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Electron localization and entanglement in a two-electron quantum dot
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Calculations for two electrons in an elliptic quantum dot, using symmetry breaking at the unre-
stricted Hartree-Fock level and subsequent restoration of the broken parity via projection techniques,
show that the electrons can localize and form a molecular dimer, described by a Heitler-London-
type wave function. The calculated singlet-triplet splitting (J) as a function of the magnetic field
(B) agrees with cotunneling measurements. Knowledge of the dot shape and of J(B) allows de-
termination of the degree of entanglement in the ground state of the dot, which is of interest for
the implementation of quantum logic gates. The theoretical value agrees with the experimental
estimates.

PACS numbers: 73.21.La, 03.67.Mn

Electron localization leading to formation of
molecular-like structures [so-called Wigner molecules
(WMs)] within a single circular two-dimensional (2D)
quantum dot (QD) at zero magnetic field (B) has been
theoretically predicted to occur [1, 2], as the strength
of the interaction relative to the zero-point energy
increases. Of particular interest is a two-electron (2e)
WM, in light of the proposal [3] for the implementation
of a solid-state quantum logic gate that employs two
coupled one-electron QDs (double dot).

In currently fabricated circular QDs the strength of
the effective Coulomb repulsion is significantly reduced
(compared to the value used in Refs. [1, 2], appropriate
for bulk GaAs) due to screening from the electrostatic
gates and the influence of the finite height of the dot
[4, 5]. However, changing the shape of the QD (from a
circular shape to an elliptical one, and ultimately to a
quasi-linear one) will reduce the zero-point energy, thus
enhancing the relative importance of the Coulomb repul-
sion; this assists in bringing the QD into the strongly cor-
related regime resulting in electron localization. Here we
show that this theoretical prediction [6] has indeed been
recently observed experimentally for two electrons in an
elliptic lateral QD [7]. We present microscopic calcula-
tions for two electrons in an elliptic QD specified by the
parameters of the experimental device [7]. These calcula-
tions show formation of an electron molecular dimer and
yield good agreement with the measured J(B) curve (the
singlet-triplet splitting) when the value of the Coulomb
repulsion is weakened (by 40%).

Of special interest for quantum computing is the degree
of entanglement exhibited by the two-electron molecule
in its singlet state [3]. A measure of entanglement, in-
troduced in Ref. [8], is known as the concurrence. To
date, however, applications [8, 9] of this measure have
been restricted to the specific singlet state associated
with the bonding and antibonding orbitals of a 2e dou-

ble dot with weak interdot-tunneling coupling. We show
that our wave-function-based method enables calculation
of the concurrence of the 2e singlet state in more general

cases, and in particular for the single elliptic QD of Ref.
[7]. This is based on our finding that the concurrence of
the singlet state is directly related to the degree of parity
breaking present in the unrestricted Hartree-Fock (UHF)
orbitals (see below) resulting from our calculations.

We show that knowledge of the dot shape and the J(B)
curve allows theoretical determination of the degree of
entanglement. This supports the experimental assertion
[7] that cotunneling spectroscopy can probe properties of
the electronic wave function of the QD, and not merely
its low-energy spectrum.

The hamiltonian for two 2D interacting electrons is

H = H(r1) + H(r2) + e2/(κr12), (1)

where the last term is the Coulomb repulsion, κ is the
dielectric constant, and r12 = |r1−r2|. H(r) is the single-
particle hamiltonian for an electron in an external per-
pendicular magnetic field B and an appropriate confine-
ment potential. For an elliptic QD, the single-particle
hamiltonian is written as

H(r) = T +
1

2
m∗(ω2

xx2 + ω2
yy

2) +
g∗µB

h̄
B · s, (2)

where T = (p− eA/c)2/2m∗, with A = 0.5(−By, Bx, 0)
being the vector potential in the symmetric gauge. m∗

is the effective mass and p is the linear momentum of
the electron. The last term in Eq. (2) is the Zeeman
interaction with g∗ being the effective g factor, µB the
Bohr magneton, and s the spin of an individual electron.

Our method for solving the two-body problem defined
by the hamiltoninian (1) consists of two steps. In the first
step, we solve selfconsistently the ensuing unrestricted
Hartree-Fock (UHF) equations allowing for breaking of
the total spin [and parity along the long axis (x-axis)
of the elliptic QD]. For the Sz = 0 solution, this step
produces two single-electron orbitals uL,R(r) that are lo-
calized left (L) and right (R) of the center of the QD. At
this step, the many-body wave function is a single Slater
determinant ΨUHF(1 ↑, 2 ↓) ≡ |uL(1 ↑)uR(2 ↓)〉 made
out of the two occupied UHF spin-orbitals uL(1 ↑) ≡
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FIG. 1: The singlet-triplet splitting J = Es
− Et as a func-

tion of the magnetic field for an elliptic QD with h̄ωx = 1.2
meV and h̄ωy = 3.3 meV (these values correspond to the
device of Ref. [7]). Lower (solid) curve: The GHL (broken-
symmetry UHF + restoration of symmetries) result. Upper
(dashed) curve: The restricted HF (RHF, no symmetry break-
ing) result. The experimental measurements are denoted by
the open squares [7]. The material parameters used are:
m∗(GaAs)= 0.067me, κ = 22.0, and g∗ = 0 (see text). The
calculated values for the concurrence of the singlet GHL state
(Cs, see text) at B = 0, 1.3 T, and 2.5 T are also displayed. In
the singlet RHF case (upper curve), the concurrence is iden-
tically zero for all values of B. Note that our sign convention
for J is opposite to that in Ref. [7].

uL(r1)α(1) and uR(2 ↓) ≡ uR(r2)β(2), where α(β) de-
notes the up (down) [↑ (↓)] spin. This UHF determinant
is an eigenfunction of the projection Sz of the total spin
S = s1 + s2, but not of S2 (or the parity space-reflection
operator).

In the second step, we restore the broken parity and
total-spin symmetries by applying to the UHF determi-
nant the projection operator [6] P s,t = 1∓̟12, where the
operator ̟12 interchanges the spins of the two electrons;
the minus sign corresponds to the singlet. The final re-
sult is a generalized Heitler-London (GHL) two-electron
wave function Ψs,t

GHL(r1, r2) for the ground-state singlet
(index s) and first-excited triplet (index t), which uses
the UHF localized orbitals,

Ψs,t
GHL(r1, r2) ∝

((
(

uL(r1)uR(r2)±uL(r2)uR(r1)
))
)

χs,t, (3)

where χs,t = (α(1)β(2) ∓ α(2)β(1)) is the spin function
for the 2e singlet and triplet states.

The use of optimized UHF orbitals in the GHL is suit-
able for treating single elongated QDs. The GHL is
equally applicable to double QDs with arbitrary interdot-
tunneling coupling [6]. In contrast, the Heitler-London
(HL) treatment [10] (known also as Valence bond), where
non-optimized “atomic” orbitals of two isolated QDs are
used, is appropriate only for the case of a double dot with
small interdot-tunneling coupling [3, 11].

Both the GHL singlet, Ψs
GHL, and the GHL triplet,

Ψt
GHL, cannot be reduced to a single Slater determinant.

They are always the sum of two Slater determinants, i.e.,
Ψs,t

GHL ∝ |uL(1 ↑)uR(2 ↓)〉 ∓ |uL(1 ↓)uR(2 ↑)〉, and thus
they represent states with intrinsic entanglement [3, 6],
a property that underlies the operation of the quantum
logic gate.

The 2D UHF equations that we are using are described
in detail in Ref. [1(c)]. For the formulas which enable cal-
culation of the energies Es,t

GHL for the special case of the
two-electron wave function (3), see Refs. [6, 12]. The key
point is that we exploit an additional variational freedom
by allowing for different orbitals [here uL(r) and uR(r)]
for the two spin directions (up and down). Under ap-
propriate conditions, the UHF equations do indeed have
solutions associated with two spatially separated orbitals
(symmetry breaking is present). We note, however, that
for sufficiently weak Coulomb repulsion (very large di-
electric constant κ, see below), the two orbitals uL(r)
and uR(r) do collapse onto the same single orbital u(r),
and there is no symmetry breaking.

Another pertinent point here is that the orbitals
uL,R(r) are expanded in a real Cartesian harmonic-
oscillator basis, namely,

uL,R(r) =

K
∑

j=1

CL,R
j ϕj(r), (4)

where the index j ≡ (m, n) and ϕj(r) = Xm(x)Yn(y),
with Xm(Yn) being the eigenfunctions of the one-
dimensional oscillator in the x(y) direction with fre-
quency ωx(ωy). The parity operator P yields PXm(x) =
(−1)mXm(x), and similarly for Yn(y). The expansion co-

efficients CL,R
j are real for B = 0 and complex for finite

B.
We turn now to the interpretation of the measurements

of Ref. [7]. To model the experimental elliptic QD device,
we take, following Ref. [7], h̄ωx = 1.2 meV and h̄ωy =
3.3 meV. The effective mass of the electron is taken as
m∗ = 0.067me (GaAs). Since the experiment did not
resolve the lifting of the triplet degeneracy caused by the
Zeeman term, we take g∗ = 0. Using our two step method
described above, we calculate the singlet-triplet splitting
JGHL(B) = Es

GHL(B) − Et
GHL(B) as a function of the

magnetic field in the range 0 ≤ B ≤ 2.5 T. Similar to an
earlier study [5], we find that a weakening of the Coulomb
repulsion from its value in GaAs (κ = 12.9) is required
in order to reproduce the experimental J(B) curve. The
effect of screening by the gates can be modeled, to first
approximation, by increasing κ [5, 13]. Indeed, with κ =
22.0, very good agreement with the experimental data
(see Fig. 1) is obtained. In particular, we note the singlet-
triplet (ST) crossing about 1.3 T, and the backbending
of the J(B) curve beyond this crossing.

In Fig. 1, we also plot for κ = 22.0 the JRHF(B) curve
[upper (dashed) line] obtained from the restricted HF
(RHF) calculation, namely for a self-consistent Hartree-
Fock variation with the restriction that the parity be
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FIG. 2: Spin-up and spin-down orbitals (modulus square)
and total electron denities (EDs) associated with the singlet
state of two electrons in the elliptic QD. The arrows indicate a
spin-up or a spin-down electron. (a) Doubly occupied orbitals
of the parity-preserving RHF at B = 0 (left) and B = 2.5 T
(right). (b) Orbitals of the broken-symmetry UHF at B = 0.
(c-d) EDs at B = 0 for the UHF (c) and the GHL (d) wave
functions. The GHL ED is larger in the region between the
two humps compared to the UHF one; this is indicative of
covalent bonding. The rest of the parameters are as in Fig.
1. Lengths in nm and orbital densities in 10−4 nm−2.

preserved , so that there is no symmetry breaking and
both the spin-up and spin-down electrons occupy the
same spatial orbital [i.e., in this approximation uL(r) =
uR(r) = u(r)]. The JRHF(B) curve fails substantially
to reproduce the experimental results. The RHF curve
disagrees with the experimental trends in two important
ways: (I) JRHF(0) is larger than zero, which not only con-
tradicts the experiment, but also a fundamental theoret-
ical result [1(b), 14] that states that for two electrons at
zero magnetic field the singlet is always the ground state,
and (II) The JRHF(B) curve diverges as B increases, un-
like the JGHL(B) curve (as well as the experimental ob-
servation) which bends back after the ST crossing and
approaches asymptotically the J = 0 line.

The sharp contrast in the behavior of the RHF and
GHL results further highlights the significance of the lat-
ter. Indeed the behavior of the RHF solution reflects the
independent-particle-model nature of the RHF orbitals
[see Fig. 2(a)], which leads to a preponderance of the
exchange contribution, and thus to spontaneous (but er-
roneous) magnetization of the electron system. On the
other hand, the GHL results in Fig. 1 reflect the fact that

symmetry breaking and electron localization [see orbitals
in Fig. 2(b)] reduce the Coulomb repulsion to a degree
that compensates for the loss of exchange binding (since
the localization reduces the orbital overlap). This is por-
trayed in formation of a Wigner molecule with the afore-
mentioned agreement with the experimental J(B) curve.
The total electron density (ED) of the WM resulting from
breaking of symmetry [UHF, Fig. 2(c)] and after restora-
tion of parity (and total-spin) symmetry [GHL, Fig. 2(d)]
illustrates the electron molecular dimer. We note that
the UHF solutions at B = 0 exhibit breaking of the par-
ity for values of κ as large as κ = 40.0, which indicates
that the value of κ = 22.0 in our calculations places the
elliptic device of Ref. [7] well within the regime of strong
electron correlations.

The asymptotic energetic convergence (beyond the ST
point) of the singlet and triplet states, i.e., [J(B) → 0
as B → ∞] is a reflection of the dissociation of the 2e
molecule, since the ground-state energy of two fully spa-
tially separated electrons (zero overlap) does not depend
on the total spin. Indeed, orbitals and EDs for finite B
values are similar to those in Figs. 2(b-d), but with en-
hanced localization reflected in diminished overlaps with
increasing B.

Both the GHL singlet and triplet wave functions [Eq.
(3)] exhibit entanglement by being the sum of two Slater
determinants [6, 8]. However, unlike the triplet GHL
state which is maximally entangled (see below), the sin-
glet GHL wave function may exhibit a reduced degree
of entanglement, as was found from the Hund-Mulliken
treatment of the double dot [9]. For purposes of quan-
tum computing, it is necessary to be able to extract from
this GHL singlet a quantitative measure of the degree of
entanglement, e.g., the corresponding value of the con-
currence C [8, 9]. The concurrence, however, was intro-
duced for the Hilbert space associated with the bonding

and antibonding orbitals of a double dot molecule [8, 9].
In our case of a single elliptic QD, the concept of a bond-
ing and antibonding orbital does not straightforwardly
apply. Rather, we need to utilize the universal symme-
try properties of the bonding and antibonding orbitals
with respect to the parity operator, namely, the bonding
orbital is symmetric (+), and the antibonding orbital is
antisymmetric (−) with respect to reflection about the
origin of the x-axis. We first notice that, due to the sym-
metry breaking, the UHF orbitals uL(r) and uR(r) are
not eigenstates of the parity operator, and we proceed to
separate the symmetric Φ+(r) and antisymmetric Φ−(r)
components in their expansion given by Eq. (4). That is,
we write uL,R(r) ∝ Φ+(r)±ξΦ−(r); note that Φ+(r) and
Φ−(r) are eigenfunctions of the parity operator. Subse-
quently, with the use of Eq. (3), the GHL singlet can be
rearranged as follows:

Ψs
GHL ∝ |Φ+(1 ↑)Φ+(2 ↓)〉 − η|Φ−(1 ↑)Φ−(2 ↓)〉, (5)

where the coefficient in front of the second determinant,
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TABLE I: Left: Expansion coefficients C
L,R
j [See Eq. (4)] for

the broken-symmetry UHF orbitals uL(r) and uR(r) at B = 0
and κ = 22.0. Right: Expansion coefficients for the RHF com-
mon orbital u(r). The real-Cartesian-harmonic-oscillator ba-
sis functions are given by ϕj(r) = Xm(x)Yn(y). The running
index j stands for the pair (m, n), where m and n denote the
number of nodes along the x and y directions, respectively.
A total of K = 79 basis states ϕj(r) were used. However,
only coefficients with absolute value larger than 0.01 are listed
here. For numbers with a ± in the front, the + corresponds
to the left (L) orbital and the − to the right (R) one.

UHF RHF

j (m, n) C
L,R
j j (m, n) Cj

1 (0,0) 0.7990 1 (0,0) 0.9710
2 (1,0) ±0.5600 3 (2,0) 0.2310
3 (2,0) 0.2150 7 (4,0) 0.0172
5 (3,0) ±0.0104 10 (0,2) 0.0613
7 (4,0) −0.0180

10 (0,2) 0.0253

η = ξ2, is the so-called interaction parameter [9]. Know-
ing η allows a direct evaluation of the concurrence of the
singlet state, since Cs = 2η/(1+η2) [9]. Note that Φ+(r)
and Φ−(r) are properly normalized and that they are by
construction orthogonal.

For the GHL triplet, one obtains an expression inde-
pendent of the interaction parameter η, i.e.,

Ψt
GHL ∝ |Φ+(1 ↑)Φ−(2 ↓)〉 + |Φ+(1 ↓)Φ−(2 ↑)〉, (6)

which is a maximally (Ct = 1) entangled state. Note
that underlying the analysis of Ref. [7] is a conjecture

that wave functions of the form given in Eqs. (5) and (6)
describe the two electrons in the elliptic QD.

To make things more concrete, we display in TABLE
I for B = 0 (and κ = 22.0) the coefficients CL,R

j [see
Eq. (4)] that specify the broken-symmetry UHF orbitals
in the real Cartesian harmonic-oscillator basis. Indeed,
we find that there are contributions from both sym-
metric and antisymmetric basis functions Xm(x)Yn(y)
along the x-axis, since both even and odd m indices
are present. The n indices are all even, since there
is no symmetry breaking along the y-axis. Naturally,
all the m indices in the expansion of the RHF com-
mon u(r) orbital are even, since in this case the par-
ity is preserved. One can immediately check that ξ =
(

∑K
j (m odd) |C

L
j |

2
/

∑K
j (m even) |C

L
j |

2
)1/2

.

For the RHF singlet ξ = 0, since there no coefficients
with odd m indices (TABLE I). For the GHL singlet,
we calculate the interaction parameter η = ξ2 and the
concurrence Cs for the device of Ref. [7] in the magnetic-
field range 0 ≤ B ≤ 2.5 T. We find that starting with
η = 0.46 (Cs = 0.76) at B = 0, the interaction param-
eter (singlet-state concurrence) increases monotonically
to η = 0.65 (Cs = 0.92) at B = 2.5 T. At the interme-
diate value corresponding to the ST transition (B = 1.3

T), we find η = 0.54 (Cs = 0.83). Our B = 0 theoretical
result for η and Cs are in remarkable agreement with the
experimental estimates [7] of η = 0.5± 0.1 and Cs = 0.8,
which were based solely on conductance measurements
below the ST transition (i.e., near B = 0). Our theoret-
ical values for the singlet-state concurrence are marked
on the GHL curve in Fig. 1. We also display in this figure
the value of Cs for the RHF single-determinant solution
(upper curve). The RHF value for this quantity (and
also for η) vanishes identically for all B values. Thus the
shape (and values) of the experimental J(B) curve por-
tray directly the degree of electron localization and the
entanglement associated with the singlet state in Eq. (3).
Note that our calculated results are based on the ener-
getics of the singlet-triplet splitting alone, and thus they
provide a reliable and independent alternative method
for extracting the degree of singlet-state entanglement
for all values of B.

In conclusion, we have shown formation of an electron
molecular dimer in an elliptic QD (Fig. 2) for screened
interelectron repulsion characterized by a singlet-triplet
splitting J(B) that agrees with experiment (Fig. 1). Fur-
thermore we showed that, from a knowledge of the dot
shape and of J(B), theoretical analysis along the lines
introduced here allows probing of the correlated ground-
state wave function and determination of its degree of
entanglement. Such information is of great value for the
implementation of solid-state quantum logic gates. It is
also of interest to quantum information theory in general
[15, 16]. The present theoretical method and analysis
can be straightforwardly extended to double dots with
arbitrary interdot-tunneling coupling.
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the manuscript.
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