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Topological effects and particle physics analogies beyond the massless Dirac-Weyl fermion
in graphene nanorings

Igor Romanovsky,* Constantine Yannouleas,† and Uzi Landman‡

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
(Received 30 December 2012; revised manuscript received 1 March 2013; published 22 April 2013)

Armchair and zigzag edge terminations in planar hexagonal and trigonal graphene nanorings are shown to
underlie one-dimensional topological states associated with distinctive energy gaps and patterns (e.g., linear
dispersion of the energy of an hexagonal ring with an armchair termination versus parabolic dispersion for
a zigzag terminated one) in the bands of the tight-binding spectra as a function of the magnetic field. A
relativistic Dirac-Kronig-Penney model analysis of the tight-binding Aharonov-Bohm behavior reveals that the
graphene quasiparticle in an armchair hexagonal ring is a condensed-matter realization of an ultrarelativistic
fermion with a position-dependent mass term, akin to the zero-energy fermionic solitons with fractional charge
familiar from quantum-field theory and from the theory of polyacetylene. The topological origins of the above
behavior are highlighted by contrasting it with the case of a trigonal armchair ring, where we find that the
quasiparticle excitations behave as familiar Dirac fermions with a constant mass. Furthermore, the spectra of
a zigzag hexagonal ring correspond to the low-kinetic-energy nonrelativistic regime of a lepton-like massive
fermion. A one-dimensional relativistic Lagrangian formalism coupling a fermionic and a scalar bosonic field
via a Yukawa interaction, in conjunction with the breaking of the Z2 reflectional symmetry of the scalar field, is
shown to unify the above dissimilar behaviors.
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I. INTRODUCTION

Since its inception, relativistic quantum mechanics has been
associated mainly with the fields of particle and high-energy
physics.1–4 Recently, however, a tabletop version of relativistic
quantum physics emerged, following the experimental iso-
lation of graphene, which is a single-layer, planar honey-
comb lattice of carbon atoms.5 Indeed, the two-dimensional
(2D) quasiparticle excitations of neutral graphene near the
Fermi level behave6,7 as massless neutrino-like fermions
described by the celebrated Dirac-Weyl8 (DW) equation. The
scientific and technological potential for exploiting charge
carriers and quasiparticles with relativistic behavior in tunable
condensed-matter and atomic-physics systems is attracting
much attention.9–13 In this context, an important question,
as yet only partly explored, remains whether quasi-one-
dimensional (1D) graphene systems support exclusively DW
massless or constant-mass Dirac fermions, or they can induce
relativistic-quantum-field (RQF) behaviors that require the
consideration of position-dependent mass terms, reflecting
generalized underlying bosonic scalar fields.

In this paper, we show that planar graphene nanorings
do indeed exhibit a rich variety of physics, ranging from
sophisticated RQF regimes to more familiar cases of constant-
mass fermions (both in the relativistic and nonrelativistic
regimes). The emergence of these physical regimes depends
on the specific combination of topological factors associated
with modifications of the graphene lattice, such as the type of
edge termination (i.e., armchair or zigzag) and the shape (i.e.,
hexagonal or trigonal) of the graphene ring.

To this end, we investigate the properties of the corre-
sponding tight-binding7,14,15 (TB) spectra and of the associ-
ated Aharonov-Bohm16 (the AB effect, which is a hallmark
topological effect in condensed matter systems) oscillations
of the magnetization, as a function of the magnetic field

B. We then analyze the spectra and AB characteristics
with the help of a Dirac-Kronig-Penney (DKP) superlattice
model,2,17 in the spirit of the virtual “band-structure” model
for the nonrelativistic AB effect.18 We find that the relativistic
behavior in armchair rings requires a profound modification of
the 1D Dirac equation1 through the introduction of a position-
dependent mass term, in analogy with the fractional-charge,
zero-energy topological modes in quantum-field theory and in
the theory of trans-polyacetylene.19–22 In contrast, the zigzag-
ring spectra may correspond to the low-energy nonrelativistic
regime of a lepton-like23 massive particle, heavier than the
electron.

Planar graphene rings (and the associated AB spectra) have
been recently investigated by a number of groups using tight-
binding15,24–28 methods (for polygonal shapes with armchair or
zigzag terminations), as well as continuum DW24,29,30 equa-
tions supplemented with infinite-mass boundary conditions
(for idealized circular shapes). These earlier studies did not
address the question of possible analogies to 1D quantum-field
theoretical models and particle physics. We stress that a
prerequisite to raising and answering this question is the
introduction by us of the virtual DKP superlattice model for
the AB effect. For a review on recent experimental studies of
the Aharonov-Bohm effect in graphene nanorings see Ref. 31.

In addition to planar graphene rings, graphene nanoribbons
(GNRs) are another class of related quasi-1D systems. GNRs
have attracted substantially more attention than graphene rings
and their study gave rise to a vast body of theoretical32–35 and
experimental36 literature. For graphene nanoribbons, it was
found that a gap �0 may open at the Fermi energy, leading to
an apparent analogy with the constant-mass Dirac fermion [see
Ref. 32(c)]. As elaborated below, for an armchair nanoribbon
(aGNR), this gap arises from the topology of the armchair
edge which mimics the dimerized domains (i.e., formation
of Kekulé unequal carbon bonds) in trans-polyacetylene.19–22
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Then in analogy with the scalar Z2 kink-soliton associated with
the Peierls transition in trans-polyacetylene (or equivalently
with the Z2 kink-soliton used in the Jackiw-Rebbi fermionic
RQF model37) the qualitative features of the (fermionic) AB
spectra of armchair graphene rings can be understood as
resulting from an alternation (or lack of it) of two degenerate
dimerized domains associated with the arms of the graphene
ring. We stress that the effective dimerization in the armchair
GNRs and armchair graphene nanorings has a topological
origin imposed by the presence of the armchair edges, while
the dimerization in trans-polyacetylene is due to the Peierls
instability.21,38 These two different underlying processes,
however, lead to similar results that are characterized by the
breaking of the 1D Z2 reflectional symmetry (see in particular
Secs. IV A and V below).

Our findings of quasiparticles in graphene with general
position-dependent, and/or constant (rest), masses (unlike
the massless neutrino-like quasiparticle in 2D graphene) is
particularly interesting in light of increasing current interest in
mass acquisition mechanisms, e.g., the Higgs mechanism in
elementary particles39–41 and condensed-matter physics.42,43

The predicted unprecedented emergent unfolding of funda-
mentally distinct physical regimes, namely complex quantum-
field theoretical ones versus nonrelativistic constant-mass
ones, depending solely on the materials’ shape and edge
termination is to date unique to graphene. It will be of great
interest to test signatures of such regime-crossover experimen-
tally for specifically prepared graphene systems with atomic
precision,36 as well as to explore the possible occurrence of
such topological-in-origin physical behavior in other designer-
Dirac-fermion artificial systems9,12 or nanopatterned artificial
graphene.44

The plan of the paper is as follows. Section II describes the
Aharonov-Bohm tight-binding spectra for three characteristic
planar graphene nanorings, i.e., an armchair hexagonal ring,
an armchair trigonal ring, and a zigzag hexagonal ring.
Section III introduces the theoretical aspects of a relativistic 1D
Dirac-Kronig-Penney model, based on the generalized Dirac
equation. The DKP model describes the virtual superlattice as-
sociated with the Aharonov-Bohm effect. Section IV presents
the DKP interpretation of the tight-binding spectra calculated
in Sec. II. The quasiparticle excitations in graphene nanorings
are shown to exhibit behavior associated with quantum-
field theoretical models for elementary particles beyond the
massless Dirac-Weyl fermion. Section V discusses the full
relativistic quantum-field Lagrangian formalism that underlies
the DKP interpretation elaborated in Sec. IV. The Lagrangian
formalism shows that the physics of quasiparticle excitations
in planar graphene nanorings relates to the mass acquisition
and formation of fermionic solitons. Finally, Sec. VI presents
our conclusions.

II. TIGHT-BINDING CALCULATIONS

In this section, we will describe the TB spectra and
corresponding AB magnetizations (as a function of the
magnetic flux) for three characteristic cases of planar graphene
rings, and specifically for a hexagonal armchair ring, a
trigonal armchair ring, and a hexagonal zigzag ring (all
three of similar dimensions). We note that the arms of

the armchair rings studied here correspond to the class of
perfect armchair nanoribbons referred to as metallic32–35

they exhibit a vanishing energy gap, �0 = 0, between the
valence and conduction bands in tight-binding and continuum
DW calculations. However, any perturbation (including the
incorporation into a nanoring structure) may result32 in the
opening of a gap �0 > 0. The metallic aGNRs have a width
corresponding to NW = 3l − 1, l = 1,2,3, . . . , carbon atoms.
Counting along a zigzag line in the middle of the arm (away
from the corners), the hexagonal and trigonal armchair rings
studied in this paper45 have NW = 14.

To determine the single-particle spectrum [the energy levels
εi(B)] in the tight-binding calculations for the graphene
nanorings, we use the Hamiltonian

HTB = −
∑
〈i,j〉

t̃ij c
†
i cj + H.c., (1)

with 〈〉 indicating summation over the nearest-neighbor sites
i,j . The hopping matrix element

t̃ij = tij exp

(
ie

h̄c

∫ rj

ri

ds · A(r)

)
, (2)

where ri and rj are the positions of the carbon atoms i and j ,
respectively, and A is the vector potential associated with the
applied constant magnetic field B applied perpendicular to the
plane of the nanoring.

The AB magnetization of the graphene ring is given by

M(�) = −S
dEtot

d�
, (3)

where the total energy

Etot(�) =
occ∑
i,σ

εi(�) (4)

is given by the sum over all occupied single-particle energies;
the index σ runs over spins. � = BS is the magnetic flux
through the area S of the graphene ring and �0 = hc/e is the
flux quantum.

The diagonalization of the TB Hamiltonian [Eq. (1)] is im-
plemented with the use of the sparse-matrix solver ARPACK.46

In calculating Etot [see Eq. (4)], only the single-particle TB
energies with εi(B) > 0 are considered.24

The TB results exhibit significant differences between
the three cases studied here. These differences fall into two
categories, namely, (a) same edge termination but different
shape and (b) same shape but different edge termination.

A. Hexagonal versus trigonal armchair rings

The shape of the hexagonal graphene ring with armchair
edge terminations considered here, as well as the correspond-
ing TB results regarding the single-particle spectrum, the total
energy, and the magnetization are displayed in Figs. 1 and 2,
as a function of �/�0. The shape of the trigonal graphene
ring with armchair edge terminations considered here, as well
as the corresponding TB results regarding the single-particle
spectrum are displayed in Fig. 3.

Both TB energy spectra in Figs. 1(b) (armchair hexagon)
and 3(c) (armchair triangle) are organized in braid bands
separated by energy gaps. They exhibit, however, two main
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FIG. 1. (Color online) (a) Part of the hexagonal graphene ring (2718 carbon atoms) with armchair edges. 1 and 0 denote the short and long
carbon dimers, respectively. Lengths in units of the graphene lattice constant a0 = 0.246 nm. (b) TB single-particle spectrum as a function of
the magnetic flux (magnetic field). Energies in units of the TB hopping-parameter t = 2.7 eV. The dashed black line denotes the Fermi level
for N = 14 electrons. The arrows highlight the band gaps. (c) Magnification of the TB spectrum around the δ1 band gap. δ1 ∼ 80 K, and thus
it is easily detectable experimentally.

differences. The first concerns the composition of the braid
bands, with the hexagonal ring exhibiting six-membered bands
while the trigonal ring having three-membered bands. The
sixfold and threefold groupings are a reflection of the Z6

and Z3 point-group symmetry of the hexagonal and trigonal
shapes, respectively; these symmetries are fully taken into
account by the DKP modeling in Sec. III.

The second important difference between the TB energy
spectra in Figs. 1(b) and 3(c) concerns the number and nature
of energy gaps. Specifically, two regular superlattice gaps δ1

and δ2 are present in both cases; note the similar energy scale
[a magnification of the region around the δ1 gap is shown in
Fig. 1(c)]. However, while a mass gap �0 is well developed
for the trigonal ring [Fig. 3(c)], no corresponding �0 gap
is present in the spectrum of the hexagonal ring, where the
ε = 0 horizontal axis dissects (splits in half) the corresponding
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FIG. 2. (Color online) (a) TB total energies (sum over
single-particle energies including spin) for N = 14 quasiparticles.
(b) Correposnding TB magnetization (in units of the Bohr magneton).
Energies in units of the TB hopping-parameter t = 2.7 eV.

sixfold braid band [Fig. 1(b)]. As we will show in Sec. IV, the
gap �0, for the case of the armchair triangle, is consistent with
the physics of a massive (but still relativistic) Dirac fermion,
while the dissecting of the ε = 0 sixfold band, in the case of
the armchair hexagon, is consistent with the formation of a
fermionic soliton37 built on a scalar Z2 kink soliton (precisely,
a train of six fermionic solitons attached to successive Z2

kink/antikink solitons; see also Sec. V).

B. Armchair versus zigzag hexagonal rings

As was previously mentioned, the TB results exhibit
also significant differences between the cases of hexagonal
rings with armchair and zigzag terminations. One such
difference concerns the B dependence of the single-particle
energies ε(�), which is piecewise linear for the armchair
case [Fig. 1(b)], but piecewise parabolic for the zigzag case
[Fig. 4(b)]; this maintains also in the total energies Etot(�)
[Figs. 2(a) and 5(a)]. For the AB magnetizations [see Eq. (3)],
this results in a characteristically different profile for the AB
oscillations of M(�): step-staggered-like in the armchair case
[Fig. 2(b)] and sawtooth-like [Fig. 5(b)] in the zigzag case.
The parabolic-like B dependence in the zigzag edge case15

is reminiscent of the spectra of a nonrelativistic ideal metal
ring.47 In contrast (see below), the linear B dependence (in
conjunction with the other features of the hexagonal armchair
spectrum) can be associated with the fully relativistic regime
of Dirac fermions with position-dependent masses.19,20

Both the armchair and zigzag single-particle spectra for
hexagonal are organized in six-member braid bands separated
by energy gaps. This sixfold grouping is a reflection of the
Z6 point-group symmetry of the hexagonal rings. The energy
gaps in the zigzag case are comparable to the width of the
braid bands, and both the gaps and the widths of the bands
increase with higher energy [see Fig. 4(b)]; this is consistent
with a nonrelativistic Kronig-Penney model.14 In Fig. 4(b),
there are three energy gaps labeled as δ0, δ1, and δ2. Unlike
the relativistic regime, in the nonrelativistic limit a gap around
ε = 0 is unrelated to the particle mass, and for this reason we
use the symbol δ0 (with a lowercase δ) instead of �0 as was the
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FIG. 3. (Color online) (a) Part of the trigonal graphene ring (2142
carbon atoms) with armchair edges. (b) Magnification of the corner
of the trigonal ring shown in (a). 1 and 0 denote the short and long
carbon dimers, respectively. Lengths in units of the graphene lattice
constant a0 = 0.246 nm. (c) TB single-particle spectrum as a function
of the magnetic flux (magnetic field). Energies in units of the TB
hopping-parameter t = 2.7 eV. The two arrows denoted δ1 and δ2

highlight band gaps. The arrow denoted by �0 indicates the opening
of a gap at the Fermi level (ε = 0) associated with generation of a
rest mass M. Note that the �0 gap is absent in the TB spectrum of
the hexagonal graphene ring in Fig. 1(b).

case in Fig. 3(c). We note that in the nonrelativistic regime the
effective mass of the quasiparticle excitations is proportional
to the inverse of the second derivative of the (approximately)
parabolic spectra; see, e.g., Ref. 48.

III. DIRAC-KRONIG-PENNEY SUPERLATTICE

As was shown for a semiconductor ring using a nonrela-
tivistic superlattice approach, the AB single-particle spectrum
exhibits energy gaps demarcating Bloch bands when a scatterer
is placed on the ring.18 In this context, the energy gaps that
appear in Figs. 1(b), 3(c), and 4(b) indicate that the AB effect
in polygonal graphene rings should be analyzed and modeled
with the help of 1D Kronig-Penney-type superlattices, with
the corners of the polygons providing a generalized analog
to the “scatterers” of Ref. 18. Specifically, we consider a 1D
relativistic Dirac-Kronig-Penney model with unit cells built
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FIG. 4. (Color online) (a) Part of the hexagonal graphene ring
(2688 carbon atoms) with zigzag edges. 1 and 0 denote the short and
long carbon dimers, respectively. Lengths in units of the graphene
lattice constant a0 = 0.246 nm. (b) TB single-particle spectrum as a
function of the magnetic flux (magnetic field). Energies in units of
the TB hopping-parameter t = 2.7 eV. The dashed black line denotes
the Fermi level for N = 20 quasiparticles. The arrows highlight the
band gaps.

out of square potential barriers (developed in Ref. 2 in the
context of the physics of quarks).

The DKP model considered here is based on the 1D
generalized Dirac equation, which has the form

[E − V (x)]I� + ih̄vF α
∂�

∂x
− βφ(x)� = 0, (5)

with vF being the Fermi velocity of graphene, which replaces
the speed of light c; vF /c ≈ 1/300. V (x) is an electrostatic
potential and φ(x) is a bosonic position-dependent scalar field.
We note that the authors of Ref. 2 used φ(x) ≡ Mv2

F + Vs(x),
with M denoting the rest mass of a Dirac fermion (including
the massless case) and the term Vs(x) being referred to as the
Lorentz scalar potential. Omitting the last term on the left of
Eq. (5) reduces this equation to the massless Dirac-Weyl8 one
that underlies the majority of studies in planar graphene.

The fermion field � is a two-dimensional vector

� =
(

ψu

ψl

)
, (6)

where the subscripts u and l stand for the upper and lower
component, respectively. The 2 × 2 Dirac matrices α and β
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FIG. 5. (Color online) (a) TB total energies (sum over single-
particle energies including spin) for N = 20 quasiparticles. (b)
Correposnding TB magnetization (in units of the Bohr magneton).
Energies in units of the TB hopping-parameter t = 2.7 eV.

can be49 any two of the three Pauli matrices

σ1 =
(

0 1

1 0

)
; σ2 =

(
0 −i

i 0

)
; σ3 =

(
1 0

0 −1

)
. (7)

For example, in the Dirac representation, one has αD = σ1

and βD = σ3. I is the 2 × 2 identity matrix. We stress that
the energy spectra of the DKP model are independent of the
specific representation used for α and β. Below we will often
use the notation m(x), instead of φ(x), to stress the fact that
φ(x) can be considered as a position-dependent mass term.

In the DKP modeling of the TB results, we assign to the
nth side (n = 1, . . . ,Ns) of the polygonal ring a number (J )
of square potential steps (regions) denoted as (V (n)

i ,m
(n)
i ),

i = 1, . . . ,J . We note again that the electrostatic potentials
V

(n)
i enter the 1D Dirac equation [Eq. (5)] through the energy

term (E − V )I�, while the mass terms m
(n)
i replace the scalar

potential in the term βφ(x)�; as a result these two potentials
lead to different physical behavior in the relativistic regime.

The building block of the DKP model is a 2 × 2 wave-
function matrix � formed by the components of two indepen-
dent 2 × 1 spinor solutions of the one-dimensional first-order
Dirac equation. � plays2 the role of the Wronskian matrix
W50 used in the second-order nonrelativistic KP model; it is
defined as follows at a point x of the unit cell (here we use the
Dirac representation):

�K (x) =
(

eiKx e−iKx

eiKx −e−iKx

)
, (8)

where

K2 = (E − V )2 − m2v4
F

h̄2v2
F

,  = h̄vF K

E − V + mv2
F

. (9)

We note again that, unlike the case of the original Dirac
equation,1 m here is not a constant, but it may take different

values from one region to the next. The transfer matrix for a
given region (extending between two matching points x1 and
x2) is the product MK (x1,x2) = �K (x2)�−1

K (x1); this latter
matrix depends only on the width x2 − x1 of the region, and not
separately on x1 or x2. The relativistic M matrices defined here
correspond to those considered51 in the case of a nonrelativistic
superlattice in Ref. 14.

The transfer matrix corresponding to the nth side of the
hexagon is the product

tn =
∏

i=1,J

MK (xi,xi+1), x1 = 0, xJ+1 = L, (10)

with L being the (common) length on the hexagon side. The
transfer matrix associated with the complete unit cell (around
the ring) is the product

T =
Ns∏

n=1

tn, (11)

where Ns is the number of sides of the polygonal shape
considered (Ns = 3 and Ns = 6 for a triangle and hexagon,
respectively).

Following the authors of Ref. 18, we consider the super-
lattice generated from the virtual periodic translation of the
unit cell as a result of the application of a magnetic field B

perpendicular to the ring. Then the AB energy spectra are given
as solutions of the dispersion equation

cos [2π (�/�0 + η)] = Tr[T(E)]/2, (12)

where we have explicitly denoted the dependence of the
right-hand side (r.h.s.) on the energy E. The presence
(η = 1/2) or absence (η = 0) of an additional flux shift in
the relativistic or nonrelativistic case, respectively, follows
through a comparison of the patterns of AB oscillations of
a Dirac/Schrödinger electron in the limiting case of an ideal
metallic circular ring.47,52

IV. DKP INTERPRETATION OF TIGHT-BINDING
CASE STUDIES

In this section, we demonstrate that our DKP modeling
can capture the essential physics underlying the TB spectra
in Figs. 1(b), 3(c), and 4(b). In this respect, it also provides a
framework for unifying the broad variety of behaviors of the
TB spectra of graphene nanorings. A schematic representation
of the parameter sets used in our DKP simulations is given in
Fig. 6.

A. Armchair hexagonal ring and position-dependent mass
relativistic regime

First we attempt a solution corresponding to the generalized
Dirac equation (5) with φ(x) = 0. In Fig. 7(a), we display the
DKP spectra of a massless excitation (i.e., m(n)

i = 0 for all i and
n = 1, . . . ,6). This massless DKP spectrum does not exhibit
any gaps and it is strictly linear and periodic (with period �0)
as a function of �; this correlates with the behavior of a free
massless fermion, as in the case of 2D graphene. We note
that this gapless spectrum remains unchanged even when we
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FIG. 6. (Color online) Schematic representation of the (V (n)
i ,m

(n)
i ), i = 1, . . . ,3 and n = 1, . . . ,Ns square-step parameters entering in the

DKP calculations (a) in Sec. IV A, (b) in Sec. IV B, and (c) in Sec. IV C. Each side of the polygon is divided in three lengths L1, L2, and L3.
Boxes outside a polygon (yellow) represent values m0 > 0. Boxes inside a polygon (red) represent values −m0 < 0. The nonzero values for the
V

(n)
1 and V

(n)
3 in (c) are portrayed by thick lines (brown) in the interior of the schematic hexagon. Zero values of parameters are not highlighted.

consider in addition electrostatic potential steps, V
(n)
i > 0, a

fact that is a reflection of Klein tunneling.53,54

However, the TB spectrum in Fig. 1(b) exhibits energy
gaps (denoted as δ1 and δ2, and highlighted by arrows),
which require the consideration of potential barriers in the
DKP modeling. In the spirit of earlier investigations of real-
space superlattices in 2D graphene,55–57 we consider first a
constant mass m

(n)
i = M > 0, and alternating V

(n)
i = V0 > 0

and V
(n)
i = 0 steps in consecutive regions (see Sec. III).

However, calculations with this choice show an opening of
an energy gap at ε = 0, a fact that conflicts with Fig. 1(b); in
addition, it does not preserve the particle-hole symmetry of
the TB spectra.

A crucial feature of the TB armchair spectra in Fig. 1(b)
is the presence of zero-energy states (at half-integer fluxes).
To capture this feature, and in light of our failed choices
(see above), we attempt next to use a nonvanishing position-
dependent scalar field φ(x) [denoted also as m(x)] in Eq. (5),
and set the electrostatic potential V (x) = 0. Recalling certain
key elements in the theory of trans-polyacetylene pertaining
to zero-energy solitonic modes,19,20 we employ in our DKP
transfer-matrix solution of Eq. (5) a scalar potential φ(x) of
the form m(x) = −m(−x). Consequently, we divide each side

of the hexagon in three parts (J = 3) of length

L
(n)
1 = a, L

(n)
2 = b, L

(n)
3 = a, (13)

and assign values

V
(n)

1 = V
(n)

2 = V
(n)

3 = 0, (14)

and

m
(n)
1 = m

(n)
3 = 0, m

(n)
2 = (−1)nm0. (15)

Note that the index n = 1, . . . ,6 here is numbering the sides
of the hexagon, and thus overall the position-dependent mass
term in our model is antisymmetric around each corner of
the hexagonal ring. A schematic representation of the above
parameters [Eqs. (13) to Eq. (15)] is given in Fig. 6(a).

Figure 7(b) displays the DKP spectrum calculated with
the dispersion equation (12) using the above parameter set
with m0 = 0.01t/v2

F , and a = 8a0, b = 15a0 (Ref. 58). One
observes that, in addition to the piecewise linear B dependence,
the DKP spectrum faithfully reproduces the two other central
features of the TB spectrum [Fig. 1(b)]: (i) the zero-energy
states at half-integer values of �/�0 and (ii) the opening at
higher energies of energy gaps demarcating emerging sixfold
braid bands.
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FIG. 7. (Color online) Spectra from the DKP model (relativistic regime) corresponding to the schematic case (hexagon) in Fig. 6(a); see
text and Eqs. (13) to (15) for the full set of parameters employed. (a) m0 = 0 and any Vi . Note the absence of band gaps due to the Klein
paradox. (b) m0 = 0.01t/v2

F . Note the similarity of the spectrum with that of the armchair graphene ring in Fig. 1(b). (c) m0 = 0.30t/v2
F . The

horizontal lines result from suppression of the AB oscillations due to strong localization. The dashed line indicates the energy zero.
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The behavior of each arm of the armchair hexagonal
ring as a domain similar to the dimerized domains of the
trans-polyacetylene has a deeper physical reason, which can
be revealed if one considers each arm of the hexagon as
a perturbed armchair graphene nanoribbon. Indeed analytic
expressions for the energy dispersion of the aGNRs have been
recently derived [see Refs. 32(b) and 35]; they have the form

E(k) = ±|t1eika + t2e
−ikb|, (16)

with k being the wave vector along the direction of the edge.
a = a0/(2

√
3) and b = a0/

√
3, with a0 = 0.246 nm being

the lattice constant of graphene. t1 = −2t cos[pπ/(NW +
1)] + δt1, p = 1,2, . . . ,NW and t2 = −t + δt2, with δt1, δt2
denoting the perturbation away from a perfect aGNR. The
dispersion equation (16) is similar to the tight-binding one
describing a one-dimensional chain of carbon atoms with
bonds (hopping matrix elements) of alternating strength t1
and t2 (Kekulé structure). The spectrum E(k) exhibits a
mass gap �0 = |t1 − t2| at k = π/(a + b). This behavior is
analogous to that of the linear-chain lattice TB model for trans-
polyacetylene; see Eq. (2.1) in Ref. 21. In particular, when
t1 �= t2, Eq. (16) describes a single dimerized domain breaking
the 1D reflectional symmetry; when t1 = t2 (metallic aGNR),
it describes a symmetric chain of atoms, which preserves the
reflectional symmetry. We note that the factor underlying the
formation of dimerized domains in trans-polyacetylene is
the Peierls instability incorporated in the Su-Schrieffer-Heeger
model.20,21 The corresponding factor in armchair graphene
nanoribbons and rings is topological in nature, i.e., it is a
reflection of the lattice distortions of graphene due to the edge
termination and the shape.

Further insight can be gained through the observation that
the armchair edge by itself reflects the carbon dimerization.
Indeed it exhibits shorter dimers (denoted by 1) alternating
with longer ones (denoted by 0); see Fig. 1(a). Thus each arm
of the graphene ring corresponds to one of two equivalent
domains . . . ,1,0,1,0, . . . or . . . ,0,1,0,1, . . .. Following this
notation and going around a given corner, one gets symbol-
ically . . . ,0,1,0,1,1,0,1,0, . . ., i.e., each corner (denoted by

an underline) acts as a domain wall separating two alternative
domains.

In an infinite polyacetylene chain and at the position of the
domain wall, a strongly localized fermionic soliton develops
having a fractional charge ±1/2 (Refs. 19 and 20). However,
the graphene nanoring is a finite system and overall it can
carry only integer charges.59,60 Furthermore, the TB results,
and their DKP analog in Fig. 7(b), indicate a moderate extent
of localization at the corners, resulting from a nonnegligible
tunneling between the corners. Strong soliton-like localization
(exhibiting a 1/6 fractional charge at each corner) can be
achieved for larger values of m0. Indeed a large m0 can localize
a massless fermion, as is known from the (theoretical) trapping
methodology in 2D graphene referred to as the infinite-mass
boundary condition (introduced in Ref. 61 in the context
of trapping neutrinos), as well as from the localization of
massless quarks discussed in Ref. 2. The DKP spectrum for
a large value m0 = 0.30t/v2

F is displayed in Fig. 7(c). It is
seen that now the single-particle energies falling within the
gap −0.3t < E < 0.3t form horizontal straight lines because
the corresponding AB oscillations have been suppressed due
to the vanishing of the tunneling between the fermionic
solitons at the corners; because of the localization no magnetic
flux is trapped by the wave function on the hexagonal ring.
It is of interest to note that such a train configuration of
fermionic solitons in an hexagonal ring may be referred to
as a fractional Wigner crystallite. We note that besides the
zero-energy fermionic soliton discussed in the context of the
states of polyacetylene,19,20 Fig. 7(c) indicates the emergence
of two polaronic-like states22,62 with energies ≈ ±0.16t falling
within the gap.

B. Armchair trigonal ring and constant-mass relativistic regime

The results of our DKP calculations [associated with
Eq. (5)] for the armchair trigonal ring are shown in Fig. 8.

Figure 8(a) displays the DKP spectra of massless excita-
tions (i.e., m

(n)
i = 0 for all i and n = 1,2,3). As was the case

with the hexagonal ring [Fig. 7(a)], the massless DKP spectrum
in Fig. 8(a) does not exhibit any energy gaps and it is strictly
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FIG. 8. (Color online) Spectra from the DKP model (relativistic regime) corresponding to the schematic case (triangle) in Fig. 6(b); see text
and Eq. (17) for the full set of parameters employed. Panels (a–c) correspond to different choices of m0 [denoted also as M here; see Eq. (17)].
(a) m0 = 0 and any Vi . Note the absence of band gaps due to the Klein paradox. (b,c) m0 = 0.02t/v2

F , and in (c) we display a magnification of
the region around E = 0. Note the similarity of the spectrum with that of the armchair graphene ring in Fig. 3(c). The dashed line indicates the
energy zero.
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linear and periodic (with period �0) as a function of � (or
equivalently the magnetic field B). We again note that this
gapless spectrum remains unchanged even when we consider
in addition electrostatic potential steps, V

(n)
i > 0, a fact that is

a reflection of Klein tunneling.53,54

However, the TB spectrum in Fig. 3(c) exhibits energy
gaps (denoted as �0, δ1, and δ2, and highlighted by arrows),
which require the inclusion of potential barriers in the DKP
modeling. Following the analogy with the trans-polyacetylene,
it is apparent that the opening of the �0 gap indicates the
absence of domain alternation. Namely, the armchair trigonal
ring represents a realization of a single domain extending
along the full length of the triangle. Thus the corners of
the triangle act a scatterers instead of domain walls as in the
case of the hexagonal ring (see Sec. IV A). Indeed, following
the notation of 1 and 0 introduced above for the short and
long dimers [Fig. 1(a)], and going around the corner of
the trigonal ring in Fig. 3(a) [or Fig. 3(b)], one gets the
sequence . . . ,0,0,0,1,1,1,0,0,0, . . ., which is in agreement
with the presence of the same domain on both sides of the
π/3 corner. Consequently, in the DKP modeling we keep the
same parametrization as in Eqs. (13) and (14), but we replace
Eq. (15) by

m
(n)
1 = m

(n)
3 = 0, m

(n)
2 = m0 = M, n = 1,2,3, (17)

that is, the mass parameters are the same (not alternating) on
the three arms of the trigonal ring [see schematic representation
in Fig. 6(b)]; recall that M denotes the fermion rest mass [see
discussion below Eq. (5)].

Figure 8(b) [see also a magnification in Fig. 8(c)] displays
the DKP spectrum calculated from the dispersion equation (12)
using the above parametrization [see Eqs. (13), (14), and (17)]
with M = 0.02t/v2

F , and a = 19a0, b = 10a0 (Ref. 58). One
sees that the DKP spectrum reproduces the two central features
of the TB spectrum in Fig. 3(c): (i) the gap �0 around ε = 0
and (ii) the threefold braid bands which are separated by the
gaps δ1 and δ2 at higher energies.

C. Zigzag hexagonal ring and constant-mass
nonrelativistic limit

As mentioned previously, the TB spectrum of the hexagonal
graphene ring with zigzag edges [Fig. 4(b)] shows trends asso-
ciated with a large-mass fermion in the nonrelativistic regime:
(i) almost-perfect parabolic B dependence and (ii) energy gaps
δ0, δ1, and δ2 that are as large as the width of the braid bands.
We remind that, for a massless excitation (ultrarelativistic
limit), the spectra are strictly linear and exhibit no gaps [see
Figs. 7(a) and 8(a)]; consequently small or moderate mass
terms (relativistic regime) will result in smaller energy gaps
compared to the width of the braid bands [see Figs. 7(b), 8(b),
and 8(c)].

The sharply different physics (nonrelativistic versus rela-
tivistic behavior) underlying the TB spectra of the zigzag and
armchair rings originates from the different edge topology.
Following the notation of 1 and 0 introduced above for the
short and long dimers [Fig. 1(a)], and going around the
2π/3 corner of the zigzag ring in Fig. 4(a), one further
gets the sequence . . . ,0,0,0,1,0,0,0, . . . This, in addition
to the anticipation of a nonrelativistic regime, suggests that
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FIG. 9. (Color online) Spectra from the DKP model (nonrela-
tivistic regime) corresponding to the schematic case (hexagon) in
Fig. 6(c); see text and Eqs. (18) to (20) for the full set of parameters
employed. The energies do not contain the rest-mass contribution
(Ref. 63), that is, Ẽ(t) = E − Mv2

F , where E is the value obtained
from solution of the DKP model and M is determined by fitting Ẽ to
the TB results [Fig. 4(b)]. The rest mass determined to yield the best
fit shown here, is given byM = 42.06t/v2

F . This mass is heavier than
that of the electron (2.10t/v2

F ), suggesting an analogy with leptons.

the entire hexagonal zigzag ring constitutes a single domain
with embedded (corner) impurities (electrostatic potential
scatterers).

In light of the above, using a large rest mass M in Eq. (9)
[nonrelativistic limit, see Eqs. (4.27) and (4.28) in Ref. 2],
we were able to reproduce in the DKP model (see Fig. 9) the
overall trends of the TB spectrum [Fig. 4(b)] for the zigzag
ring. The DKP parameters used58 were as follows.

Lengths:

L
(n)
1 = L

(n)
3 = a = 1.5a0, L

(n)
2 = b = 28a0. (18)

Rest mass:

M = m
(n)
1 = m

(n)
2 = m

(n)
3 = 42.06t/v2

F . (19)

Potential barrier step at each corner:

V = V
(n)

1 = V
(n)

3 = 80 × 10−5t, with V
(n)

2 = 0. (20)

A schematic representation of these parameters is given in
Fig. 6(c).

In the evaluation of the nonrelativistic limit of the DKP
model, one often sets E = Mv2

F + Ẽ for the positive energies
[see Eq. (4.27) in Ref. 2]. The quantity calculated from the
DKP model in this limit is E, while in comparing with the TB
results [Fig. 4(b)] we plot in Fig. 9 Ẽ vs. �. The value of M
is determined by finding the best fit to the TB results.63 It is
expected that further improvement in the agreement between
the TB and DKP approaches can be achieved by employing
smooth (rather than square-shaped) profiles for the potential
barriers. The constant mass M, found by us here, is 20 times
larger than the rest mass of the electron, indicating an analogy
with electron-like leptons,23 rather than the electron itself.

We note that the large rest mass M found in this
section is unrelated to the energy gap δ0 [see Fig. 4(b)];
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(Mv2
F /δ0 ∼ 105). Indeed in the nonrelativistic regime, the

effective mass is related to the second derivative of the band
spectra.48 Our findings concerning the zigzag graphene ring
are in agreement with the analysis of the authors of Ref. 48
regarding the TB spectra of (infinite) symmetric polyacene,
which is a single chain of fused benzene rings and can be con-
sidered as the thinnest possible zigzag graphene nanoribbon.

V. UNDERLYING RELATIVISTIC QUANTUM-FIELD
LAGRANGIAN

In the above (see Sec. II), we identified characteristic
patterns of tight-binding spectra in planar graphene nanorings
and we described their dependence on the edge termination
(armchair versus zigzag) and the ring shape (hexagonal versus
trigonal). Subsequently, we presented a unified interpreta-
tion of the TB results using a Dirac-Kronig-Penney model
(Sec. III), built upon the generalized 1D Dirac equation
[Eq. (5)]. A central finding of our relativistic DKP analysis
was the close analogy (found in Secs. IV A and IV B) between
the behavior of armchair hexagonal and trigonal graphene
nanorings and the physics of trans-polyacetylene.19–21

A natural next step towards a deeper understanding of the
connection of our findings to relativistic quantum-field theory
is the elucidation of the underlying Lagrangian formalism.
Motivated by the theory of trans-polyacetylene,20 we write a
total Lagrangian density

L = Lf + Lφ, (21)

which is the sum of (partial) Lagrangian densities for the
fermion field � [Eq. (6)] and the bosonic scalar field φ(x).
We note that the scalar field φ(x) was denoted earlier also as
m(x) and was referred to as a position-dependent mass; see
Secs. III and IV A.

The stationary generalized Dirac equation [Eq. (5)] can be
derived from the fermionic Lagrangian density

Lf = −ih̄�† ∂

∂t
� − ih̄vF �†α

∂

∂x
� − φ�†β�, (22)

where we have neglected contributions from the electrostatic
potentials (see discussion in Sec. IV A).

In Eq. (22), the last term

LY = −φ�†β�, (23)

which depends on both the fermion � and scalar φ fields,
has the form of a Yukawa coupling. LY is the potential agent
for rest-mass acquisition by the originally massless fermion
[described by the first two terms in the right-hand side of
Eq. (22)].

The Yukawa interaction is also used in the standard
model64–66 to describe the coupling between the Higgs field
and the massless quark and lepton fields (i.e., the funda-
mental fermion particles). Through spontaneous symmetry
breaking67–70 of the Higgs field [which is a complex SU (2)
doublet of four real scalar fields φ], these fermions acquire
a mass proportional to the vacuum expectation value of the
Higgs field.71–73

The essential observation that we make here is that,
although due to the 1D character of the graphene rings, the
1D Lagrangian in Eq. (21) does not possess the full richness

of the Lagrangian of the Higgs sector in the standard model,
both share the central aspect of symmetry breaking and mass
acquisition by a fermion via a Yukawa-type interaction.

We turn next to the task of constructing the Lagrangian part
Lφ for the scalar field φ, which is of the general form74,75 (in
1 + 1 dimensions, i.e., time plus one space dimension)

Lφ = −1

2

(
∂φ

∂x

)2

− V (φ), (24)

and which preserves the reflectional Z2 symmetry, i.e., it is
invariant under φ → −φ. Note that we are interested in the
adiabatic approximation, and thus we omit the time-dependent
terms in Lφ .

The emergence of a constant mass for the armchair trigonal
ring (Sec. IV B) could simply be accounted for by considering
a constant value of φ = φ0 = M in the fermion Lagrangian
Lf ; then one needs to pay no further consideration to the
bosonic Lφ . However, a more general position-dependent field
φ(x) = m(x) was found to be essential in our DKP-model
analysis of the armchair hexagonal ring (Sec. IV A). In this
case, φ(x) alternates between two unequal values ±φ0, with
φ0 = m0 [see Fig. 6(a)]. This indicates breaking of the Z2

symmetry of the solutions to the equation of motion derived
from the Lagrangian in Eq. (24). An expression for V (φ)
which reproduces qualitatively the above behavior (including
the trigonal ring case) is the so-called φ4, which corresponds
to a quartic double well potential in φ, i.e.,

V (φ) = ξ

4
(φ2 − ζ 2)2, (25)

where ξ and ζ are parameters.
With the potential in Eq. (25), the bosonic sector has the

field equation (see Chap. 2.3 in Ref. 74 and Chap. 1.1 in
Ref. 75)

−∂2φ

∂x2
+ ξ (φ2 − ζ 2)φ = 0. (26)

Two solutions of Eq. (26) are φ(x) = ±φ0 = ±ζ ; these
solutions break the symmetry since φ0 �= 0. Using these
solutions in the Dirac Eq. (5), one obtains the standard
constant-mass Dirac equation1 for the fermionic field. This
case corresponds to the behavior of the armchair trigonal ring
(Sec. IV B), as well as to that of the zigzag hexagonal ring
(Sec. IV C).

In addition, however, Eq. (26) has nonlinear solutions that
interpolate between the locations φ0 and −φ0 of the two
minima of the V (φ) potential. One of these nonlinear solutions
is called the Z2 kink soliton and the other the Z2 antikink
soliton. The kink soliton is given by

φk(x) = ζ tanh

(√
ξ

2
ζx

)
, (27)

and the antikink soliton has the form

φ̄k(x) = −φk(x). (28)

We note that φk(±∞) = ±ζ and φ̄k(±∞) = ∓ζ , while
φk(0) = φ̄k(0) = 0.

Using these kink or antikink scalar fields, the corresponding
generalized Dirac equation [Eq. (5)] possesses fermionic
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FIG. 10. (Color online) Dashed line: The scalar Z2 kink soliton
[Eq. (27)]. Solid line: The particle density (unnormalized) of the
corresponding enslaved fermionic soliton [Eq. (29)]. The values ξ =
1 and ζ = 1 were used. The domain wall is located at x = 0.

soliton20 solutions of the form (here α = σ2, β = σ1)

�S(x) ∝
(

exp
[ − ∫ x

0 φk(x ′)dx ′]
0

)
. (29)

The importance of these fermionic solitons lies in the fact
that they have strictly zero energies;20 thus they fall into the
particle/antiparticle (valence/conductance band) energy gap.
Furthermore, they are localized at x = 0, which is the domain
wall between x > 0 (φ0) and x < 0 (−φ0). The enslavement of
the fermionic soliton �S(x) by the scalar potential of the kink
soliton φk(x) is evident from Eq. (29). This is also reflected
by the localization of �S(x) on the domain wall x = 0 (see
Fig. 10).

It is apparent that such zero-mode fermionic solitons �S(x)
underlie qualitatively the behavior of the fermion excitations
in the armchair hexagonal graphene nanoring (Sec. IV A),
with the corners of the ring behaving as domain walls and
the m(x) stepwise function in the DKP model [φ(x) in
Eq. (5)] mimicking an alternation of Z2 kink and antikink
scalar solitons [Eqs. (27) and (28)]; for a quantum-field-theory
description of a train of alternating kinks and antikinks, see
Chap. 1.7 in Ref. 75.

VI. CONCLUSION

The paper investigated the different behavior of the
Aharonov-Bohm spectra and magnetic-field-induced oscilla-
tions for three characteristic cases of planar graphene nanor-
ings, i.e., an hexagonal ring with armchair edge terminations, a
trigonal ring with armchair edge terminations, and a hexagonal
ring with zigzag edge terminations. The tight-binding results
(Sec. II) were analyzed with the help of a 1D relativistic
Dirac-Kronig-Penney model2 (Sec. III), which accounts for

the virtual superlattice associated18 with the applied magnetic
field. This analysis revealed unexpected topological effects and
condensed-matter analogies with elementary particle physics.

In particular, the behavior found by us for the armchair
hexagonal ring (Sec. IV A) is reminiscent of the extreme
relativistic regime describing zero-energy fermionic solitons
with fractional charge in quantum-field theory37 and in the
theory of trans-polyacetylene.19–22 This regime results from a
consideration of a modified (generalized) Dirac equation with
a position-dependent mass term (or equivalently a position-
dependent scalar bosonic field). In contrast, the quasiparticle
excitations in the armchair trigonal ring (Sec. IV B) behave
as relativistic Dirac fermions having a constant mass. A
unification of these two dissimilar behaviors was presented in
Sec. V by introducing the underlying relativistic Lagrangian
formalism for a fermionic and a scalar bosonic fields coupled
via a Yukawa interaction. The Yukawa term in conjunction
with the breaking of the Z2 reflectional symmetry of the
scalar field may result in two outcomes, i.e., the formation
of a fermionic soliton (armchair hexagonal ring) or mass
generation (armchair trigonal ring). The profoundly differing
behaviors found by us for the armchair hexagonal and
trigonal rings (with both sharing similar spatial dimensions)
are manifestations of the quantum topological nature of
this behavior, as distinguished from “quantum size effects”
which are length-scale-dependent phenomena, originating
from spatial confinement of the electrons (quasiparticles, in
general).76–79

The behavior of the zigzag hexagonal ring resembles
the low-kinetic-energy nonrelativistic regime of a lepton-like
fermion having a rest mass larger than that of the electron
(Sec. IV C). This behavior contrasts with the relativistic ones
found for the aforementioned armchair rings, thus highlighting
the compounded topological and edge-termination effects.

These findings80,81 highlight the potential of graphene
nanosystems for providing a bridge between condensed-
matter and particle physics, well beyond the paradigm of
the massless neutrino-like fermion familiar from the 2D
graphene sheet. Furthermore, beyond the realm of graphene
proper, where atomically precise narrow nanoribbons have
already been synthesized,36 we anticipate that our theoretical
predictions could be tested using an ever expanding class
of designer-Dirac-fermion manmade systems, such as optical
lattices comprising ultracold atoms,10,13 or “molecular”12 and
nanopatterned artificial graphene.44
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