded) metals, Eq. (1a) may be truncated after
the second-order (pair-potential) terms, but for other
metals, higher-order terms may be necessary. ¢(1) and
¢? may be derived via pseudopotential theory,® and
their specific form depends upon the choice of ionic
pseudopotential.’

Most previous computer studies of metallic glasses
have employed ‘‘generic’’ pair potentials (such as
Lennard-Jones, Morse, etc.).!® While these studies
have contributed to our understanding, they do not
lend themselves to comparison with experimental
results for a specific material and thus do not afford a
direct critical assessment of the physical model and nu-
merical procedure employed. Studies using more real-
istic potentials have been based on random-packing
models (RPM) for the glass structure®® and thus can-
not address questions involving the Kinetics and

dynamics of the glass transition itself or the depen-
dence of metallic glass properties on thermal history,
spatial fluctuations in concentration, or temporal fluc-
tuations in local density and stress'® and in the under-
lying glass structure.

A fundamental question in relating computer-
simulated to laboratory-prepared glasses is the short
time scale of computer simulations in comparison to
the experimental ones.!l''2 It has been demonstrat-
ed!? that, although the glass transition is broadened by
the very rapid cooling rates used in computer simula-
tions, it can be unambiguously observed and the
dependence of quantities such as volume and internal
energy on thermal history is small, and that trends
may be extrapolated to experimental cooling rates.
Thus, short of the performance of simulations employ-
ing laboratory cooling rates, an assessment of the
correspondence between simulation and experimental
results may be provided by simulations which employ
a realistic description of the energetics for specific me-
tallic glass systems for which extensive experimental
data are available.

In order to perform a realistic dynamic simulation of
the formation and properties of a metallic glass, we
have developed a new molecular-dynamics (MD) for-
mulation.* In our method the density dependence of
both the volume energy, E, and the pair potentials,
¢, is explicitly included in the Lagrangean from
which the equations of motion are derived. The MD
calculational cell volume (and optionally the shape)
respond to differences between the internal and exter-
nally applied stress tensors,* !> and the potentials are
dynamically adjusted in accord with the instantaneous
density. Therefore, this method allows isoenthalpic
simulations of processes, such as glass formation,
which inherently involve changes in density, without
one’s having to specify the density at which the pair
potentials are evaluated or applying an external ‘‘elec-
tronic’> pressure to account partially for the volume
energy.

Temperature control, i.e., cooling, heating, or
equilibrating at a specified temperature, is accom-
plished by inclusion in the Lagrange equations of a
“‘dissipation  function”  F(t, {t,})) =4 ()T ({t;}),
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where ¢ is time, T is the instantaneous kinetic tempera-
ture (a function of particle velocities*), and 4 (¢) is a
‘““viscous damping” coefficient, given by A (¢)
=CI[T(t)—Ty(t)1/T(¢t), taken to be a function of
time but not explicitly of particle velocities. To(¢) is
the ‘‘heat reservoir’’ temperature which may be a
specified function of time yielding a well-defined con-
tinuous heating or cooling rate T((z).

A most sensitive probe of the nature of interatomic
forces, and the structure (on various length scales)
and dynamics of a glass-forming alloy, is provided by
the static and dynamic structure factors obtained from
neutron-scattering experiments.!® To assess critically
the structural and dynamical information obtained by
our new molecular-dynamics simulation method, we
have chosen to study the metallic glass Cag;Mgs3, a
simple metal glass for which such neutron-scattering
data are available,!* and which has been investigated
extensively with use of a random-packing model.’ Our
simulation, which is the first such realistic MD simula-
tion of a metallic glass, affords a direct comparison
with experiment and provides a faithful description of
the material, and our results are in agreement with the
experimental data and the principal theoretical results
of Hafner.? In addition we found that the fully dynam-
ically relaxed glass can be characterized by several
nearly degenerate local potential minima. Transitions
between these configurations involve large displace-
ments by a small number of atoms.

The simulated system consisted of 500 particles, 333
Ca and 167 Mg atoms contained in a fixed-shape,
variable-volume, regular rhombic dodecahedral MD
cell.* The system of units which we use is [lengthl]
=a, (Bohr radius), [mass]=amu (atomic mass unit),
and [energy]=Ry, yielding a time unit
(tu) =1.46x 10715 sec.

The simulation was performed in four stages (all at
zero external pressure): (1) an equilibrium run (with
no temperature control) for the hot liquid alloy at
T =0.01 Ry (1580 K, approximately twice the experi-
mental eutectic temperature), for 3x10% tu; (2) a
“cooling” run of 3x10* tu, Tp=3x10"7 Ry/tu
(3.2x10'3 K/sec), during which the glass transition
occurred; (3) an ‘‘equilibrating”’ run of 14x10* tu in
duration under temperature control at 7,=0.00191
Ry (300 K) during which structural relaxation of the
glass occurred {the mean square displacement of atoms
during the run, R*(¢)=N"13[r;(¢)—r;(0)]?, in-
creased in distinct steps while the internal energy de-
creased}; and (4) an equilibrium run for the glass at
T=0.00191 Ry (without temperature control) of
9x10* tu. The MD integration time-step size for
stages (1) and (2) was Ar=1 tu, while in the glass,
At=2.5tu.

The principal effects of the increase in density in go-
ing from the liquid (r;=3.350a5"%) to the glass
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(ry=3.136a4 ) are a decrease in depth of the poten-
tial minima and a shift to shorter interatomic distance
of the Friedel oscillations in the long-range part.* In
addition the relative depths of the potentials are al-
tered. The ‘‘electronic pressure,” r,[8Eq (r,)/0r,1/
Q, increases from 2.0x10~% Ry/ag in the liquid to
2.3x10~% Ry/a{ in the glass.

The evolution of the system during cooling (stage 2)
is shown in Fig. 1. In Fig. 1(a) the mean square dis-
placement, R2(¢), and the kinetic temperature, T(¢),
as functions of time are shown, while Fig. 1(b) shows
the (per particle) total internal energy and the poten-
tial energies for the two species as functions of tem-
perature [Fig. 1(b) was obtained by performing
Gaussian-weighted local averages in time (Gaussian
width of 1500 tu)]. From the break in the slopes of
energy versus 7, we determine the glass-transition
temperature to be 7, =0.0036 Ry (570 K). A similar
break in the slope of the volume Q vs T occurs at the
same temperature. This value of Ty is about 0.7 times
the experimental eutectic temperature, which is a typi-
cal value for measured glass-transition temperatures.
Note that R2(¢) is constant for ¢ > 2.3x10?% tu, i.e.,
after the glass transition, and while the mean potential
energies versus temperature for the two species have
markedly different slopes above T, they have essen-
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FIG. 1. System evolution during cooling: (a) temperature
T and mean square displacement R? vs time; (b) mean total
energy and mean potential energies, PE, vs temperature.
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tially the same slope below T,, which is to be expected
if the glass transition corresponds to a ‘‘freezing’’ of
structural relaxation modes. Estimates of the specific
heats of the supercooled alloy and glass can be ob-
tained from the slopes of the total internal energy
versus 7T in the two regions, yielding Cp/kg=4 and
3.3, respectively. These values are in approximate
agreement with Cp/kg=4.15 for the initial equilibrium
liquid and 3.16 for the final equilibrium glass obtained
from fluctuations in the kinetic temperature.* !5

The structure and dynamics of the equilibrium glass
are investigated via the radial pair-distribution func-
tions, g (r), and static structure factors, S (g), as well
as the density of states, DOS(w), and dynamic struc-
ture factors, S(g,w). For the glass, we observed
correspondence between the locations of minima in
the partial g (#)’s (not shown) and maxima in the cor-
responding pair potentials as discussed by Haftner.?
Using the known neutron-scattering lengths
bc,=4.88x10713 cm and by=52%x10"13 cm, we
have calculated the neutron-weighted static and
dynamic structure factors which may be compared
directly with the experimental results'* (we omit the
incoherent-scattering contribution which is estimated!*
to be <1%). The positions of the first and second
peaks of the static structure factor [Fig. 2(b)l,
Q:=1.12a45"! and Q,=1.92a4!, are in good agree-
ment with the reported experimental peak positions!*
(Q;=1.13a5"! and Q,=1.94a;5°!). The density of
the simulated alloy, N/Q =0.0038744 3, is also in
good agreement with the experimental value®’ of
0.003 9844 3. (This experimental value is presumably
for a Ca;oMg;, glass at 6 K. Indeed, a steepest-descent
quench of our glass to 0 K results in a density of
0.00397a4°%.) Figure 2(b) can also be compared to
the relaxed RPM structure factor shown in Fig. 4 of
Ref. 9. Note that gyy(r) (defined by Bhatia and
Thornton!¢) [Fig. 2(a)] exhibits a split second peak
typical of a glass, and in addition there are indications

31 (a)
-~
vz
z 5
o
o Trrr l T [ 17T VINI’TX ™ | 17T [v']"T‘I r'l"l’"T_Y—r_"_
4 10 r (ao) 30
CaN (b)
o |
0 T T T T l T T T [ T T T T | T T T T I T T T T
0 alag’ 5

FIG. 2. Number density pair-correlation function gy (r)
and neutron-weighted static structure factor S(g) for the
glass.

of some amount of local order extending to at least the
third-neighbor shell.

The density of states (DOS) and dynamic structure
factor, S (g, w), for the equilibrium glass are shown in
Fig. 3. The structure factor is shown as a function of
frequency, w, for wave vectors g¢,=nq;, where
g,=0.221a4 ! is the magnitude of the (220) reciprocal
lattice vector of the (fcc) lattice generated by the
periodically replicated MD cell. The range of wave
vectors g for which the structure factor has been re-
ported by Suck er all* corresponds roughly to g;
through ¢, in Fig. 3; therefore, the calculated results
can be compared with the experimental ones given in
Fig. 3 of Ref. 14, showing general agreement of the
line shapes as well as the frequency range (50
meV=0.111 tu™!). Note in particular the increase in
amplitude at low frequency for ¢ = Q,, 2Q,, which has
been attributed to transverse excitations, suggesting
the existence of quasi zone boundaries in the glass.!”
From the positions of the peaks in S(gq,w) for the
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FIG. 3. Neutron-weighted dynamic structure factor

S(q,w) in units of tu [each subdivision equals (2/7)
tu=141x10"3 meV~!], vs frequency w (in tu~!), for
wave vectors g as specified (note the scale change for
q < 0.664ag !; the scale for each g starts at zero); and densi-
ty of states DOS(w) (in tu) (solid line, total, dashed line,
Ca; dash-dotted line, Mg) vs w for the glass.
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lower ¢’s in Fig. 3, we may read points on the disper-
sion curve for longitudinal phonons which are in
agreement with the experimental results and with the
theoretical dispersion curves obtained via the relaxed
RPM.?

The density of states, obtained from the velocity au-
tocorrelation function, is also in agreement with the
experimental DOS (Fig. 11 of Ref. 9). The small os-
cillations at low frequencies are an artifact due to the
periodic boundary conditions, complicating the discus-
sion of the power-law behavior of the DOS at low fre-
quencies. The peak in the DOS occurs at about 0.032
tu~!, compared to 0.033 tu™! found in the experiment
(1 meV=0.002219 tu~'). The full width at half max-
imum of our DOS is 0.044 tu~—!, compared to the ex-
perimental width of 0.042 tu~!, while the width of
Hafner’s model DOS is 0.051 tu~!. The difference
between our DOS and the RPM result’ occurs on the
high-frequency side of the maximum where our DOS
agrees better with the experimental data.

Having established via direct comparison with exper-
imental data that our MD simulation in which the full
energetics of the metallic system is self-consistently in-
corporated provides a faithful description of the struc-
ture and dynamics of the metallic glass system, we
conclude with a brief discussion of observations relat-
ing to glass dynamics. Examination of the mean
square displacement, R2(t), at the <‘‘equilibrated
glass” stage (4) revealed time ranges when R2(¢) in-
creased from about 0.4a¢ to about 0.7a¢, then re-
turned to the original lower value. These changes are
accompanied by variations in system properties such as
temperature, mean species potential energies, and
average shear stress. By performing ‘‘steepest-descent

quenches’’!® for these different time spans, we deter-

mined that the system possesses at least four distinct,
nearly degenerate, local potential minima ranging from
—1.551966 to —1.551942 Ry per atom. Comparison
of the atomic positions associated with these potential
minima reveals that they result from structural rear-
rangements in which, typically, one atom displaces by
3ag to 4ay (about half the average nearest-neighbor
distance), the surrounding near-neighbor atoms move
less, and the region of rearrangement extends over
about three or four nearest-neighbor shells of the cen-
tral atom, or about 15% to 20% of the total volume of
the MD calculational cell. We emphasize that the
transitions between these accessible local potential
minima do not lead to an annealing or relaxation of
the glass (over extended times), and that the underly-
ing topology of the configurational energy is similar to
that invoked in the ‘“‘tunneling level’’ models of low-
temperature glass behavior!? (though the nature of our
transitions is different). Further studies of the influ-
ence of these configurational transitions on glass prop-

2038

erties and the dynamics near the glass transition are in
progress.
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