Local and nonlocal effects in the theory of physisorption

Uzi Landman

Xerox Corporation, Webster Research Center, Webster, New York 14580

George G. Kleinman

Research Laboratories, General Motors Corporation, Warren, Michigan 48090
(Received 5 September 1974)

A review of our microscpic theory of physisorption is presented. The effects of
spatial dispersion in the metal for two boundary conditions at the metal surface
are discussed and compared with results of the local-dielectric-response theory. It
is shown that in the presence of spatial dispersion the Van der Waals interaction
decreases more rapidly than the d ~° law of the local theory. In both cases, an
adequate determination of the attractive energy requires an accurate description of
the dynamic polarizability of the incident atom. Repulsive contributions to the
interaction energy are included via the density-functional formalism, resulting in a
complete description of the interaction energy curve. The equilibrium distances of

the atom are a monotonically increasing function of the metallic-electron density
and are not affected significantly by nonlocality in the metal.

. INTRODUCTION

Understanding of the fundamental interactions between
atoms and molecules and solid surfaces is a basic
essential for a consistent theoretical analysis of adsorp-
tion studies and surface reaction mechanisms.!2 Cus-
tomarily in the literature!® a distinction is drawn be-
tween the physical and chemical states of adsorption, on
the basis of binding energy magnitudes (of the order of
10—% eV and several eV, respectively). Physical adsorp-
tion is the state of weak coupling between the substrate
and the incident particle. The physisorption interaction
is considered to result from the presence of Van der
Waals forces with no transfer of charge or sharing of
electrons between the components of the system. It is
believed to serve as a precursor to the chemisorption
state which enhances the transition to this state.? More-
over, the reduction of motional degrees of freedom of
the physisorbed molecule may be of importance in the
evaluation of adsorption and reaction mechanisms. In
addition, a complete description of the variation in the
interaction energy as a function of the distance be-
tween the incident particle and the surface is of major
significance in the interpretation gas surface scattering
experiments.*

Considerable effort has been applied to the problem
of understanding the nature of the physisorption in-
teraction, and a number of semiempirical, semiclassical,
and quantum-mechanical formulations have been sug-
gested in the literature, and have been reviewed by
several authors.!=3.5 However, detailed studies on a
microscopic level of the interaction mechanism, sys-
tematics of the interaction as a function of the physical
parameters describing the interacting atom or molecule,
and the surface and actual computations of the inter-
action energies have not been usually performed. In a
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series of recent publications®® we have presented a
microscopic theory of the physisorption interaction
where both the attraction and repulsion between the
atoms and the surface are included. Furthermore, the
effect of nonlocality (dispersion) and varying surface
electronic boundary conditions have been systematically
studied.”® In this paper we present a brief review of
our theory and give additional results for He adsorption
on metals. In particular, the effects of nonlocality in the
metal and dynamical frequency response of the atomic
species are demonstrated.

Il. VAN DER WAALS INTERACTION

The total Hamiltonian H for the combined metal—
atom system is represented by®

H=HM+HA+Hem+HSR+HVW1 [1]

where H ., is the Hamiltonian of the vacuum-quantized
electromagnetic field, Hy and H 4 are the Hamiltonians
of the isolated atom and metallic systems, Hggr de-
scribes the short-range interactions between the atom
and metal, and Hvw corresponds to the interaction
between all the particles of the system and the quantized
long-wavelength electromagnetic field (i.e., the Van der
Waals interaction). The ground-state energy of the
system is derived from the Schrédinger equation®

H|Gd)=E|G,d), (2]

where |G,d) is the ground-state for separation d between
the metal and atom. Since at large separations the con-
tributions from Hsy are negligible, it can be shown that
at T=0° K the interaction energy can be written as

va=<G,d|HVWIG,d>’ [3]
where Evw is the Van der Waals energy. It should be
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noted that the exchange correlation and electrostatic
interaction energies calculated at short distances ap-
proach the Van der Waals interaction at large separa-
tion. Thus, the Van der Waals is the whole energy of
attraction containing the exchange correlation and elec-
trostatic contributions.® Hvw describes the coupling
of the vector potential A with the particle current
density?

Hyw=— / A @) - (D). [4]

Lifshitz et al. have considered the Van der Waals inter-
action as originating from the random fluctuations of
the electromagnetic field in the solid which extends
beyond its boundaries and induce spontaneous transi-
tions in the atoms.®:!! In the above derivation a local
description of the solid is adopted, restricting the
validity of the theory to relatively large distances d.
Other methods of calculating Van der Waals forces
have been proposed.'? According to Van Kampen et a/.,
the interaction originates from the change in zero-point
energies of surface collective modes introduced upon
bringing the components of the interacting system from
infinity to the distance d. Furthermore, it has been
shown that for a local description of the solid, this
approach is equivalent to Lifshitz’s result. This formula-
tion can be conveniently generalized to include the
effects of dispersion and varying electronic boundary
conditions at the surface, as we have previously shown.”8
Consequently, the Van der Waals contribution, Evw,
to the interaction energy between an atom in vacuum
and a metal surface separated by a distance d is given

(in atomic units) by?
£\ [ pHp
(—) [ Zweren, 1)
1 N

c 0

. kBT ©
Bvw(@)= im, %

T n=

t£.=2mnksT, Ck”EEn(j)z—l)*, [6]

where T is the absolute temperature, ks is the Boltz-
mann constant, ¢ is the velocity of light in vacuum, N,
is the gas density, and k), is the component of the wave
vector in the surface plane. The summation is carried
over integral values of n, with the n=0 term given
half-weight.

The dispersion relation for the normal surface modes
of the electromagnetic field (i.e., surface plasmons) are
represented by Fi(TM) and Fy(TE) evaluated on the
imaginary frequency axis w=1¢:

) . 2ptd
Fitied)=Diieg) eo ) -1, (=12, [7a]
c
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The dispersion relation of the modes of the isolated
metal are specified by Cim'(k),w)=0; the surface
plasmons correspond to Cim. In the presence of metallic
spatial dispersion, we use a model which corresponds to
the bulk metallic hydrodynamic dielectric constant™

2
@p

w(w+i/7)— (ak)?

em(Kw)=1— [8]

where w,= (47n,)? (n, is the electron density for free
electron metals, 7 is a damping lifetime, and o? is set
equal to 0.6 Vg?, where Vg is the Fermi velocity, in
order to recover the bulk plasmon dispersion relation
from the hydrodynamic equation.” In the local case the
metallic dielectric function is given by Eq. (8) with
T —» and a=0.

The relationship, in the metal, between the Fourier
components of the electric displacement, D, and the
electric field E can be written’ as

0
D(Z,k”,w) =/ dz'e(z,z',k,I,w)E(z',k“,w), Z<0, [9]

where w is the frequency. In relating Egs. (8) and (9),
two soluble models of the surface electronic boundary
conditions are used: specular'’ and diffuse!® reflection.

Finally, the rarefied gas atoms are characterized by
the dielectric function

ea(w)=144rN,aa (w) [10]

in which a4 is the dynamic polarizability of the atom,"”
which when considered a function of the imaginary
frequency is given in atomic units by

©  fi = f(E)
as(td) =22 + dE , (11]
=t Jpp  BHE

where f; and w; are the discrete oscillator strengths
and transition frequencies, respectively, and f.(E) and
Erp represent the continuum oscillator strength and
ionization potential, respectively.

Examination of the expression for Evw [Eq. (5)]
reveals that the Van der Waals interaction is highly
dynamic deriving contributions from the whole fre-
quency range as expressed by the integration over all
imaginary frequencies. In particular, He has a very
strong continuum over all imaginary frequencies. In
particular, He has a very strong continuum polariza-
bility!® so that contributions from frequencies which
are much larger than energies characteristic to the
metal (e.g., the plasma and Fermi energies) are impor-
tant. First, we demonstrate the importance of the in-
clusion of the complete excitation spectrum of the
atomic species in both the local and nonlocal theories
of physisorption.? (To facilitate a comparison between
the two modes of description we have introduced the
function Cyw=d*Evw.) In Fig. 1 calculated Cvw’s for
He adsorption on Al (hw,=15.8 V) are shown for the
local case (dash—dot curve) and for the two boundary
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Fi1c. 1. (a) Van der Waals constant (i.e., Cyw=4d*Evw), for He

adsorption on Al. Results are shown for the local case (dash-
dotted) and nonlocal model for specular (dashed) and diffuse
(solid) electronic boundary condition at the surface. The complete
excitation spectrum of He including the continuum polarizability
has been used in the calculation; (b) Same as in a with the first
atomic twelve transitions of He used in the calculation. Infinite
lifetime, 7, is assumed.

conditions of the nonlocal model. Comparison of the
results shown in Fig. 1(a) where the complete excitation
spectrum of He was used, with those shown in Fig. 1(b)
where the first 12 excitation only were employed,
demonstrates the importance of an adequate description
of the frequency response of the atomic species in
calculations of the Van der Waals interaction. Further-
more, examination of the dependence of Cv w on the dis-
tance d reveals a d~? dependence in the local case and a
more rapid variation than the inverse-cube-law, for the
nonlocal models. The difference in the force laws which
are derived from local and nonlocal descriptions of the
Van der Waals interaction has been discussed by us
in a previous paper.”

In the case of the model nonlocal dielectric functions
we are considering, both Cim and Com — © as p — .
This has the consequence that there is negligible con-
tribution to the integral in Eq. (5) from terms with
large p. This result follows from the fact that, for both
electronic boundary conditions, the surface mode is
admixed with volume modes;® the admixture increases
with increasing k|, so that w, —« as k)] — .22 The
negligible contribution from terms with large k|| exists
also in the random phase approximation solved with
specular reflection boundary conditions.? Another
consequence of the admixture is that the contribution
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to Evw of modes localized at the surface (i.e., d-depend-
ent modes) decreases relative to their contribution in
the local dielectric function case (i.e., a=0). Conse-
quently, Evw will be weaker with spatial nonlocality
than without. Another important result demonstrated
in Fig. 1 is that the effect of spatial dispersion is much
more significant than that of the different boundary
conditions.

The different distance dependencies of the Van der
Waals interaction energy in the local and nonlocal de-
scriptions are further illustrated in Fig. 2, for He
adsorption on three metals (Na, Mg, and Al). In this
figure the difference ACvw=Cvw (nonlocal)—Cyw
(local), is plotted as a function of distance, d, for
“diffuse”’ electronic boundary conditions. [Values of
Cvw (local) for He adsorption on these metals are
given in Fig. 1 of Ref. 5.] The systematic increase in the
attraction and in ACyw, correlated with the increase in
plasma frequency characterizing the substrate is evident
from the figure.

lll. REPULSIVE INTERACTION

Since a detailed study of the repulsive interaction
has been given by us in previous publications,’ ¢ we re-
strict ourselves to presentation of the basic formulae.
The repulsion is a consequence of the Heisenberg un-
certainty principle, since assemblage restricts the elec-
trons to a smaller volume with a consequent increase
in the electronic kinetic energy, AT

AT nc]=Ta[ne]— T [ na,nu], (12)

T T I ]
AL (wp=15.8eV, @ =0.718)
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F16.2. Deviation of the Van der Waals constant caused by spatial
dispersion, ACyw=Cvw (nonlocal)—Cvw (local). Results are
shown for the adsorption of He on Al (solid), Mg (dashed), and Na
(dash—dotted). “Diffuse” reflection boundary condition is used.
Infinite lifetime, r, is assumed.
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Fic. 3. Equilibrium position, de, of physi-
sorbed He atoms on free-electron metals (i.e.,
wp?=4rn,) for the local case and for two
boundary conditions in the nonlocal model.
The relative insensitivity of deq to the degree
of dispersion and different electronic boundary
conditions is illustrated. Infinite lifetime, r,
is assumed.
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Y

produce small changes in de. The equilibrium position,
therefore, is relatively insensitive to the model used
to describe the metal. The monotonic increase in deq
with increasing plasma frequency is also demonstrated.
Finally, it is important to note®' that the values of the
equilibrium positions are larger than the value obtained
from the sum of covalent radii of the metallic and

where T'q and T, are the kinetic energies of the atom
and metal electron at a distance d and at infinite separa-
tion respectively, #, 74, and %y are the electron number
densities of the combined atom-surface system, isolated
atom, and metal, respectively. Using the Thomas—
Fermi version of the density-functional?? formalism ex-

panded to first-order in the gradient operator it can be
shown?’ that the zeroth-order change in kinetic energy
can be determined approximately without resorting to
self-consistent calculation, i.e.,

AT n.]=Er(d)

_ / dr nM(%[nMMA]—%EnMJ). [12a]

Ry
nM=7{1—(Z/IZI)[l—eXp(—BIZI)]}y [12b]

where n, is the positive jellium charge density and 8 a
variational parameter.® T[n] is the kinetic energy
functional of the electronic density.

IV. EQUILIBRIUM DISTANCES

The total energy of interaction U(d) is given by the
sum of the attractive and repulsive interactions

Ud)=—Evw(d)+Er(). [13]

The resulting interaction energy curve exhibits a
minimum at the equilibrium distance dq.

Equilibrium positions, d.q, obtained from the position
of the minimum in the total interaction energy are dis-
played in Fig. 3 for He on a variety of free-electron
metals (i.e., w,?=4wrn,). Note that the values of d.q for
the three models, i.e., local and two boundary conditions
for the nonlocal model are within 1 a.u. of one another
and that changes in electronic boundary conditions
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He atoms.
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