Surface structure determination via a transform-deconvolution

method

Uzi Landman and D. L. Adams

Xerox Corporation, Rochester Research Center, Webster, New York 14580

(Received 8 August 1973)

A fast direct-transform method for the determination of surface structures from low-energy-electron
diffraction (LEED) intensity data is presented. Basic principles of a proper transform construction and its
applications are discussed and demonstrated. The effects of data truncation is studied and a deconvolution
procedure for extraction of accurate structural information from the transform is described. Results of a
complete surface structure determination of Ni(100) by application of the method to experimental data are

discussed.

I. INTRODUCTION

Basic to studies of physical processes occurring on solid
surfaces is the understanding of the geometric and
electronic structure of the outermost few atomic layers
of the solid. Of particular importance is the geometrical
structural information since it is an elementary essen-
tial for the construction of physical models of surface
phenomena. Determination of surface structures from
low-energy-electron diffraction (LEED) experiments
requires analysis of the angular distribution and in-
tensities of diffracted beams (diffraction patterns and
intensity-voltage profiles). The customary analysis of
LEED intensity measurements consists of attempts to
fit experimental data via model calculations.!=® The
high degree of uncertainty in the results derived by
the above methods originates from an incomplete de-
scription of the physical phenomena associated with the
diffraction of low-energy electrons and in the unavoid-
able failure to test all the possible structures of the
system.

The technique presented in this paper consists of
direct transform analysis of experimental data which
avoids to a large extent the above uncertainties along
with a significant reduction in computational time and
storage. In order to demonstrate the principles and
applications of our transform method for surface struc-
ture determination, we employ intensities calculated
on the basis of kinematical diffraction,! application of
the transform method to the analysis of real data is
also included.

The construction and characteristics of the transform
method applied to LEED with particular reference to
the finite extent of the data, and physical interpreta-
tion, are discussed in Sec. II. In Sec. III we present
structural determination of the (100) face of Ni, based
on transform analysis of the experimental data of
Demuth and Rhodin.*

Il. DIRECT TRANSFORM TECHNIQUE

A. Transform Construction

As an introduction to the formulation of the direct
transform method for LEED it is instructive to briefly
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review the construction of the Patterson function used
in x-ray structure analysis, which is defined as®
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where Iz is the intensity of the (khkl) diffracted beam,
and 1 is the volume of the sample. Due to the kinemati-
cal elastic nature of x-ray diffraction (in the absence
of anomalous dispersion) it follows that the Patterson
function P (R) can be expressed as the autocorrelation
of charge densities

P(R) = / »(OpE+R)Pr. @)

The expression in Eq. (1) can be further simplified (in
the absence of anomalous dispersion) through the ap-
plication of Friedel's law® yielding a rea! cosine trans-
form of the diffracted intensities® rather than the com-
plex exponential transformation in Eq. (1).

In constructing a transform appropriate for surface
structure analysis, the nature of the LEED process
dictates certain modifications to the Patterson function
as used in x-ray studies. Characteristic to low-energy-
electron diffraction is the dynamical nature of the
scattering process and the inelastic collision damping
of the electron-beam propagation in the direction
normal to the surface.! Since momentum is conserved
in the plane parallel to the surface but not in the
normal direction, the diffracted intensities are char-
acterized by discrete (kk) Miller indices of the surface
net and the continuous variable S, the momentum
transfer in the normal direction. This variable is con-
strained to positive values due to the half-space nature
of low-energy-electron diffraction measurements in
which only back-scattered electrons are detected.

These considerations lead us to the following formula-
tion of the transform

Priys)= % [ dSTi(S)

hk=—0 J 4
Xexp[2wi (hx+ky) ] exp[272Sz].  (3)
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B. Use of Projections and Sections in Structure
Determination

The transformation given in Eq. (1) defines a three-
dimensional vector space.® Each point (x,y,z) in this
space represents a position vector R = (x,y,z) connecting
two scattering centers, translated to an arbitrary
common origin. In most cases that we have studied,
structure determination can be based on the analysis
of projections and sections of the transform rather than
the full three-dimensional function.’—¢ Of particular use
in surface structure analysis is the one-dimensional
projection of the transform in Eq. (3), denoted by

PM(3) =/°° adS1y(S) exp[2miSz], 4)

where Iy, is the intensity of the specularly diffracted
electron beam. This projection is used in the deter-
mination of layer spacings as demonstrated below.
Determination of layer registry is achieved by the
analysis of sections of the P¥ transform, denoted by
PM(xy,p), where p specifies the level in the normal
direction in which the section is made. To demonstrate
the use of projection and sections, we consider a (2X2)
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F1c. 1. (a)-(b) Kinematical intensity profiles of the (00) dif-
fracted beam from the (100) face of an fcc clean substrate material
(dashed) and in the presence of a (2X2) overlayer (solid) located
at a vertical distance d,, =d,/2 where d, is the layer spacing in the
substrate. The profiles are presented as a function of the normal
momentum transfer, S, for incidence angular parameters §=25°
and ¢ =0° mean free path, A\.,=6 A, an inner potential V=15 eV
and scattering phase shifts 8, =#/2 and 3,=n/8 for substrate and
overlayer ion-cores, respectively. The two profiles differ in relative
intensities but do not exhibit significant shifts in the location of
peaks. (c) The real part of the transform projection, P¥(z), nor-
malized to unity, for the clean intensity profile [dashed curve
in 1(a)]. Peaks occurring at about the expected values of the layer
spacing (d,) are marked by vertical arrows. The occurrence of
data-truncation peaks (Gibbs oscillations) and the negative values
for part of the transform should be noted. (d) The real part of the
transform projection, P¥(z), normalized to unity, for the overlayer
intensity profile [solid curve in (a) and (b)]. Peaks occur as ex-
pected at ~n(d,/2) for n=0, 1, 2, 3, ..., (marked by vertical
arrows) along with spurious peaks which are due todata truncation.
Peaks due to the presence of the overlayer [missing in (c)] occur
for odd values of n. (¢)-(f) Modulus of the transform projection for
the clean (e) and overlayed (f) cases. Expected peaks (vertical
arrows) in (e) and (f) occur at positions corresponding to those in
(c) and (d), respectively, with marked shifts of the 2d, peak in (e)
and the 3(d,/2) and 2ds peaks in (f). These shifts are suppressed
when the range of momentum transfer of the intensity profiles is
extended. Compared to the corresponding real part of the trans-
form, those in (e) and (f), exhibit less oscillations caused by data
truncation. This is mainly due to the cancellation of these oscilla-
tion between the real and imaginary components of the transform
which are phase shifted.

Unlike the x-ray case, this transform does not reduce
to a real cosine transform since Friedel’'s law is not
obeyed due to inelastic collision damping. (In recent
publication, Clarke et al.” used a real cosine transform
for the analysis of LEED data. We emphasize the lack
of a priori justification for this procedure for surface
structure analysis. In addition, these authors fail to

treat the problem of data truncation which we discuss
further in Sec. C.)
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overlayer model system with an overlayer-substrate
spacing of d,/2, where d, is the spacing between con-
secutive substrate layers. Using for illustrative purposes
a s-wave scattering model! with scattering phase shifts
ds=7/2 and 8§,=x/8 for the substrate and overlayer
ion-cores, respectively, yields the kinematical intensity
profiles of the (00) beam shown in Figs. 1(a) and 1(b)
for the clean substrate (dashed) and overlayer system
(solid). We note that for this configuration no new
peaks occur (in the absence of multiple scattering),
the profiles being different in line shape and relative
intensities only.

In the following, we use the line projection P¥(z),
[Eq. (4)] which contains the projections of the inter-
atomic vectors on the z axis, and the two-dimensional
section P (x,y,p) which contains the interatomic vectors
between atoms at (x,¥,21) and (x,¥,2,) where p = 31— 23,
projected on the (xy) plane. The real part and modulus
of the projection [see e.g. Eq. (4)] obtained by trans-
forming the above overlayer intensity profile are shown
in Figs. 1(d) and 1(f), respectively, while these for the
clean surface are shown in Figs. 1(c) and 1(e). The
expected locations of peaks are denoted by vertical
arrows. [t is seen that in both modes of the projection,
peaks occur at z~n(d;/2) (=0, 1,2 ...) in the over-
layer case, whereas in the transformation of the in-
tensity profiles of the substrate, the maxima at odd
values of # are missing, as expected. Attention is drawn
to other peaks in the projection which are not associ-
ated with atomic locations in the model structure.
These are data-truncation peaks and will be discussed
in the next section. The ability to differentiate between
different registries of the overlayer-substrate (over-
layer atoms in twofold and fourfold sites) by the use of
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(c)

Calculated transform sections for a (2X2) overlayer on the (100) face demonstrating the use of sections in the determination of

overlayer-substrate registries. (a)—Transform section for an overlayer with atoms (solid circles) at the four-fold, high symmetry, sites
with respect to the substrate net (open circles). The section was performed at the level p=d., =d,/2 given in Fig. 1(a). (b)—Transform
section at the p =0 level for either the four-fold or two-fold site overlayer configuration. (c)—Transform section for an overlayer with atoms
(solid circles) at the two-fold, bridge, sites with respect to the substrate net (open circles). The section was performed at the p =d,, level.
The above transform sections were calculated on the basis of kinematical intensity profiles of nine beams (&, =0, 1, 2 indexed according
to the substrate net), for the parameters specified in the caption to Fig. 1(a).

sections of the transform is demonstrated in Fig. 2.
Sections at the level n=d,/2, [P(x,y,d./2)], for the
two-fold and four-fold registries are shown in Figs. 2(a)
and 2(c), respectively along with the z=0 section
[P(x,y,0)] in Fig. 2(b). These sections were derived
from the specular and nonspecular diffracted beams
[(k, k=0, 1, 2, indexed according to the substrate
reciprocal net]. The P(x,y,0) sections are essentially
the same for both overlayer registries since this section
contains projections of interatomic vectors between
atoms located in the same (xy) plane (i.e., z level),
whereas the P (x,y,p) sections reflect different interlayer
registries.

C. The Problem of Data Truncation

The extent and range of data is commonly a critical
factor in the analysis of sampled experimental mea-
surements. The particular problem in the application
of transform methods to the analysis of LEED data is
the finite number of diffraction beams and the finite
range of their intensity profiles measured in the con-
ventional LEED experiment. Since we have found
empirically that reliable (xy) sections of the transform
can be obtained using a rather small number of non-
specular diffraction beams [see e.g., discussion in the
next section where the intensity profiles of the specular
and three nonspecular measured diffraction beams are
employed in deriving two-dimensional transform sec-
tions for the (100) face of Ni], we confine our discussion
at this time to the effects of the finite range of the (00)
beam intensity profiles on the transform analysis.

We define an ideal intensity profile for the applica-
tion of our transform analysis, as shown in Fig. 3(a).
This profile represents the contribution of the inter-
ference function including damping, to the kinemati-
cal intensity, i.e., the intensity of low-energy electrons
diffracting kinematically from an ordered array of ion-
core unit scatterers. This ideal intensity profile is
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periodic with peaks of constant amplitude, and extends
to an infinite value of the normal momentum transfer
variable. The P¥(z) transform associated with the
above profile is shown in Fig. 3(A) and consists of a
periodic series of delta functions at positions corre-
sponding to the projections on the z axis of all vectors
between the ion-core unit scatterers.

Operationally a typical LEED measurement may be
considered as viewing the above profile [Fig. 3(a)]
through a data-window which affects the range and
line shape of the record. Two possible data-windows
are shown in Fig. 3(b). The window denoted by w;j is a
box-car window which merely confines the range of the
record, whereas the w, window both limits the range
of the record and also affects its line shape. This second
window transforms the ‘ideal” interference function
signal in Fig. 3(a) into the ‘“‘realistic’’ profile shown in
Fig. 3(c2). The truncation effect of the w; window on
the ideal signal is illustrated in Fig. 3(c1), where the
ideal record [Fig. 3(a)] is terminated at some finite
value Sy of the normal momentum transfer. The effect
of multiplying the ideal intensity profile by the data
windows, upon the transform of the products is shown
in Figs. 3(C1) and 3(C2), where the modulus of the
PM(z) projection for both profiles is given. Comparison
of these results with the transform associated with the
ideal signal [Fig. 3(A)] indicates that ‘“windowing”
the ideal profile results in a broadening of the delta
functions and in the occurrence of additional peaks in
the transform (Gibbs oscillations®), which are not
directly related to the geometry of the array of ion-core
scatterers.

From the above discussion, it is evident that a
central problem in the extraction of structural infor-
mation from transforms of LEED intensity profiles is
the need to differentiate between peaks in the transform
arising from the structural arrangement of the scatter-
ing centers and those arising from data truncation,® and
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REAL SPACE (R)

Fic. 3. Demonstration of the correspondence be-
tween momentum-space (S) operations and their
transforms and the convolution in real space (z).
(a)—The ideal profile representing the contribu-
tion of the interference function to the intensity.
(A)—The transform corresponding to the profile
shown in (a). (b)—Two typical data windows in

momentum space. wy is a box-car window which
merely truncates the record at Su, and w: is a win-

dow which both truncates and also affects the line
shape of the record. (B1) and (B2)—The spectral
windows W) and W, corresponding to w; and w.
in (b). Note the difference in main characteristics
between the two. (c1) and (c2)—The resultant
profiles obtained by multiplying the profile in (a)

oXe} by w1 (cl), and ws (c2), respectively. (C1) and
(C2)—The modulus of the transform of the profiles

shown in (c1) and (c2), respectively. Note the
marked differences in line shapes between the two.
As indicated in the figure these can be obtained by
convoluting the delta function transform in (A)
with the spectral windows in (B1) and (B2),
respectively.
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to precisely locate the ‘‘true’” peaks. The solution to
this problem arises from a consideration of the effects
of data windows in real space, rather than as above in
momentum space. This is achieved through application
of the Convolution Theorem,!® which may be written as

F[gh]=G+H, (5)

where g and % are arbitrary functions, G and H are the
transforms of g and %, respectively, F represents the
Fourier transform operation, and **"" denotes the con-
volution operation. Thus, in the present context the
transform of the multiplication of the ideal intensity
profile [Fig. 3(a)] by a data window [Fig. 3(b)],
PMaps(z) [Figs. 3(C1)-3(C2)], is equivalent to a con-
volution in real space of the transform of the ideal
profile, P¥pg1r(2) and the spectral window, W, i.e.,

PMops(z)=PMprLr(z)* W (z). (6)

This point is illustrated in Fig. 3; convolution of the
transforms, Wy and W, [Figs. 3(B1) and 3(B2)] of the
data windows w; and ws, with the transform, P¥pgrr(2)
[Fig. 3(A)] of the ideal profile yields the transform
functions shown in Figs. 3(C1) and 3(C2), respectively.

Since by the convolution theorem P¥op5(2) in Eq. (6)
is simply the transform of the finite intensity profile,
the equation can be solved for P¥pgrLr(z), if the data
window w, and hence its transform W, is known. Ac-
cordingly, we have constructed a transform-deconvolu-
tion procedure which proceeds in the following steps.

1. The transform of the intensity data is performed.

2. A trial delta function transorm is constructed and
its convolution with the appropriate spectral data
window is calculated.

3. The fit between the observed transform obtained
from step 1 and the calculated transform resulting from
step 2 is determined.

4. Steps 2-3 are iterated until a best fit is obtained.
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The final value of the delta function transform dis-
tinguishes the ‘““true’” peaks in the observed transform
and their positions to a high degree of precision, as is
demonstrated in the analysis of LEED intensity data
from Ni(100) in the following section.

It is interesting to note at this point that an alterna-
tive method of suppressing the effects of data trunca-
tion has been suggested.!? This consists of a multiplica-
tion in momentum space of the intensity profiles by a
data window chosen to minimize the Gibbs oscillations
in the transform. We have found that this procedure, .
using an appropriate window function,!® can signifi-
cantly attenuate the data truncation peaks, but only
at the expense of a very considerable, and for our
purposes, unacceptable loss of resolution in the trans-
form. This effect can be readily understood by noting
that the equivalent procedure in real space, by the
convolution theorem, consists of a convolution of the
transform of the data window with the transform of
the intensity profile. In practice the spectral window
(transform of the data-window) is chosen to minimize
the side lobes of the function, in order to reduce the
Gibbs oscillations, but this has as corollary the effect
of broadening the main lobe, and consequently of
further broadening the peaks in the transform of the
intensity profile.

D. Geometrical Interpretation of the Transform

As we have noted in an earlier section, in the case of
x-ray diffraction, the Patterson function [Eqgs. (1) and
(2)] represents the self-convolution of charge densities
in the diffracting material, and is in principle a real,
positive definite function. The transform that we have
constructed for the LEED case [Eq. (3)] is a complex
function. The main characteristics of LEED intensity
profiles consist of peaks at positions corresponding to
the satisfaction of the basic laws of diffraction, dressed
by the effects of multiple scattering and details of the
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scattering potential.® It can be shown easily that the
square of the modulus of our transform is equal to the
transform of the autocovariance function* of the in-
tensity profile,

| P (3) |2 =/dSC(S) exp[27iSz], 6)
where C is the autocovariance function defined as
C(T) =/dSIoo(S)Ioo(S+T) (7)

By construction, the autocovariance of the intensity
profile seeks and enhances periodic features in the in-
tensity profile, and in addition, performs a local averag-
ing in momentum space. Thus, the main maxima in the
transform of the autocovariance function are associated
with the above mentioned periodicities in the intensity
profile dictated by the diffraction laws and the geo-
metrical arrangement of the scatterers.

lil. APPLICATION TO SURFACE STRUCTURAL
DETERMINATION OF Ni(100)

Having discussed some principles of our transform
method, we present in this section an application of the
technique to the LEED data obtained by Demuth and
Rhodin* for Ni(100). The intensity profiles for the
specularly diffracted beam for various angles of inci-
dence are shown in Fig. 4(b). These profiles exhibit
strong dynamical characteristics and extend over a
range of ~10-240 eV.

The transform projections obtained from the above
profiles, together with the transform result for the
angle averaged intensity curve are shown in Fig. 4(a).
We note that for this system there is no marked im-
provement achieved in the real part of the transform
by angular averaging. The resulting values for the layer
spacing based on the individual profiles are in the range
of 1.76-1.81 A, in excellent agreement with the x-ray
bulk value of 1.76 A. As an illustration of the use of
the deconvolution procedure, we include also in Fig.
4(a) the convoluted-delta-function best fit to the trans-
form of the §=12° intensity profile. The best-fit result
for the layer spacing is 1.78 A as compared to a peak
in the transform of the §=12° profile at 1.80 A.

A complete determination of the structure was
achieved by calculating two-dimensional sections of. the
transform, using the above specular diffraction profiles
and the intensity data for the (01), (10), and (11)
diffracted beams which were measured* for an azi-
muthal angle ¢ =0° and polar angles of incidence
6=0° for the (10) and (11) beams, and 8= —2° to 2°
(in steps of 1°) for the (01) beam. The resulting sec-
tions are shown in Figs. 4(c) and 4(d) for the levels
p=0A, [PM(x,y,0)], and p=1.78 A, [P (x,7,1.78 A)],
respectively. These sections exhibit the expected char-
acteristics of the interlayer and intralayer registry in
the (100) plane and enable the determination of the
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F16. 4. Experimental intensity data and transform projections
and sections for Ni(100). (a) Line transform projections, P¥ (z),
normalized to unity derived from the intensity data shown in (b).
The four top curves are the real parts of the transform projections
of the individual (00) intensity profiles. Vertical arrows indicate
location of peaks ranging between 1.76-1.81 A. The curve-marked
average was obtained by transforming the angular averaged profile
of the intensities shown in (b). The fit to the § =12° transform,
shown at the bottom, was obtained according to the transform
deconvolution procedure outlined in the text with the best-fit
delta-function profile [P¥pgrr(z) in Eq. (6)] having peaks at
2z=0, 1.78, and 3.56 A only. All other peaks in the fit, and thus in
the reference # =12° transform, result from the convolution with
the spectral window. Thus the method allows for distinguishability
between true- and data-truncation peaks as well as precise deter-
mination of the layer spacings. (b)—Measured intensity profiles!
of the (00) diffracted beam from Ni(100) with azimuthal angle
¥ =0°, and four polar angles of incidence 6 =6°, 10°, 12°, and 21°.
Note the strong dynamical features in the profiles. (c) and (d)—
Two-dimensional transform sections obtained from the specular
diffractions shown in (b) and three measured* nonspecular beams:
(10) and (11) with 6 =y =0° and (01) with ¢ =0° and 8 =—2° to
2° (in steps of 1°). Despite the small number of available beams,
the peaks at the corners of the PM (x,y,0) section (c) and the center
peak in the PM(x,y,1.78) section (d), exhibit unambiguously the
registry in the (100) face.

lateral and vertical location of atoms in the surface
layers to an accuracy of better than 5%,

IV. SYNOPSIS

In conclusion, we have outlined in this paper the
principles of our transform-deconvolution method for
the determination of surface structures from LEED
data. We have demonstrated the application of the
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method to the complete determination of the surface
structure of Ni(100) from experimental data. The
method is currently being used for the determination
of the atomic arrangements in both clean and overlayer
systems.!®
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