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tures in the measured optical spectrum with the
electronic transitions between energy bands but
also for other purposes, such as a calculation of
the phonon frequencies.
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We describe direct method for surface-structure determination from low-energy elec-
tron-diffraction (LEED) intensities. Fourier transforms of LEED intensities are shown
to contain convolution products of functions of the interatomic vectors with data trunca-
tion and potential windows. A deconvolution method and substrate-subtraction procedure
is described, yielding an accurate structural determination of clean surfaces and over-
layer systems. Applicability of the method to experimental data is demonstrated by us-

ing LEED intensities from Al(100).

Since the discovery' of low-energy electron diffraction (LEED), the extraction of surface structures
has been the subject of intensive efforts, mainly via an indirect approach,® which is intrinsically depen-
dent on model assumptions and proceeds by comparisons of microscopic model calculations with ex-
perimental intensities. However, a full variation over the geometrical and electronic parameters is
not carried out because of the prohibitive expense in computation time and storage.

In this paper we present the principles of a rapid, dirvect method of surface-structure determination?
and demonstrate its applicability to the analysis of experimental data.*

In the diffraction of low-energy electrons from solids, momentum is conserved in the plane parallel
to the surface, giving rise to diffracted beams characterized by discrete (kk) Miller indices of the two-
dimensional net. Electron propagation in the direction normal to the surface is strongly attenuated*
and is, therefore, characterized by the continuous variable S, where 27S is the normal momentum
transfer and S$>0 as a result of the half-space nature of LEED measurements and the inner potential
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of the solid. Consequently, the complex Fourier transform of the intensities may be written as

P(x,9,2)= 35 | dSLS)ws(S;S,, S,) explani(hx +ky)|exp(2misz), 1
he=-
where I,,(S) is the intensity of the (k) beam and wg(S; S, S,) is a “box-car” truncation function (unit
magnitude for S, <S<S, and zero otherwise).

The transformation given in Eq. (1) defines a three-dimensional vector space.® Structure determina-
tion, however, can be carried out by using reduced forms of the three-dimensional transform. The
analysis proceeds by the determination of interlayer spacings from one-dimensional projections of the
transform, the result of which are utilized in the determination of interlayer registries via two-dimen-

~sional transform sections as we have previously demonstrated.® The one-dimensional line projection -

P(z) is defined by

P) =) dSI,y(S)w4(S; S, S,) exp(2misz), (2)

where I, is the intensity of the specular beam. As shown below analytically for the case of kinematic
scattering, and through analysis of experimental data exhibiting pronounced multiple-scattering fea-
tures, P(z) contains the projections of interatomic vectors on the surface normal. As we have indicat-
ed previously, the problems of deconvolution, discussed below, are most acute in the analysis of line
projections.

The fundamental problem involved in the use of the LEED transform consists of the extraction of
geometrical information from its convolution with the effects of data truncation, scattering potentials,
and temperature. We emphasize that failure to perform a proper deconvolution results in most cases
in ambiguous structural assignments and inadequate spatial resolution.%”

The scattering amplitude and hence the diffracted intensity can be expressed as a series expansion
in the order of scattering events. Hence, the transform of the intensity consists of a linear combina-
tion of transforms of nth order scattering processes (r=1,2, 3,...) which can be expressed in turn as
convolution products of geometrical and electronic and vibrational factors. However, we anticipate
that the first-order convolution product will produce the dominant features in the transform. Multiple-
scattering contributions to the diffracted intensities are generally aperiodic with momentum transfer,
and are effectively attenuated by Fourier transformations.

The above conclusions are supported by results of numerical studies® using intensities calculated
from a full multiple-scattering theory, and by the application of the deconvolution method to the analy-
sis of experimental data exhibiting pronounced multiple-scattering features, as described below and
in detail elsewhere.®* Accordingly, we now demonstrate the principles of the transform-deconvolution
method, using kinematical theory with realistic scattering potentials and inclusion of temperature ef-
fects.

The kinematical expression for the intensity of specularly diffracted electrons from a lattice com-
posed of a uniform substrate with layer spacing d; and an overlayer at a distance d, from the surface
plane is given by

19) = 11,8) P+ 21 () a1 = a)* L (o, cosg, = 1)
+2a, Zw) as”[fos(S) cos(@,+B) +]j,sT(s) sin(¢,+8)], (3)

where a,=exp(- u/d), a,=exp(- u,'d), and p’=p/cosh with u the attenuation coefficient' and 6 the an-
gle of incidence. The phase angles are defined as ¢, =2mSvd, and 8 = 215d,. fs,0(S) are the effective
atomic scattering factors, renormalized to incorporate atomic vibrations® by multiplication by the as-
sociated Debye-Waller factors, of the substrate (s) and overlayer (o) which can be expressed in a par-
tial-wave expansion with scattering-potential phase shifts'® &, ;(S) and 6, ; for the substrate and over-
layer, respectively. The function f,(S) is defined as f, (S) =fo(S)fsT(S). The transform [Eq (2)] of the
above intensity expression is given by

P(z) =Fo(z)*6(z)_+Fs(z)*a02(1 -aX)? i) alv|o(z +d,)

Y=~

+a, Zi} aJlF,(2)*6(z = d,-vd) + F(2)*0(z +d, +vd)], (4)
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FIG. 1. Calculated intensities (a) for A1(100) (solid and dashed curves, 6=25° and 8°, respectively) and (b) for
Na overlayer on Al with d,=2.2 A (dash~dotted curve, 6=8° using four phase shifts (Ref. 12). (c) Substrate wg
(solid and dashed curves for 6=25° and 8°, respectively) and overlayer (dash-dotted curve for 6=8°) potential win-
dows, corresponding to the above intensities.

where the asterisk denotes convolution and F,, F,, F,, and F,, are the transforms of If,P, If,P, £, £.T,
and f,'f,, respectively, convoluted with the transform of the “box-car” window w , defined in Eq. (1).
In the following we refer to the functions w, .= If,, ;Pwx(S;S;, S,) as the potential envelopes (windows)
for the overlayer (o) and substrate (s), respectively.

The second term in the above equation with the substitution o,=1 is the transform P(z) of the clean-
substrate intensity. It consists of peaks at z =vd, (- ©<v <), weighted by the damping factors (1
- a?2)™!, convoluted with the transform of the truncated atomic scattering potential. Thus, a transfor-
mation of the intensities diffracted from a clear surface followed by a deconvolution of the complex
transform F(z) yields a “6-function transform.” Because of the idempotency of the window matrix,
conventional matrix-inversion algorithms cannot be applied in the deconvolution. A solution to this
crucial problem has been formulated by modifying a relaxation method described by Southwell.!8

The deconvolution is demonstrated first for the clean substrate. Figure 1(a) contains calculated ki-
nematical intensities for the (00) beam from A1(100), for two incident angles, and T =0°K; Figure 1(c)
contains the associated potential envelopes. The Fourier transforms of the intensity records are giv-
en in Figs. 2(a) and 2(b), from which it is evident that peak broadening and extra peaks due to the trun-
cated potential envelopes preclude direct structural interpretation. The computer deconvolutions®*:®
of the truncated potential windows from the transforms for § =8° and 25° are identical. The unique re-
sult is shown in Fig. 2(c).

Interpretation of the transform [Eq. (4)] of the intensity diffracted from an overlayer system is com-
plicated by the convolution of maxima which are structural in origin with functions associated with the
differences in scattering potential of the substrate and overlayer atoms. An accurate determination
of the overlayer geometry is achieved by the substrate subtrvaction method defined as

PRES(‘Z)=Po(z)"gps(z)—6(2)*Fo(z)) (5)

where P, and P, are the overlayer and substrate transforms, respectively. For g=q}?,

Pres(2) =, VEO allF,(2)*6(z —d,—d) + F(2)*6(z +d, +vd})]. (6)
Optimum substrate subtraction is achieved by a | N
variation of g in Eq. (5) to minimize chosen overlayer spacing d,=2.2 A and § =8° us-
- ing a four—phase-shift expansion in the descrip-
2 Pres(vd)). tion of the substrate and overlayer scattering po-
v=o tentials is shown in Fig. 1(b) along with the over-
Determination of the overlayer spacing is demon- layer potential envelope |f,f in Fig. 1(c). Itis
strated for the case of a Na overlayer on Al(100). again evident that structure determination can-
A calculated (00) intensity for an arbitrarily not be made solely on the basis of the correspond-
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FIG. 2. (a), (0) Modulus and real part of the P(z)
transforms derived from the intensities shown in Fig.
1(a). (c) Computer deconvolution (P.) (Ref. 8) obtained
by deconvoluting the transform of the windows in Fig.
1(a) from the transforms shown in (a) and (b). (d) P(2)
transform for the overlayer intensity [Fig. 1(b)]. Note
the absence of peaks at substrate spacings. (e) Sub-
strate-subtraction residuals [Eq. (5)], obtained from
the transforms shown in (b) and (d). () Computer de-
convolution (P.) (Ref. 8) of the residual, exhibiting
highly resolved peaks corresponding to the substrate-
overlayer vectors.

ing transforms which are shown in Fig. 2(d).

The residual transform, Pggs(z), derived from
the transforms shown in Figs. 2(b) and 2(d) is
shown in Fig. 2(e). Deconvolution of the residual
transform yields the overlayer-substrate inter-
layer vectors as shown in Fig. 2(f).

We now illustrate the applicability of the trans-
form-deconvolution method to experimental data.
In Fig. 3(a) we present (00) intensity profiles
measured? at room temperature from Al1(100) for
@ =0°and 6 =8°and 16°. The real parts of their
transforms are shown in Fig. 3(b). We draw at-
tention to the pronounced multiple-scattering fea-
tures in the intensity profiles, and to the vibra-
tions in both the intensity profiles and their trans-
forms with angle of incidence. In constructing
appropriate potential envelope windows for decon-
volution of transforms such as are shown in Fig.
3(b) we have used eight phase shifts calculated
from Snow’s potential.'®

The deconvolution results shown in Figs. 3(c)
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FIG. 3. (a) (00) intensities from Al(100) measured
at T=295K for ¢ =0, 6=8° and 16°. (b) Real part of
the P(z) transforms of the intensities shown in (a).

(c), (d) Computer deconvolutions (P«) of the transforms
shown in (b) (6=8° and 16°, respectively). The base
width of the peaks is 0.05 A. Structural peaks forming
a consistent vector set have been filled. The use of
eight phase shifts (Ref. 13) in the potential window re-
sulted in a suppression of “noise” level (open peaks).

and 3(d) for § =8° and 16°, respectively, were ob-
tained by using optimized values of the inner po-
tential and effective Debye temperature of 14 eV
and 300°K, respectively. In comparing these re-
sults with those obtained from calculated kine-
matic intensities shown in Fig. 2, it can be seen
that in addition to the prominent structural peaks
in Figs. 3(c) and 3(d) there is a low level of noise.
(Similar noise peaks of negative amplitude have
been suppressed in the figures since obviously
they convey no structural information. Convolut-
ing the total deconvolution results with the corre-
sponding potential windows used reproduces the
observed transforms to better than 1%.)

In the above results, and in results for other
angles of incidence,* prominent peaks occur only
at 2.05N A (N=0,1, 2, etc.) and form the only con-
sistent periodic vector set. The unique value of
the interlayer spacing determined from different
intensity profiles, despite their strong variation
with angle of incidence, demonstrates the consis-
tency of the method and illustrates its applicabil-
ity. We note that the determined value 2.05 A is
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in agreement with the bulk interlayer spacing of
2.025 A to within our estimated accuracy of +0.05
A. In addition it compares with the conclusions
of extensive multiple-scattering calculations.'*

Further details of our method and applications
to experimental data are given in forthcoming
publications.**8
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An exact solution to the one-dimensional electron gas with a particular attractive-in-
teraction strength for scattering across the Fermi “surface” is given. It is shown that
conductivity enhancement occurs for physically interesting values of the coupling con-
stants. Scaling arguments are advanced to demonstrate that this solution applies gener-
ally for attractive backward scattering. In addition, the spinless problem is solved ex-

actly for arbitrary couplings.

Progress towards an understanding of the equi-
librium and transport properties of quasi-one-di-
mensional conductors has been hampered by a
lack of knowledge about the underlying interacting
electron system. Although the Tomonaga and Lut-
tinger models! have provided some insight, their
generality can be questioned as a result of their
neglect of interactions near twice the Fermi mo-
mentum, 2kp, which are responsible for back-
ward scattering. This note reports an exact solu-
tion to the more general problem with an attrac-
tive interaction at 2%, and uses it to construct a
qualitative picture for the general interacting
one-dimensional system.

Several properties of the exact solution are par-
ticularly significant. It requires an attractive in-
teraction at 2k of a specific strength but the
small-momentum interaction can be arbitrary, a
situation of sufficient generality to be of interest
for experiments on the quasi-one-dimensional
systems. Depending upon the sign and magnitude
of the small-momentum part, a large conductivi-
ty enhancement can occur as the temperature
tends to zero, in contrast to a recent approximate
treatment.? We compute the temperature depen-
dence of the conductivity as well as other physi-
cally important response functions which describe
the low-temperature pairing, charge and spin
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