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fects of irradiation geometry and density-temper- -

ature profiles so that the relation between these
velocities is well understood. Because peak x-
ray emission emanates from the most dense re-
gion of the shell, the final values are not greatly
different. These calculations also show that the
shell is exploded by superthermal electrons to a
fuel-pusher interface velocity approaching 107
cm/sec, and is then driven by thermal-electron
pressure at approximately constant acceleration
for the duration of the implosion. Applying this
parabolic-trajectory model to the dashed lines of
Figs. 1 and 2, one determines acceleration val-
ues in the range of (3.4-4.2) X10'” cm/sec? The
agreement of the measured velocity and acceler-
ation values with the more detailed histories of
the respective computations tends to confirm our
physical models for energy transport in these ex-
ploding pusher target experiments.

In conclusion, we have presented detailed
measurements of the spatially and temporally
resolved dynamics of laser-imploded fusion tar-
gets, These results provide the first direct
measures of target implosion velocity and accel-
eration, and are consistent with theoretical mod-
eling of the exploding-pusher process.
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A stochastic model of the diffusion of atomic clusters on crystalline surfaces, capable
of treating complex systems, has been developed. Novel methods allow the analysis of
diffusion data in field-free and ~biased experiments. Expressions for the complete deter-
mination of parameters characterizing the individual cluster configurations from meas-

urable quantities are derived.

The observation of the motion of atomic species
on surfaces with resolution power of atomic di-
mensions became available only recently,™®
mainly through the use of field-ion-microscopy”
(FIM) techniques. An important observation is .
that adatoms can form small clusters which dif-
fuse (as exhibited on several fcc and bee metal
surfaces?™%%712) by undergoing transitions between
the possible cluster configurations. The nature

of the motion depends on the surface morphology
|e.g., one-dimensional (1D) “channeled” diffusion
of tungsten clusters on the (211) plane of W (Refs.
8-10) versus 2D diffusion of platinum clusters on
the (110) plane of W (Refs. 5, 11, and 12)]. Also,
under the influence of high electric fields, direc-
tional migration of clusters can be effected.!?
Of basic importance in the construction and

evaluation of theories of processes like thin-film
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FIG. 1., 1D dimer migration. (a) Three possible spa-
tial configurations of a dimer (filled circles connected
by heavy line) moving along the x direction (the allowed
equivalent mirror image configurations are not includ-
ed in the figure). If only states 1 and 2 are allowed, a
two-state dimer; if all states are allowed, a three-
state dimer. (b) The random-walk lattice describing
the motion of the dimer centroid in (a). The unit cell
is denoted by dashed lines and the states by circles,
numbered respectively. Lettered arrows indicate tran-
sitions to and from states. Note that transition rates
connecting states can be different for transitions to the
left or right (i.e., a®a). Also the centroid location is
the same for states 1 and 3; however, they are distin-
guished by different transition rates.

and crystal growth, sintering,!® and surface
reactions’® is the ability fo deduce elementary
physical quantities which control the motion of
atoms and aggregates on surfaces (such as acti-
vation energies, frequency factors, and inter-
atomic potentials) and to understand the effects
due to structure and morphology on the displace-
ment mechanisms and rates.!” We present here
the principles of a theory, employing stochastic
techniques, which allows the determination of
physical parameters which characterize the mo-
tion of arbitrarily complex clusters for variable
kinetics and dimensionality, Previous analysis'®
could not treat the common case where the clus-
ter has the same center of mass for different
configurations, and was also limited to one di-
mension and did not include a bias field. Except
for the case of a dimer with two internal states,®
FIM data were analyzed by calculating the ill-de-
fined quantity of “an average transition rate” for
the cluster rather than the individual rates be-
tween the cluster configurations.?” 2 We show
that to calculate the individual rates, full use
must be made of the FIM data, which consist of
measurements of diffusion distances and prob-
abilities of occurrence of different configurations
as a function of temperature, Furthermore, we
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2-D DIMER

FIG. 2. 2D dimer migration. (a) Spatial configura-
tions; (b) random-walk lattice.

show that the application of a bias is necessary
for the complete determination of the individual
rates for certain clusters (e.g., a dimer with
three states in one dimension; see below).

Model.—A cluster of atoms on a surface can
exist in several spatial configurations between
which transitions occur. The location of the cen-
troid of the cluster® can be mapped onto a peri-
odic lattice on which it performs a random walk,
The unit cell of the random-walk lattice will con-
tain, generally, several “sifes,” or internal
states. To illustrate the above, consider the
following examples: (1) the motion in one dimen-
sion of a dimer which can exist in three distinct
states (configurations) (see Fig. 1), and (2) the
motion of a dimer in two dimensions (see Fig. 2).

In Figs. 1(a) and 2(a) the allowed dimer config-
urations (in coordinate space) are shown. The
centroid location of the dimers undergoes a ran-
dom walk on the lattices shown in Figs. 1(b) and
2(b) (unit cells are denoted by dashed lines and
their internal states by numbered circles). We
note that the centroid can have the same spatial
location for distinctly different spatial configura-
tions (for example, states 1 and 3 in Fig. 1). The
transition rates between the allowed states are
given in Figs. 1(b) and 2(b) by the lettered ar-
rows. In addition, allowing for a# @, b#8, etc.,
a directional preference (bias) to the motion is
introduced.

We calculate the motion of the cluster using the
formalism of continuous-time random walk?
(CTRW) with internal states®' (as we discuss
elsewhere,?! this description is equivalent to a
generalized master equation with internal states).
Let us introduce the waiting-time distribution
matrix Q(l’, t) whose elements govern the individ-
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ual transitions, The element y; j(f, t)dt is the probability density that a transition between the internal
states j —¢, in unit cells separated by 1, occurs in the time interval (¢, ¢+dt). Since all the observ-
ables can be represented in terms of y, we explicitly exhibit it, for the case shown in Fig, 1:

0 e U bdy ., +B0,,)
Q(l’, )=|e *(ad,,+ady ) 0
0 e Ucdy,+v0.,)

where A=a+a, etc., and U=B +C, In the follow-
ing we will employ the following form for activat-
ed-process transition rates:

(; =v,exp{-[E £ g(V)]/kT}, (2)
etc., where v, is the frequency factor, T is the
absolute temperature, and E, and V are the acti-
vation energy and bias voltage, respectively.??

By use of discrete Fourier (with respect to the
lattice) and Laplace (with respect to the continu-
ous time variable) transforms, the convolution
theorems, and Green’s-function techniques, the
semi-Markov chain relation for the random walk
can be solved. This yields expressions®"? for the
moments of the probability distribution, P ,,(f, B,
for the centroid to reach the jth internal state in
the Tth unit cell at a time ¢ if initially it was in
the zeroth (origin) cell with probability p; of be-
ing in state ¢. Calculating the first moment

<r(t)> = ETTP“(T’ t)[),' ’
iy

and its variance, we find in the long-time limit
for the 1D three-state dimer (case 1)

t"X1,(8)) =2~ [ A(cd -yd) + D(ab -ap)],
t™0,2(H) =Z"YA(cd +y0) +D(ab + aB))
+6Z°K1,($))%t" (A +B+C +D),

where Z =AC + BD +AD. In the absence of bias
and excluding the most extended state (state 3,
Fig. 1) of the dimer (i.e., ¢ =0, d—), {I,(1)
vanishes and 0,%(f) reduces to ¢ ‘ab(a +b)"!, pre-
viously obtained by Reed and Ehrlich® (the fac~
tor-of-4 difference between the result in Ref, 18
and the present one is due to unit-cell definitions).

The relationship between the variances of the
three-state and two-state 1D dimers (0,” and 0,2
respectively), in the absence of a bias field and
when the transition rates characterizing the lat-
ter (a, b) remain the same upon the introduction
of the third state (Fig. 1), is shown in Fig. 3.

(3)

4

’

0
e Pdd,,+(8)6,,-,11, (1)

0

J

Since the forces holding the atomic cluster to-
gether involve long-ranged dispersion forces, it
is expected that extended configurations, such as
the one shown in Fig, 1(a) (state 3), can occur,
As shown above, their inclusion in the model can
affect significantly the predictions for the observ-
ables and the values for E and v derived from
them. Consequently, FIM data should be exam-
ined for such occurrences, It should be empha-
sized that these and more general possibilities
(for example, motion in two dimensions, dis-
cussed below), cannot be treated by previous
methods, !® since the latter cannot include states
for which the centroid of the cluster coincide.
Methods of analysis.—One of the objectives in
developing the model outlined above is to make
possible the extraction of parameters [E and v,
Eq. (2)] which characterize the states of the sys-
tem under study. As the simplest example, con-
sider the biased 1D motion of a two-state dimer
(shown in Fig, 1 with state 3 forbidden), The ra-
tio, R,,(T)=ab"?, of the probabilities of occupa-
tion of states 1 and 2 can be determined (detailed
balance) from the random-walk formalism and
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FIG. 3. Behavior of the variance, 0,%(¢), of the field-
free three-state dimer (Fig. 1) as a function of transi-
tion rate ¢ (2— 3), when all the parameters character-
izing the two-state dimer remain unchanged. Note dif-
ferences in behavior for different choices of the return
transition rate d (3— 2). When the transition rate d
from the extended state 3 to state 2 equals the variance
of the two-state dimer, 0;2(t) equals 0,%(¢) regardless
of the values of the other transition rates.
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empirically. Utilizing this relation yields
a=t"XL,O)(V, D[1+R,(T)], (5)
for the transition rate a [Eq. (2)], where
f(V, T)=2"" cschlg(V)/kT] exp|-g(V)/kT]. (6)

A semilog plot of the right-hand side of Eq. (5),
with experimental values for {1,(£)) and R,,(7),
as a function of (#T) ! yields a straight line of
slope E, and intercept v,. Replacing R,(T) by
its inverse yields the equation for b, Similarly,
expressions for a and b can be derived in terms
of R,,(T), 0,%(¢), and functions of V and T. How-
ever, we suggest the use of Eq. (5) since here
the statistical error involved in the determination
of the mean location is smaller than in the deter-
mination of the variance.?

In bias-free experiments the mean vanishes and
the data consist of the variance and the relative
population of states as functions of the tempera-
ture. In this case a is given by?*®

a=t"'0,2(O[1+R,(T)], (7)

and similarly for b with R, replaced by its in-
verse. A plot of the logarithm of the rhs of (7)
versus (kT)"! allows the determination of E, and
v, (and similarly E, and v,) as the slope and in-
tercept, respectively, of the resulting straight
lines, Clearly, by adopting the standard prac-
tice®™!3 of plotting Ino® against (¢7) !, a deter-
mination of £, and v, (and E,, v,) cannot be
made since the cluster diffusion cannot be de-
scribed by a single Arvhenius velationship [see
Eqgs. (3) and (4)]. Note that although the latter
semilog plot would appear to be almost a straight
line in the typical temperature range of the ex-
periments, its slope and intercept are not simply
velated to the quantities characterizing the indi-
vidual states.

The discussion of the 1D motion of a three-
state dimer involves four transition rates | Fig.
1(b)]. Thus we need four independent relation-
ships. Detailed balance between the three dimer
states provides us with two relationships and the
variance gives a third one. To determine the
transition rates fully in this case, an external
field must be applied and the mean (,(¢)) be
measured. As shown above, for a two-state dim-
er this is not necessary, although preferable.

For the 2D motion of a two-state dimer (Fig. 2)
several alternatives for the extraction of the char-
acteristic transition rates can be exercised dictat-
ed by the type of experiment performed (depend-
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ing mainly on whether a bias field is applied or
not). For example, in the case of a bias-free
measurement, our analysis yields the transition
rates in terms of the observed (as a function of
temperature) variances (0,? 0,?) and the state oc-
cupation ratios (R,, and R,;; see Fig. 2):

b=02(1+R,+Ry "t

a=bR,,”", ¢=b0}/02, d=cR,,.

(8a)
(8D)

Semilogarithmic plots of the above four relations,
using measured quantities from FIM micrographs,
versus (k7)! allow the determination of the indi-
vidual frequency factors and activation energies.

The above theoretical study demonstrates that
by employing the fill information content of FIM
data (including bias-field experiments which are
necessary for some systems, as discussed above)
in proper methods of analysis, a complete deter-
mination of transition rates of diffusing clusters
on surfaces can be made. Moreover, this analy-
sis allows the characterization of elementary
microscopic steps of the motion of clusters on
surfaces which would enable detailed studies of
migration mechanisms, interaction potentials,
and the substrate-geometry dependency of clust-
er motion on metal surfaces. Finally the formal-
ism presented here could be reduced to a compu-
tational algorithm which would allow us to ana-
lyze the dynamics of complex clusters on sur-
faces. Effects due to defects and boundary condi-
tions other than the periodic ones used above can
be easily incorporated.?* The theory provides a
framework for the formulation and analysis of a
stochastic theory of film growth and reaction ki-
netics on surfaces.

*Xerox Research Fellow.
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From a comparison of results obtained from the an-
alysis of biased and bias-free data, the effect of exter-
nal fields on the transition rates could be investigated.
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The Hubbard model is studied by employing a random-potential approximation, which
incorporates the effects of magnetic ordering and dynamical processes. Comparison of
our results to existing data on one-dimensional systems shows that the present approxi-
mation is very accurate over the whole range of values of the physical parameters.

Hubbard,! in his treatment of the Hamiltonian
K= E ioeoﬁio + Z;ijcvijaioT&jo
+U25 7 By, (1)

replaced the last term by a one-body random po-
tential

Uhip iy ™ €46745 (2)

where €;; was taken as U or 0 with equal probabil-
ity. In Eq. (1), the sites {7} form a lattice, o
takes two values [down (¥) or up ()], €, is a con-
stant, V;; is usually taken (for simplicity) as a
constant ¥V when ¢ and j are nearest neighbors

and zero otherwise, @, and &, are creation and
annihilation operators of a local state at the site
i with spin o, and 7,5 =0 @ 0. Subsequently,? €,
was taken as zU(1 +[) or zU(1 - &), where I was
obtained self-consistently and was interpreted as
the size of a local moment, the z component of
which can take on two values, + i. This approach

to the problem, though an improvement over the
original Hubbard treatment, misses two impor-
tant features of the model: (1) The influence of
the magnetic ordering (MO) on the electronic
properties is omitted except for the limiting cases
of perfect order or no order at all; thus, this ef-
fect is treated satisfactorily only at the extreme
temperatures, T =0 or T =%, (ii) The dynamic
processes (DP), which allow 4,, to change with
time from + [ to — X and vice versa, are neglect-
ed; the local moments are “frozen” in a particu-
lar configuration.

In the formalism summarized below, MO (equiv-
alent to an Ising coupling) is incorporated in a
self-consistent way, and its effect on the elec-
tronic structure is included. Furthermore, it is
argued that DP amount to replacing the Ising by
a Heisenberg coupling. With the present incor-
poration of MO and DP, one can provide strong
evidence that a satisfactory understanding of the
behavior of the Hubbard model has been achieved.
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