


Published: September 01, 2011

r 2011 American Chemical Society 20343 dx.doi.org/10.1021/jp206673j | J. Phys. Chem. C 2011, 115, 20343–20358

FEATURE ARTICLE

pubs.acs.org/JPCC

Dielectric Nanodroplets: Structure, Stability, Thermodynamics, Shape
Transitions and Electrocrystallization in Applied Electric Fields
W. D. Luedtke, Jianping Gao, and Uzi Landman*

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States

1. INTRODUCTION

The fundamental properties of both neutral and charged
liquid drops (nonconducting as well as conducting), under the
influence of applied uniform electric fields which may cause
shape deformation and possible drop breakup (fragmentation),
have been subjects of continued basic and applied research efforts
(see reviews in refs 1�12). These systems are of interest in
diverse venerable areas including: electrospray ionization,1,2,7,13

aerosol science,12meteorology,14,15 electrospray propulsion,2,16,17

inkjet printing,18 electrospining,19 nanoencapsulation,20 and tar-
geted drug delivery.21 Additionally, there has been significant
interest in the properties of liquids as insulating materials under
high-voltage conditions because of their high dielectric strength.22

Early fundamental observations on the effects of electric
fields (and charges) on liquid drops have been made by Lord
Rayleigh,23,24 and shape changes culminating in formation of conical
tips occurring for drops held at the end of a capillary have ap-
parently been described first in 1917 by Zeleny.25 Both Zeleny
and laterWilson andTaylor,26 who explored the response of soap
films to applied electric fields, have observed the emission of fine
fluid threads from the conical tips, subsequent to shape deforma-
tion. A seminal contribution was made in 1964 by Sir Geoffrey
Ingram Taylor, who, being primarily interested at the time in the
behavior of water drops in strong electric fields (such as in

thunderstorms), demonstrated nearly conical equilibrium shapes
of water drops at the end of a specially formed electrode.27 More-
over, and most pertinent to the subject of our investigation, there
is the theoretical model advanced by Taylor for the response of
the drop to the applied electric field, which was based on an
assumed prolate spheroidal shape and a normal-stress balance
satisfied at both the poles and the equator of the drop.

The exposure of a drop to an electric field can cause various
responses, such as shape deformation, rotation, coalescence, or
breakup. In this study, we focus first on field-induced shape deforma-
tions of a dielectric droplet. The problem may be stated as fol-
lows: a dielectric liquid droplet placed in an electric field will
become polarized, and the shape of the droplet will be deter-
mined by a balance between the electrical forces on the induced
surface charges and the interfacial tension forces. Alternatively,
this can be stated as a complex minimization problem where a
search should be performed for the shape that yields the lowest
total energy (that is, the sum of the electric and surface contri-
butions). The difficulty lies in the interdependence (coupling) of
the electric field distribution (as well as the surface tension or
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ABSTRACT: The response and properties of a dielectric
nanodroplet with a 10 nm diameter made of formamide placed
in a uniform electric field are explored with molecular dynamics
simulations and an analytic free energy formulation. Increasing
fields cause the initially spherical liquid droplet to undergo
gradual prolate spheroidal elongation along the field direction
that culminates in a shape instability and a first-order shape
transition to a slender liquid needle at a field of ∼0.50 V/nm.
This transition is accompanied by enhanced reorientation of the
molecular dipoles along the field direction, with the elongated
droplets exhibiting a field-induced ferroelectric state, unlike the
state of the droplet under field-free conditions. For larger fields, we find further gradual enhancement of the molecular dipole
reorientation and the onset of a first-order electro-crystallization transition at a field of 1.4375 V/nm. This transition is portrayed by
a sharp increase in the positional order parameter, a significant decrease in the molecular diffusion, and further preferential
reorientation of the dipoles. Both transitions exhibit hysteresis as the change in the electric field is reversed, that is, for decreasing
fields. Data from themolecular dynamics simulation were used for determination of the field-dependent dielectric permittivity of the
formamide droplet. An analytic dielectric continuum model is developed, and a free energy expression which includes polarization,
surface, and saturation terms is formulated, yielding results for the variation of the droplet shape as a function of the applied field, or
electric Bond number, in agreement with the results obtained from the molecular dynamics simulations. Proper inclusion of
dielectric saturation effects in the continuummodel, expressed in terms of an electric field-dependent dielectric permittivity, is found
to play an important role.
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surface energy) and the droplet shape, whichmust be determined
self-consistently. The competition between the electrical and
capillary forces (energies) emerges in many areas involving elec-
trohydrodynamic flow. For example, some of the most relevant
physics involved in colloid thrusters and electrospray devices
operating in the cone-jet mode may be seen already in the
simpler problem of an elongated liquid drop in a uniform external
electric field, including the formation of electrified jets and
emission and acceleration of small charged droplets at the ends
of the elongated parent drops. This is a classic problem in the
study of electrified fluids that has been studied both experimen-
tally and theoretically,2,5,7,27�32 and it parallels similar phenomena
in ferromagnetic fluid drops under the influence of an externally
applied magnetic field.5,29,32,33

The desire to identify and understand electric-field-induced
properties of liquid droplets on a molecular level, coupled with
the possible emergence of new physical behavior in fluid systems
with sizes reduced to the nanoscale range (particularly pertaining
to the formation and stability of nanoscale fluid structures, e.g.,
nanojets and nanodroplets),2,9,34 coupled with the ever-continu-
ing trend of device miniaturization, provide ample motivation for
investing research efforts aimed at gaining deeper insights into
these issues. In this paper, we focus on theoretical molecular
dynamics (MD) simulations and phenomenological investiga-
tions of the response to applied static electric fields of a dielectric
droplet of nanosclae dimensions (diameter of 10 nm under field-
free conditions) made of formamaide (HCONH2). This mole-
cular fluid was chosen because of the high molecular electric
dipolemoment of formamide (∼3.9 D, that is, about twice that of
an H2O molecule) and the consequent propensity for solvation
of salts at relatively high concentrations, thus making it a working
material in current experimental, and theoretical, studies of
electrosprays, electrified jets, and colloidal thrusters.2,17,35 We
note that formamide has also been the focus of experimental and
theoretical studies since it represents a simple model compound
displaying the same type of hydrogen bonding between amide
groups present in many biological systems.

In our study, the formamide nanodroplet is placed in a con-
stant uniform electric field along a given axis (the z-axis), and the
properties of the droplet are probed as the strength of the applied
field is varied up to 2 V/nm, which is the range of fields of rel-
evance to current research in areas related to the formation and
stability of droplets in electrosprays and colloid thrusters.2,35

This magnitude of the field is large enough to generate a pro-
nounced elongation of the formamide droplet. We vary the field
strengths over a wide range and compare the results obtained from
our MD atomistic simulations with those which can be calculated
through the use of continuum theories.5,27,29,30 Our results show
that under the influence of fields of about 0.5�1.5 V/nm the drop-
let exhibits shape changes, transforming from an equilibrium sphere
at zero field to a prolate spheroidal shape with field-dependent long
axis (c) to short axis (a) aspect ratios, λ = c/a, of the order of
∼15�20. In these elongated droplets, the molecular dipoles are
found to be reoriented by the field along the long axis of the droplet
(coinciding with the field direction), thus exhibiting a ferroelectric
state (unlike the state of the droplet in field-free conditions).

Furthermore, we find that for larger external electric fields
first-order electro-crystallization of the droplet occurs. This leads
us to conclude that external electric fields can influence in an
essential manner the shape, structure, and thermodynamic (e.g.,
aggregation phase, that is, transition from liquid to solid) proper-
ties of dielectric droplets.

Before we provide a synopsis and the plan of the paper, we
comment again on the common occurrence of electric field
strengths in the volts/nanometer range in studies of electrified
fluid/vacuum interfaces involving charged and dielectric fluids.
For example, in electrospray devices the electric fields at the apex
of a Taylor cone,2 where a fine jet is formed, are on the order of
volts/nanometer, even though the average field due to the nozzle
to extractor potential may be much smaller. This is true as well in
the high curvature regions of droplets of dielectric/ionic mix-
tures, resulting in electric fields that are large enough to cause
elongation and possible emission of charged droplets.2 Even under
external field-free conditions, a charged droplet may fission or emit
cluster ions when the excess charge is large enough,36 due to its self-
field, and under such circumstances themaximum field at the surface
can again be of volts/nanometer magnitude at the regions where
much of the interesting and relevant physics takes place, e.g., where
instabilities and charged jets emanate and clusters detach.

Following a description of themolecular dynamics simulations
(MD) in Section 2, we discuss in Section 3 results of the simu-
lations pertaining to properties (density, melting point, diffusion
constant, and surface tension) of field-free liquid formamide
which comparewell with experimentallymeasured data. In Section 4
we focus on the electric-field-induced thermodynamic, shape,
structural, and other physical properties of the simulated for-
mamide (10 nm diameter) droplet. We start with a presentation
of MD results about field-induced shape changes of the droplet,
which (starting from a field-free spherical liquid droplet) is found
to be described well, as a function of the applied field, as a prolate
spheroidal (PS). The elongation process is found to culminate in
a shape transition into a needle-shaped liquid droplet with an
aspect ratio λ = c/a = 12, where c and a are the long and short
semiaxes of the elongated PS, occurring at a critical value of the
applied electric field E0c = 0.5 V/nm. In the highly elongated
state, the dipoles of the formamide molecules orient preferen-
tially along the applied field direction (the long axis, c, of the PS)
exhibiting a high degree of hexagonal order in the (cross-
sectional) plane normal to the c axis. The aspect ratio increases
gradually for higher fields, culminating in an electrocrystallization
(ec) phase transition at E0ec = 1.4375 V/nm, where the prolate-
spheroidal liquid droplet develops crystalline order with the
dipoles showing further orientational ordering along the c axis,
and the crystallization transition of the droplet is signaled by a
sharp vanishing of the molecular diffusion constant.

A continuum model of the shape elongation and shape tran-
sition is developed in Section 5. The model is based on a des-
cription of the response of the PS droplet to the applied electric
field in terms of a field-dependent dielectric function formula-
tion, which with the inclusion of nonlinear dielectric saturation
effects is found to yield a faithful description of the atomic-scale
MD simulation results. We also describe in Section 5 a free-
energy model for the nonlinear prolate spheroidal dielectric
droplet, which compares well with the MD results, and discuss
the van der Waals contribution to the droplet’s surface and inter-
nal potential energies. Finally, we analyze the entropy changes of
the droplet as a function of the applied field. In Section 6 we offer
a summary of our results.

2. COMPUTATIONAL METHODOLOGY

The principal theoretical methodology that we employ in this
study is molecular dynamics (MD) simulations where the equa-
tions of motions of the interacting particles are solved numerically
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with very high spatial and temporal resolution (typically 0.01 nm
and under 0.01 ps). To simulate systems that are large enough,
thus allowing assessment of concepts derived on the basis of
continuum theories, it is important to utilize simple efficient
representations of the interatomic forces. Formamide is a planar
molecule whose internal degrees of freedom and intramolecular
forces are of much lesser significance for the phenomena ex-
plored by us here. Consequently, we treat the formamide mole-
cule as a solid body using quaternion dynamics,37a implemented
via a midstep implicit leapfrog algorithm37b that has been shown
to be an extremely stable integration scheme (with only a very
small energy drift occurring for long simulation periods). The
geometry of the molecule is taken from high-resolution X-ray
studies of crystalline formamide.38

In our simulations, we employed the AMBER force field para-
meters39 for the intermolecular van der Waals interactions be-
tween the atomic sites located on different molecules. For the
atoms of the formamide molecule, we use the CHELP-BOW40

partial charges; these have been shown to give a good overall
description of the electrostatic potential of the molecules. We
remark here that the model does not include field-induced elec-
tronic polarization, and consequently, the dielectric response
that we explore is due to molecular reorientations caused by the
applied field. This approximation is well justified since, using the
measured41 electronic polarizability of formamide (α = 4.08 �
10�24 cm3), the dipole moment induced (μind = α E) by a field
of 1 V/nm is μind = 0.136 D, which is merely about 3.5% of the
permanent dipole of the formamide molecule (3.9 D) for electric
fields of interest in our study. While no truncation is used for the
electrostatic (Coulomb) interactions, the weak intermolecular
van derWaals interactions are truncated on a group basis through
the use of a smooth switching function42 that depends on the
distance between molecular centers of mass so that entire groups
of atoms on one molecule interact with the entire group of atoms
on another molecule.

Since large-scale atomistic simulations involving electrohy-
drodynamics of complex fluids are rather scarce, we explored first
certain issues pertaining to achieving faithful modeling of such
systems. In particular, we interrogated first the employment of
long-range Coulomb interatomic potentials with finite interac-
tion cutoffs. Our test studies of formamide droplets in uniform
external electric fields of varying strengths have shown the emer-
gence of significant cooperative many-body effects within the
dipolar fluid as the cutoffs were increased from values of ∼0.9�
1.2 nm (typical values in many studies involving atomic partial
charges) to 3.6 nm. For example, droplets that maintained their
spherical shape when simulated with small interaction cutoffs
exhibited significant elongation as the cutoff increased as a result
of cooperative dipole�dipole and dipole�field interactions, in
qualitative agreement with existing continuum theories of di-
electric fluids in electric fields.5,29,30 From these observations, it
became apparent that the long-range interactions needed to be
treatedmore accurately, that is, without the employment of cutoffs.

To address these issues, we implemented a parallel version
of the fast multipole method, FMM,43 adapted for our purposes.
In the FMM, a system is spatially represented in a large, roughly
cubic, “root-cell”. The latter contains a hierarchy, or “tree-structure”
division, of “child” subcells obtained by dividing the root-cell into
octants and then allowing these child cells to be the parent cells of
further binary subdivisions until one reaches the smallest “leaf”
cell. Electric multipole moments are computed for all cells at all
levels from the atomic charges belonging to molecules contained

within the cells. Atoms belonging to molecules in the basic leaf
cell interact directly with all the atoms of molecules in neighbor-
ing leaf cells, while they interact only with the multipole mo-
ments of more remote cells; the more remote the cells are from
the central leaf cell, the larger the cells are allowed to be. Thus, an
atom interacts with a small set of multipoles representing entire,
increasingly larger, volumes of remote space, rather than with all
of the atoms contained within it—this is the main feature that
enables one to model efficiently large systems involving long-
range interactions. We carried the multipole calculations tom = 6
(m = 0 and 1 are the monopole and dipole levels). The size of the
smallest (leaf) cell was 1.2 nm, and this value was used as the
spherical cutoff for the short-range van der Waals interactions.

For the simulations performed at constant temperature, we
use a velocity rescaling algorithm44 (see also ref 37, eq 7.59) with
a relaxation time of 3 ps. This is applied only to the molecular
center of mass velocities. We have observed that equipartition of
energy between translational and rotational degrees of freedom is
very rapid, and there is no need to directly modify the rotational
kinetic energies. Additional details of our code necessary for this
study will be described further as we discuss our results.

3. PROPERTIES OF THE FIELD-FREE LIQUID

To assess the merits of the parametrized interaction potentials
used in our simulations, we tested first certain thermodynamic
and physical properties of the simulated formamide model, in-
cluding evaluations of the melting point, surface tension, and
diffusion constant. Since experiments on liquid formamide are
commonly performed around room temperature (that is about
25 K above the melting point of crystalline formamide), we focus
here on results obtained from MD simulations performed at
this temperature range. As shown below, the results of these
exploratory simulations validate in a quantitative way the accu-
rate description of the thermodynamic, structural, and transport
(diffusion) properties of the formamide model, in both the solid
and liquid phases and at phase coexistence.
Melting Point, Density, Diffusion Constant, And Surface

Tension. The melting point of the modeled liquid formamide
was estimated as the coexistence temperature of the crystalline
and liquid phases. A crystalline slab containing ∼5200 mole-
cules was constructed according to the crystallographically deter-
mined P21n space group structure45 with the crystalline layers
(formamide sheets) lying parallel to the xy plane, with two free
surfaces (vacuum interfaces) along the z-axis. Two-dimensional
periodic boundary conditions (2D pbcs) were imposed in the xy
plane, and reflecting boundary conditions (in the z direction)
were employed, acting on any gas-phasemolecule encountered at
the ends of the computational cell. In these simulations, we
replicated the basic root-cell (including its tree structure) and
“stacked” three of them along the z-axis to create a long narrow
tree structure (requiring an appropriately modified nonstandard
FMM algorithm;2 this formulation is particularly useful for
efficient simulations of systems such as highly elongated droplets
or long liquid jets). The size of each FMM root-cell was∼5.8 nm
(in the x direction), 4.7 nm (in y), and by 5.6 nm (in z) giving a
z-dimension of the calculational cell of ∼3 � 5.6 nm, while the
solid slab (centered about z = 0) extended about 11 nm along the
z-axis, leaving ∼3 nm of free space at each end of the compu-
tational cell.
After equilibrating the system well below the experimental

melting point, the energy of the systemwas elevated via scaling of
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the particles’ velocities with subsequent lengthy constant energy
equilibrations, until approximately a third (along the z-axis) of
the system was melted and continued to evolve in equilibrium
with the remaining solid part; for a description of the simulation
method used for determination of the melting point, see ref 46a.
The temperature corresponding to this liquid/solid coexistence
state, i.e., themelting point, was found to be close to 285 K, which
is 9 K above the experimental value46b of 276 K. Accordingly, to
ensure that the simulated system is well into the temperature
range corresponding to a liquid phase, we chose to perform our
simulations at T = 310 K (that is, shifted by 10 K above room
temperature, T = 300 K); this shift does not affect the physical
behavior of our system in any noticeablemanner. The density of the
simulated formamide crystal was found to be 1.26 g/cm3 in agree-
ment with the experimental value45a (1.26 g/cm3).
The density and diffusion constant of liquid formamide were

determined by us from constant (zero) pressure simulations of
bulk liquid formamide, where the spatial dimensions of a cubical
root-cell were allowed to vary, while using 3D pbc and the FMM
with a modified constant-pressure algorithm.37,44 We have also
modified the FMM algorithm so that when periodic boundary
conditions are employed the tree structure of the root-cell, along
with all its computed multipoles, is replicated as neighboring
image cells. In this way atoms in the central computational cell
are acted on by the correct multipole structure as they interact
with all of their neighboring periodic image cells. The width of
the cubical root cell was ∼6 nm. The density of the pure form-
amide liquid (at 310 K) was found to be ∼1.10 g/cm3 in good
agreement with the experimental value46b of 1.13 g/cm3, and the
computed diffusion constant was found to be ∼1.2 � 10�5 cm2/s
which compares well with values ranging from 0.55 to 1.27 �
10�5 cm2/s estimated fromprevious experiments and simulations.47

Since capillary forces act as a major driving force in the pheno-
mena that we study, it is important to obtain an estimate for the
surface tension of the simulated liquid. To this aim, we deter-
mined the surface tension of liquid formamide in two different
ways. First, we simulated a liquid slab maintained at T = 310 K
with the same number of molecules and type of boundary
conditions as in the liquid�solid coexistence study described
above. In this case, we replicate the basic root-cell three times
along the z-axis. The width of each cubical FMM root-cell
was ∼5.6 nm, giving a z-dimension of the calculational cell of
3 � 5.6 ∼ 17 nm, while the liquid slab (centered about z = 0)
occupied ∼11 nm along the z-axis, leaving sufficient space to
establish both liquid and vapor regions.
The normal (PN) and tangential (PT) components of the

molecular pressure tensors were used to find the surface tension
γ by integrating the difference (PN � PT) across each liquid
interface.48 The value that we found, γ = 0.046 N/m, compares
well with the experimentally determined value45 of γexp = 0.057.
In an alternative method, we used the fact (Young�Laplace

relation) that the pressure inside a spherical droplet of radius R is
P = 2γ/R. We formed a spherical droplet of formamide by
“carving out” a ∼10 nm diameter drop from the bulk constant-
pressure simulation system that we described earlier and allowed
it to equilibrate further using “absorbing” boundary conditions;
namely, the pbc's were lifted, and the few evaporating molecules
that crossed the boundaries of the 19.2 nm wide FMM root cell
were removed from the system. Using the averaged hydrostatic
pressure in the interior of the droplet and the droplet’s equimolar
radius, we computed a value of γ = 0.046 N/m in agreement with
the value we determined above. The density in the interior of the

droplet interior was found to be about 1.11 g/cm3; results ob-
tained from simulations of a larger diameter droplet (20 nm)
agree well with these values.

4. FIELD-INDUCED SHAPE AND CRYSTALLIZATION
TRANSITIONS

In this section, we focus on the thermodynamic and electric-
field induced structural transformations of the dielectric nano-
droplet, with the strength of the externally applied electric field
serving as a control parameter. Our investigations were carried
out at T = 310 K (see earlier discussion) and involved a drop-
let with a diameter of 10 nm (under field-free conditions); the
droplet contains 7150 formamide molecules (that is, 6� 7150∼
43 000 atoms carrying partial charges). The properties of the
drop as a function of the strength of the applied electric field E0
(from 0 to 3 V/nm) were determined from simulations where for
each successively incremented value of the field the drop was fully
equilibrated before equilibrium-averaged results were computed.

Prior to presentation of our results, we remark on certain as-
pects of the analysis of the MD simulations. Shape deformations
of the liquid droplet induced by uniform external electric fields
leading to the appearance of structures with geometries close to
prolate spheroids have been described experimentally and the-
oretically (using continuum approaches29,30). Furthermore, un-
der certain circumstances the emergence of conical regions near
the ends of the elongated structures has been observed. In the
present study, we have found that the shape of a 10 nm form-
amide drop placed in a uniform electric field may indeed be well
characterized as a prolate spheroid (with the aspect ratio λ = c/a
between the semimajor (c, long) and semiminor (a, short) axes,
varying as a function of the field strength), with some deviation
occurring for sufficiently strong fields (i.e., for highly elongated
spheroidal shapes) near the ends. A prolate spheroid (ellipsoid)
is described in cylindrical coordinates by the equation (rz/a)

2 +
(z/c)2 = 1 (where rz is the radius at the position z along the
symmetry axis), and plots of rz

2 vs z2 from our simulation data
exhibit a highly linear relationship; the minor and major axes and
the corresponding aspect ratios, λ, are determined from least-
squares fits to the above equation for different values of the
applied field.

In finding the axial profile (rz vs z), the z-axis (along which the
external electric field is applied and the droplet elongates) is
divided into bins of width dz = 0.2 nm, and the number of mole-
cules Nz in each bin is computed. Using the mean density, F,
inside the droplet, an equimolar radius rz is computed for each z-
bin with the relation Fπrz2dz = Nz. Additionally, for the chosen
bin width dz, one can determine a cutoff radius rc that corre-
sponds to one molecule, Nz = 1. Starting from the center of the
droplet, the first bins along the positive and negative z-axis that
have an equimolar radius rz < rc are taken as the two end points of
the droplet. In performing the least-squares fit of the averaged
radial profile data to a prolate spheroid, contributions are in-
cluded only from bins bracketed between these end points. This
procedure yields prolate spheroid shapes consistent with the
droplet profiles for both small and large elongations.

The density F inside a droplet is determined for each field
strength by time averaging the density inside a test volume
located in the interior of the droplet whose shape is taken to be
the same as that of the droplet itself. This is accomplished by
making first a rough estimate of the semiminor and semimajor
axes using radial as well as axial binning of the atomic positions
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and determining the largest nonempty radial and axial bins, res-
pectively. The internal prolate spheroid test volume is defined by
scaling the so determined lengths of the axes by 3/4; this proce-
dure essentially alleviates uncertainties due to surface effects. The
result is not sensitive to the scale factor (3/4) that we employed
here; scaling the original axis estimates by 1/2 gives essentially
the same density.
Instability, Elongation, Ordering, and Electrocrystalliza-

tion. The effect of the external electric field is reflected in geo-
metrical, structural, and dynamical properties of the droplet, dis-
played in Figure 1, where we show the variation with the applied
field of the aspect ration λ = c/a, the molecular diffusion constant
D, the normalized dipole moment (per molecule) of the droplet
in the field direction (z), μ̅ = μ/μF (where μF is the dipole mo-
ment of a formamide molecule), and the order parameter49 O6 =
< |Σj⊂nn exp(i6θj)|/6 >k expressing the degree of hexagonal
order in the droplet (with z as the symmetry axis), given by the
above average over all the molecules in the droplet, 1 e k e N

(and if desired over a certain simulation interval). To evaluateO6

we determine first the six nearest-neighboring (nn) molecules

Figure 1. Time-averaged results for properties of the formamide
nanodroplet, obtained from MD simulations, plotted as a function of
the applied electric field, E0. Results are shown for both increasing (filled
symbols) and decreasing (empty symbols) applied electric fields.
(a) Aspect ratio, λ = c/a, where c and a are the long and short semiaxes
of the prolate-spheroidal droplet. Note the sharp increase of λ at E0 ∼
0.5 V/nm, reflecting an elongation shape transition, and the crystal-
lization, ordering, transition at E0 ∼ 1.44 V/nm which is signaled by a
smaller increase of λ. Both transitions show hysteretic behavior when the
field is lowered. Also included are images (side views) of the droplet at
various stages of the field-induced elongation and crystallization pro-
cesses. (b) Diffusion constant of the formamide molecules (center of
mass), showing that the droplet remains in the liquid state when it
undergoes the shape transition for E0 near 0.5 V/nm, and a sharp
decrease in the molecular diffusion accompanying the crystallization
transition. Note the delayed remelting of the crystallized droplet
(occurring at E0 ∼1 V/nm) when the applied field is lowered. (c) The
O6 order parameter showing a sharp increase upon droplet crystallization
and an equally sharp decrease upon remelting. (d) z-component of the
droplet electric dipole moment per molecule, μ, averaged over all the
molecules and normalized by the value of the dipole moment of a
formamide molecule, μ/μF, exhibiting, as a function of the applied
electric field, variations similar to those of the aspect ratio (shown in (a)).

Figure 2. Images of molecular configurations recorded in the molecular
dynamics simulations illustrating the progression of stable states of the
formamide droplet as the externally applied electric field strength, E0, is
initially raised [images shown in (a) and the topmost image shown in
(b) for λ = 20] and subsequently reduced [shown in (b) for λ = 19]. The
10 nm length scale shown in (a) applies to all images except the enlarged
views (b, bottom). (a) At zero field, the spherical droplet is undistorted
with an aspect ratio λ = 1 which increases to λ = 1.5 at E0 = 0.5 V/nm
with the droplet undergoing a prolate spheroidal distortion. As the field
is raised above the critical field, E0c = 0.50 V/nm, the liquid droplet
undergoes a shape transition by elongating abruptly to an aspect ratio
of λ = 12. A side view of the elongated liquid droplet at a field of 0.625
V/nm is shown at the bottom of (a). (b)When the electric field strength
reaches the electro-crystallization critical field, E0ec = 1.4375 V/nm, the
droplet crystallizes, with further increase in the field causing only a slight
change. Shown at the top of (b) is a side view of the fully (electro)
crystallized droplet for λ = 20. As the field is lowered (see Figure 1) the
droplet displays hysteretic behavior (b, middle) and exhibits a solid/
liquid (sl) coexistence, until a lower field of 1.0 V/nm is reached at which
point the system returns completely to the liquid state (see Figure 1). A
side view of the droplet showing sl coexistence, with λ = 19, is shown in
the middle of (b). A detailed view of one end of the sl droplet is shown at
the bottom, with a 2.5 times enlargement. In the sl coexistence state,
lattice planes displaying two crystalline domains differing by a 30�
rotation about the c-axis (along the applied field direction) are observed.
Also shown is a 2 nmwide cross-sectional view (image at the bottom left
of (b)) of an ordered region (enlarged an additional 1.25 times) that is
typical of both the fully ordered and sl droplet states. Overlaid on the
images of the droplets in (b) is a curve showing the variation of the
average z-component of the droplet’s electric dipole moment (per mole-
cule), normalized by the dipole moment of a formamide molecule, μ̅ =
μ/μF. For both the fully crystalline ordered (λ = 20) droplet (top of (b))
and the ordered regions of the droplet in the sl coexistence state (see
central segment of the λ = 19 state, middle of (b)), we find μ̅ = 0.95; for
the former μ̅ = 0.9 near the tip, while for the sl coexistence droplet μ̅ =
0.85 in the disordered tip region (see bottom image in (b)). In the
molecular configurations, the oxygen atoms of the formamide molecule
are shown in pink, the hydrogen atoms in light blue, the carbons in light
green, and the nitrogens in dark blue.
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(1 e j e 6) to molecule k. The six molecules that are nn to a
chosenmolecule k are taken to be laterally located with respect to
the chosen molecule if they are distanced from it along the z-axis
by no more than 0.4 nm and by no more than 0.6 nm laterally
(molecules near the surface of the droplet that may have less than
six nn are also included). The center of mass (com) positions of nn
molecules obeying the above conditions are projected on the xy
plane (i.e., the plane normal to the z axis) that contains the com of
the chosen (k) molecule. In the above expression for O6, θj is the
anglemade by the vector (in the xy plane) connecting the center-of-
mass of molecule k and the projected com location for mole-
cule j, with an (arbitrarily chosen and fixed for all the molecules)
reference axis lying in the xy plane; for perfect hexagonal order of
the centers of masses of the molecules, O6 = 1.
Also included in Figure 1a are snapshots of the droplet for

selected values of the electric field. Selected representative con-
figurations of the droplet, and some of their associated physical
characteristics, taken for various values of the applied electric
field, are displayed in Figure 2. Certain distinct features and pat-
terns are evident from inspection of Figure 1, including field-
induced shape elongation, ordering, and electric-field-induced
crystallization (or electro-crystallization (ec)) that is found to
occur for stronger fields. Additionally, we observed pronounced
hysteresis when the magnitude of the applied field is decreased.
For fields up to 0.5 V/nm, the liquid droplet elongates mildly

in the direction of the applied field. However, for higher fields,
the droplet becomes metastable, undergoing an elongation shape
transition for applied fields between E0 = 0.5 and 0.625 V/nm.
This transition is portrayed by a rapid change in the aspect ratio,
λ, which increases in the above range from an initial value of
1.5 to 12 (see Figure 1a), resulting in a needle-shaped drop-
let (see Figure 2a). The shape transition is accompanied by a
marked increase in the normalized z-component of the average
molecular dipole moments from about 0.1 to 0.7 (Figure 1d).
The field-induced reorientation of the molecular dipoles trans-
forms the droplet to a ferroelectric state, unlike the state of the
droplet under field-free conditions where it does not have a net
dipole. Throughout the elongation transition (with gradual elong-
ation continuing past the shape transition, for fields in the range
of 0.625 V/nm < E0 < 1.4375 V/nm), the droplet remains liquid
(see, respectively, the diffusion constant D and the order para-
meter O6 in Figure 1b and 1c for E0 < 1.4375 V/nm). We note
here the gradually diminished molecular diffusivity for fields in
the range of 1 and 1.4375 V/nm and the sharp drop to zero
associated with electro-crystallization when the field strength
exceeds E0ec = 1.4375 V/nm.
The onset of shape instability of dielectric droplets for electric

fields exceeding a critical strength has been the subject of earlier
studies.6,27 Indeed, as noted already in Section 1, Taylor pre-
dicted theoretically27 that a droplet of initial radius R (under
field-free conditions) will undergo an instability for an external
field strength E0 satisfying (MKS units) E0c(4πε0R/γ)

(1/2) =
1.625. Using for the computed surface tension of the droplet
studied here γ = 0.046 N/m and R = 4.84 nm for the computed
equimolar radius yields (from the above relation) a predicted
critical field E0c = 0.48 V/nm, which is only slightly lower than
the field found in our simulation at the onset of instability leading
to the shape transition (see Figure 1a); when the experimental
surface tension γ = 0.057 N/m is used in the above relation, the
predicted critical field strength is 0.53 V/nm.
At a field E0ec = 1.4375 V/nm, a second critical field is reached,

signaled by a small, but discontinuous, change in shape, a further

elongation to λ≈ 20, and an increase in μ̅ (see Figure 1 and top
configuration in Figure 2b); note the needle-shaped droplet with
λ ≈ 20 (calculated for E0 = 1.5 V/nm) shown at the top of
Figure 2b, exhibiting a nonuniformdistribution of the (normalized)
dipole moment (μ̅ = μ/μF), with the lower values found at the
droplet’s ends reflecting a somewhat reduced degree of dipolar
alignment at these regions. This transition is signaled (unlike the
shape change at lower fields, discussed above) by a precipitous
increase in the hexagonal order in the droplet (see Figure 1c) and
a concomitant discontinuous vanishing of the molecular diffu-
sion in the droplet (see Figure 1b). These changes are the result
of a field-induced electro-crystallization (ec) phase transition
occurring at E0ec. No further essential changes occur for higher
fields E0 > E0ec.
When the strength of the electric field is lowered from that of

the electro-crystallized state, the system exhibits a hysteretic
behavior. Two transition regimes are found. The first occurs near
1 V/nm. As the field strength is lowered from∼1.44 to 1.0 V/nm
(where the droplet was previously in a liquid state), a solid/liquid
(sl) coexistence emerges; see middle and bottom configurations
displayed in Figure 2b (calculated for E0 = 1.0 V/nm during the
field lowering process) where the middle region of the droplet is
characterized by crystalline order, while the regions closer to the
ends of the droplet exhibit liquid-like behavior. As the field is
decreased from ∼1.44 to 1 V/nm, the crystalline middle region
gradually reduces in size (compare configurations shown at
the top and middle of Figure 2b), and when E0 = E0sl ∼ 0.8
V/nm, a transition to a complete liquid state is encountered, where
the diffusivity (Figure 1b) and the degree of hexagonal order
(Figure 1c) are found to attain liquid-like behavior, while the
elongation (λ, see Figure 1a) and z-dipole order parameters
(Figure 1d) correspond to an elongated and molecularly aligned
(relatively high μ̅) droplet. Generally, we conclude that the
trends observed during the solid/liquid coexistence stage are es-
sentially the reverse of those seen when the liquid droplet ap-
proaches the electro-crystallization transition from lower fields.
The second hysteretic feature occurs for the liquid-like droplet

that, as aforementioned, maintains an elongated and molecularly
aligned state (characterized by relatively high values of λ and μ̅)
until E0 = 0.375 V/nm (see Figure 1a and 1d). This type of
hysteresis has been addressed in a number of studies.5,29

We conclude this section with observations made from both
constant-temperature and constant-energy simulations pertain-
ing to the state of the droplet after switching-off (suddenly) the
electric field, starting from a highly ordered state (e.g., E0 =3
V/nm). In both simulations we found that the temporal evolu-
tion for return of the droplet to the original spherical liquid dis-
ordered state is exponential with a time constant of ∼200 ps. In
the constant-energy simulation, the temperature of the droplet
decreases (since in the recovery process the potential energy
increases, i.e., becomes less negative) from its initial 310 to 283 K
(which is essentially the same as the bulk freezing point of 285 K
determined by us for the simulated fluid, see discussion above).
We have also noted that the state of the droplet at high field

strength can be ordered or disordered depending on the tem-
perature. This reflects an interplay between temperature and
applied field strength in determining the phase behavior of the
dielectric droplet. Taking the polar fluid to a state-saturated
polarization under high electric field strength is analogous to the
“poling” process used to align dipolar domains in ferroelectric
materials,50 in which a high dc electric field is applied to a sample
at an elevated temperature, and after the domains are sufficiently
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aligned the temperature is lowered back to room temperature
(in the presence of the field) to “lock in” the highly aligned state.
This analogy suggests variations of our study in which the tem-
perature of an ordered polarized droplet at high field strength is
lowered significantly to explore to what extent the polarization
and order can be maintained (locked in) and what behavior will
be observed under variations of the applied field.

5. COMPARISON TO CONTINUUM THEORY

The energetics and response of a dielectric droplet in a uni-
form external electric field have been the subject of a number of
theoretical studies.5,6,29,30 The droplet shape is usually taken to
be axisymmetric, similar to the experimentally observed shapes,
and the geometry is further refined through minimization of
formulated free-energy models via droplet shape variation as a
function of the applied external electric field.29,51,52 There have
also been reports about studies based on a force balance ap-
proach, where the balance between the electrical and capillary
stresses across the droplet surface is considered;5,6,27,29�31 in
some of these approaches, nonlinear polarization effects have
been considered.31 The droplet surface is often modeled as a pro-
late (elongated) spheroid, PS, which captures the basic overall
shape of a droplet undergoing elongation in an electric field.
More complex droplet shapes, such as conical droplet ends that
can form under certain circumstances, were considered in more
detailed studies (see ref 5 for review).

The wealth of detailed information generated in our MD
simulations allows us to explore and assess the appropriateness of
continuum-based models for the description of the behavior of
nanoscale droplets. Such evaluation led us to introduce a new
free-energy model in which the shape of the dielectric droplet is
represented as a prolate spheroid, but unlike previous models
where the permittivity (dielectric constant) is taken to be
independent of the field strength, we found that a proper des-
cription of the behavior of the droplet requires that the permit-
tivity of the droplet be allowed to vary as a function of the electric
field inside the droplet. This leads to the inclusion of a new term
in the expression for the free energy. We will show that these
modifications to the standard PS free-energy model bring the
results of the model into excellent agreement with our atomistic
MD simulations. Since the novel aspects of our model are asso-
ciated with nonlinear dielectric properties, we will refer to our
model as the nonlinear prolate spheroid, or NLPS, model.
A. Dielectric Droplets in Strong Electric Fields.When a fluid

droplet made up of polar molecules is subject to an external
electric field, the resulting field inside the droplet causes both an
induced polarization of the molecular charge and a polarization
due to dipole orientation. For small field strengths, the polariza-
tion (dipole moment, P, per unit volume, V) varies linearly with the
internal field strength E, P ¼ P=V ¼ ε0ðε� 1ÞE, where ε is
the relative permittivity (which we sometimes term “dielectric
constant”, although it is allowed to vary as a function of the
electric field51,52); we note that MKS units are used here,
bringing a scaling factor of 4πε0 compared to the Gaussian units
employed in some previous studies. For larger applied fields, the
competition between thermal and polarization effects leads to a
nonlinear relation between the polarization and the field

P ¼ P=V ¼ ε0ðεðEÞ � 1ÞE ð5:1Þ
Often, the field-dependent permittivity ε(E) continues to be
referred to as the dielectric “constant”. For reference, we remark

here that the study of nonlinear dielectric saturation effects, and
in particular the response of polar fluids to high field strengths,
has a long history, and it remains an active research area.31,53�56

In modeling the droplet surface as that of a prolate spheroid,
the assumption is normally made that the volume of the droplet
remains constant as the droplet undergoes elongation, namely,
V = (4π/3)a2c = (4π/3)R3 where c and a are the semimajor and
semiminor axes of the PS and R is the radius of the initial
spherical droplet when under field-free conditions. The symme-
try axis of the ellipsoid is taken as the z-axis, and unless otherwise
stated, the field and dipole components discussed below are
understood to be the z-component. Denoting the droplet’s
aspect ratio as λ = c/a, the eccentricity, e, is given by e2 = 1 �
1/λ; the eccentricity e = 0 for a spherical droplet, and e ap-
proaches 1 in the limit of an extremely thin (one-dimensional),
elongated droplet. We assume that the droplet is surrounded by
vacuum (i.e., dielectric constant of unity).
As aforementioned, an important point of departure of this

work from previous investigations is that the dielectric constant
of the fluid droplet is taken as a material-dependent quantity that
is a function ε(E) of the internal electric field strength E inside
the fluid. The field strength E (understood to be along the z-axis)
inside a prolate spheroid subject to a uniform parallel external
field E0 is the sum of the applied field, E0, and the opposing field
created by the induced polarization charges

E ¼ E0 � ðP=VÞnðλÞ=ε0 ð5:2Þ
where P is the total dipole moment of the ellipsoid along the
z-axis and n(λ) is the z-component of the depolarizing factor.51,52

n(λ) is a function of the eccentricity, e(λ), and therefore the as-
pect ratio λ, through the implicit relation n(λ) = (1� e2){ln[(1 + e)/
(1 � e)] � 2e}/(2e3). The two relations (eqs 5.1 and 5.2) give

E0 ¼ ½1 þ ðεðEÞ � 1ÞnðλÞ�E ð5:3aÞ
and

P ¼ ε0VðεðEÞ � 1ÞE0=f1 þ ðεðEÞ � 1ÞnðλÞg ð5:3bÞ
We note that eq 5.3b, along with the definitions in the pre-

ceding paragraph, enables one to compute, using data from the
MD simulation, the field-dependent dielectric constant ε(E) for a
droplet having an interior field E (with an external field E0). For a
given imposed external field strength, E0, the simulations allow us
to obtain time-averaged values for the dipole moment of the
droplet (P), the semimajor and semiminor axes (c and a), aspect
ratio (λ), associated droplet volume V, eccentricity (e), and de-
polarizing factor, n(λ). These values are then used with eq 5.3b to
obtain the dielectric constant ε(E) as a function of both E and E0;
E may be computed using eq 5.2.
The dielectric permittivity as a function of the external field

strength, E0, computed from eq 5.3b (with the use of data ob-
tained from theMD simulations), is shown in Figure 3 (symbols).
The observed general monotonic decrease of the dielectric
constant for increasing field strengths is consistent with experi-
mental results for various liquids subjected to field strengths
similar to those used in our simulations.54,55 The different sym-
bols in Figure 3 give information on the manner in which (the
field-dependent) dielectric constants were computed. The filled
symbols in Figure 3 correspond toMD equilibrations in which E0
(constant for each run) was increased from the field of a pre-
ceding equilibration; namely, the configuration at the end of a
long equilibration performed at a lower external field serves as the
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starting point for a subsequent simulation performed for an
incremented (increased) value of the applied field. The empty
symbols correspond to the reverse process where the end con-
figuration from a simulation performed for a given value of the
applied field, serves as the starting one for a subsequent simula-
tion at a lower value of the field; comparison between the curves
corresponding to the filled and empty symbols allows us to
explore hysteretic effects. The circles in Figure 3 are associated
with the use (in eq 5.3b) of the total dipole moment, P, and
volume, V, of the prolate spheroid (for a given value of E0), while
the squares (triangles) correspond to analysis which uses for
evaluation (averaging) of the droplet’s properties a PS whose
semimajor and semiminor axes are 3/4 (1/2) of the lengths of
the full PS used to describe the density distribution of the droplet.
While the results using these different averaging volumes agree
rather well, those that use a smaller averaging volume (scaling of
the axes by 3/4 or 1/2) show less variation at smaller values of the
field; the reason is that at smaller field values the shape fluctua-
tions are larger, and they have a smaller effect on analyses that use
reduced smaller averaging volumes (inscribed inside the droplet
and thus less susceptible to fluctuations at the droplet’s surface
region).
As will be discussed below, the internal electric field strength is

a function E(E0, λ) of both the external field (E0) and the drop-
let’s aspect ratio (λ). Values of the dielectric constant in Figure 3
calculated for applied fields below E0∼ 0.5 V/nm correspond to
a much smaller range of internal fields (E < 0.05 V/nm); con-
sequently, equilibration at such low values of E0 is characterized
by poorer statistics as regards the calculation of the dielectric
constant. One observes in Figure 3 a pronounced hysteretic be-
havior of the dielectric constants that correlates with the cor-
responding hysteresis that characterizes the evolution of other

physical properties of the droplet as a function of the applied field
(see Figure 1), occurring as the droplet undergoes transitions
between different states. The heavy curve in Figure 3 (between the
two vertical dashed lines) corresponds to a fit (obtained through
analysis of the MD results) of the dielectric constants to a
theoretical curve (discussed below) that relates ε(E) to the
internal field (E), plotted versus the external field E0.
To explore the predictions of the NLPS model, with its

nonlinear dielectric saturation effects, we fit the observed di-
electric constants ε(E) (Figure 4) with an approximation that has
been found useful54,55 for the description of experimentally
observed saturation effects, i.e.

εðEÞ ¼ n2 þ ðα=EÞLðβEÞ ð5:4Þ
where α = a/s1; a = F(n2 + 2)μ0/(3ε0); β = s2b; b = (n2 + 2)μ0/
2kBT; n is the optical refractive index (n = 1 for the nonpolariz-
able formamide model used here); μ0 ∼ 0.08087 e-nm (3.88 D)
is the molecular dipole moment; F∼ 14.7 molecules/nm3 is the
liquid density; kB is Boltzmann’s constant; T = 310 K; and L(x) =
coth(x)� 1/x is the Langevin function. We refer to eq 5.4 as the
generalized Booth (or Booth�Onsager) equation, where we use
the scaling parameters s1 and s2 (of order unity) as fitting para-
meters; in the theory developed in ref 54 these parameters take
specific values (see below) which reduce eq 5.4 to previous
treatments. While other (similar) functional forms55 have been
suggested, eq 5.4 has the merit of retaining the dependence of the
dielectric constant on a host of material properties, and the values
of s1 and s2 can serve as comparative measures of the dielectric
response to that of other materials. The values s1 = s2 = 1 give
the Booth�Onsager formula54 for simple liquids with relatively
small molecular dipole moments, while s1 = 731/2/7 ∼ 1.22 and
s2 = 731/2/3 ∼ 2.85 give the Booth�Kirkwood formula54 in
which nearest-neighbor correlations due to hydrogen bonding
(in water) are taken into account in performing ensemble
averaging. Expressing the electric field in units of volts/nanome-
ters and using the appropriate parameters for our system, we find

Figure 3. Variation of the dielectric constant with the externally applied
electric field strength E0. The symbols represent values obtained from
MD simulations, with solid ones corresponding to increasing values of
the applied field, and open symbols obtained from simulations with
decreasing field values. The thick dark curve (between the two vertical
dashed marker lines) corresponds to the liquid droplet (that is, up to the
crystallization (ordering) transition), and it was obtained from a fit of
ε(E) to the generalized Booth equation (eq 5.4 with s1 = 0.947 and s2 =
1.117); it is used later on in the NLPS free-energy minimization.
We note the transition to an ordered droplet when E0 ∼1.4 V/nm
(and ε∼ 18) and a pronounced hysteresis as the field is decreased after the
droplet has ordered. Note the predicted metastable region occurring for E0
field values in the range ∼0.5�0.6 V/nm.

Figure 4. Variation of the dielectric constant with the electric field E
inside the droplet. Note the transition to an ordered droplet when E ∼
1.2 V/nm (and ε ∼ 18) and a pronounced hysteresis as the field is
decreased after the droplet has ordered. The thick dark curve derives
from a fit of MD data to the generalized Booth (eq 5.4 with s1 = 0.947
and s2 = 1.117). Symbols denote values obtained from the MD
simulations, with closed and open ones corresponding to increasing
and decreasing applied external field.
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for the coefficients a and b (defining α and β in eq 5.4) the values
a = 21.5 V/nm and b = 4.53 (V/nm)�1.
Because of the large variation in the results obtained in our simul-

ations for internal fields less than 0.05 V/nm, we restrict ouselves to
results corresponding to larger fields (i.e., E > 0.05 V/nm) in the
fitting analysis. The solid curve in Figure 4 was obtained via the use of
dielectric constants computed (as discussed above) in a smaller
averaging volume of the PS (i.e., scaling the semiaxes by 3/4) and
using eq 5.4 with s1 = 0.947 and s2 = 1.117; a similar result is obtained
for analysis using1/2 scalingof thePS semiaxes. It is of interest to note
that eq 5.4 provides a remarkably good description of the simulation
data with the values of the adjustable parameters s1 and s2 being close
to unity; this corresponds to a parameter-free analysis that employed
the density, dipole moment, and temperature obtained from theMD
simulations
Some interesting features pertaining to the results displayed in

Figures 3 and 4 merit further notice:
(i) For the low-field range, where elongation of the droplet is

essentially insignificant (see Figure 1a before the shape
transition), the internal electric field is much smaller than
the corresponding external field.When the external field E0
attains a value just exceeding the critical field (∼0.5 V/nm),
which leads to shape instability of the droplet (Figure 1a),
many properties of the droplet vary in a rather marked
manner (Figure 1), including the internal field E. Note also
that in the transition region from liquid to crystalline drop-
let (see Figure 4, E∼ 1.2 V/nm) the curves corresponding
to the liquid and ordered states display an overlap region
and run (essentially) parallel to each other. Thus, in this
region two different values may be obtained for the same
internal field E: one for the liquid droplet and one for the
droplet in the ordered state.

(ii) One of the more intriguing observations that we made
concerns the finding that the droplet transforms from a
liquid to a solid phase when the dielectric constant ε(E)
(decreasing in magnitude with increasing field E) just
reaches the value ε(Eliq-sol) ∼ 18 (see Figures 3 and 4).
Indeed, in studies of the stability of dielectric drops in
electric fields (with no saturation effects, see ref 5 for a
review), it has been found that when the dielectric con-
stant ε exceeds a value of about 18 one may obtain two
distinct solutions for the drop shape having conical ends,
while for ε < 18 only a single solution exists, having
rounded drop ends. In the context of our study, we may
conclude that when ε(E) is above ∼18 there are condi-
tions involving interfacial stress balances that restrict the
possible shape of the droplet near its ends. However,
when the value of ε(E) drops below ∼18 these restrictions
are relaxed and concomitantly crystalline order emerges.
This suggests that the transition from a liquid droplet to one
with crystalline symmetry, and the associated appearance of
different boundary conditions and geometry, is inhibited by
the development of interfacial stresses when the dielectric
constant goes above ε(E) ∼18, driving the droplet to
geometries that are inconsistent with a nascent crystalline
form, thus maintaining its liquid nature for ε(E) > 18.

It is important to note that the aforementioned relations
between E0, E, and ε(E) may be used to write a defining relation
for the electric field strength inside the droplet (E) as a unique
function E(E0, λ) of the applied field, E0, and aspect ratio, λ.
Thus, with the expression for ε(E) given in eqs 5.4 and 5.3a one

can write (in dimensionless form) a determining relation for the
field strength E in terms of E0 and λ

x0 ¼ x þ cðλÞLðxÞ ð5:5Þ
where x0 = s2bE0, x = s2bE, and c(λ) = abn(λ)s2/s1; the para-
meters (a,b,s1,s2) are defined following eq 5.4 (see above). We
remark that the general form of the relation in eq 5.5 is x0 =
[1 + (n2 � 1)n(λ)]x + c(λ)L(x). In the above, we used the
optical refractive index for our system, n = 1. For given E0 and λ
(or x0 and λ), there is a unique solution, x, to eq 5.5, which may
be easily found using a simple iterative method. Consequently,
for analytical purposes, the internal field strength inside the
droplet may be viewed as a given continuous function E(E0, λ) of
the external field and the droplet aspect ratio.
B. Free Energy and Its Minimization. Nonlinear Prolate

Spheroidal (NLPS) Free-Energy Model. When the dielectric con-
stant of the fluid droplet is taken to be independent of the
internal electric field, the total free energy in the prolate spheroid
(PS) model, FPS = Fpolz + Fsurf, consists of an electrical polariza-
tion term Fpolz = �1/2PE0 and a surface energy Fsurf = γA (see,
for example, ref 29), where A is the surface area of the PS, E0 and
E are the external and internal electric field along the z-axis; and P
is the total dipole moment of the droplet along the z-axis (see
eqs 5.1�5.3). When the dielectric constant is allowed to vary
with the internal field strength, an additional term is necessary to
obtain a free energy for the NLPS model

FNLPS ¼ � 1=2PE0 þ γAðλÞ þ ε0V=2
0

Z EðE0;λÞ
E2ε0ðEÞdE

ð5:6Þ
consistent with the general thermodynamic relation51 (at con-
stant temperature)

dF ¼ � PdE0 ð5:7Þ
For details of the derivation of eq 5.7, starting from eq 5.6, see the
Appendix. The third term on the right-hand-side of eq 5.6 is
denoted by Fsat. It is associated with saturation effects and is
absent when the dielectric constant is independent of field strength.
In eq 5.6, ε0(E) is the derivative of ε with respect to the internal
electric field, and the reference point of the free energy is the state
with vanishing external field. The form of the free energy may be
rewritten in various ways, having different interpretations. For
example, one could replace E2ε0(E) in the integrand of Fsat by
E(εd(E)� ε(E)) where the derivative of the displacement field εd =
(1/ε0)dD/dE is the differential dielectric constant which has been
found useful in the study of dielectric saturation phenomena.55

As discussed earlier, the electric field inside the droplet, E, may
be considered as a well-defined function of E0 and λ so that the
dipole moment of the droplet P given in eq 5.3b may also be
viewed as a function of E0 and λ. The free energy in eq 5.6 is
therefore a function of the applied external field, E0, which can be
viewed as an external control variable, and the droplet’s aspect
ratio, λ, which characterizes the droplet's response to the applied
field as well as its state of thermodynamic equilibrium. In the
differential dF = [∂FNLPS/∂E0]dE0 + [∂FNLPS/∂λ]dλ, one finds
from direct differentiation of eq 5.6 (see Appendix) that ∂FNLPS/
∂E0 =�P, while the second term is set to zero, ∂FNLPS/∂λ = 0, as
this is the condition that the droplet responds to the applied field
by a change in aspect ratio to minimize the free energy (also
∂
2FNLPS/∂λ

2 > 0). In performing these differentiations, one uses
the explicit functional dependence of the free energy on E0 and λ,
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e.g., eq 5.3b. In addition, it is interesting to note that the deri-
vatives of the integral saturation term with respect to E0 and λ,
that is (Vε0/2)E

2ε0(E)∂E(E0, λ)/∂E0 for E0 (and a similar form
for λ), cancel the additional identical terms arising from differ-
entiation of the polarization term with respect to E0 or λ when ε
is a function of E. As a result of these cancellations, ∂FNLPS/∂E0
and ∂FNLPS/∂λ give the same functional form as when there is
no saturation term, i.e., ∂FNLPS/∂E0 = �P. Also, the condi-
tion ∂FNLPS/∂λ = 0 gives a relation between the derivatives
(with respect to λ) of the depolarizing factor and the area,
n0(λ)P2/(2ε0V) + γA0(λ) = 0, that holds true both in the original
PSmodel aswell as in theNLPSmodel where saturation effects are
included. It is interesting to note here that the latter equation leads
to a simple relation between the pressure inside the undistorted
droplet, the droplet polarization, and some geometrical factors

P =ε0 ¼ ð3Π0=ε0Þ1=2gðλÞ ð5:8Þ
whereP ¼ P=V (see eq 5.1);Π0 = 2γ/R is the pressure inside
the droplet of radius R at zero field; and g(λ) = [�(A0(λ)/A0)/
n0(λ)]1/2 = [�d~A/dn]1/2 with A0 = 4πR2 and ~A = A(λ)/A0.
Using the expression for ε(E) given in eq 5.4, one can evaluate

the saturation integral term Fsat in the free-energy expression
(eq 5.6). The result may be written as

Fsat ¼ � 1=2PESðxÞ ð5:9aÞ

SðxÞ ¼ 2 ln½sinhðxÞ=x�=½xLðxÞ� � 1 ð5:9bÞ
where ln [ ] is the natural logarithm and x = s2bE (as in eq 5.5).
The free energy FNLPS = Fpolz + Fsurf + Fsat can now be written as

FNLPSðE0, λÞ ¼ � 1=2PE0 þ γAðλÞ � 1=2PESðxÞ ð5:10Þ
with the explicit reminder that all of the variables involved are
functions of E0 and λ. P is given in eq 5.3b in terms of E, ε(E), and
n(λ). ε(E) is given in eq 5.4, and E(E0, λ) is uniquely determined
from eq 5.5. The saturation function S(x) has the limits S(0) = 0
and S(x)f 1 for large x, so that for large external (and associated
internal) fields the new term in the free energy, Fsat, approaches
�1/2PE. As we discussed earlier, the droplet may change phase
in sufficiently high fields, and the above analysis will be modified.
Bond Number. In studies of fluid droplets interacting with

external fields such as gravitational or electric fields, and possibly
in the presence of surfaces where interfacial energies play a role, it
is common to define dimensionless numbers, called Bond num-
bers, that characterize the ratio (and relative importance) of the
various body forces to surface tension forces at the liquid inter-
faces. In studies of droplets in electric fields, an electric bond
number BE = ε0E0

2R/γ is frequently used (where γ is the surface
tension), expressing the ratio between the energy associated with
electric polarization forces that tend to elongate the droplet and
the surface energy associated with capillary forces that tend to
contract the droplet; depending on the particular study, some
variants of the above definition are sometime used. We will
employ here the definition of BE given above and normalize the
energies to a dimensionless form by dividing them by the surface
energy of the undeformed droplet: FPS � FPS/(4πR

2γ) and
similarly for the components of the free-energy; for our system
4πR2γ ∼ 0.0119 eV/molecule. We have29,51

FNLPS ¼ Fpolz þ Fsurf þ Fsat ð5:11aÞ

Fpolz ¼ � ðBE=6Þðε� 1Þ=f1 þ ðε� 1Þng ð5:11bÞ

Fsurf ¼ ð1=2Þð1� e2Þð1=3Þ½1 þ ðsin�1 eÞ=ðeð1� e2Þð1=2ÞÞ� ð5:11cÞ

Fsat ¼ FpolzðE=E0ÞSðxÞ ð5:11dÞ
We recall here that the eccentricity, e, is given by e2 = 1 � 1/λ,
where λ is the aspect ratio of the PS droplet.
For a given value of the external field E0, the free energy FNLPS

is a function of the droplet shape through the aspect ratio λ,
appearing in the eccentricity e(λ) and internal electric field
E(E0, λ), and it may exhibit one or more local minima or maxima
with respect to variation of λ. The values of the aspect ratio λ
associated with minima of FNLPS define the stable (or meta-
stable) droplet shapes.29 We will perform the variation of the
aspect ratio numerically to find the predicted stable configura-
tions of the droplet for a wide range of external fields and
compare a number of predictions from the above NLPS model
which is based on continuum macroscopic theory, with results
obtained from the MD simulations. Specifically, for a given
applied field E0 we assume an initial value of the aspect ratio

Figure 5. Variation of the droplet aspect ratio, λ, as a function of the
electric Bond number, as predicted from minimization of the free
energy with respect to λ (solid and dashed lines). Results from MD
simulations are given by the dots, with the solid dots (red) obtained for
increasing applied fields and the open ones (blue) for decreasing fields.
The solid lines, which agree with the MD simulation results, were
obtained through the use of the full expression for the free energy in the
nonlinear prolate spheroidal model FNLPS (see eqs 5.11(a�d)). The
two dashed curves correspond to modified free-energy expressions:
the lower one when the saturation term (Fsat) is omitted, and the upper
one corresponds to the use of a constant field-independent dielectric con-
stant. The first underestimates the MD results, and the second over-
estimates them. The thin solid lines (red) correspond to regions of the
applied fields (and thus BE values) where there is a unique shape (that is,
a single value of λ) that minimizes the free energy. In the S-shaped
region, associated with intermediate values of BE, 0.220 e BE e 0.269,
there are multiple solutions for each value of BE, two minima (one,
FNLPS,1, lying on the lower branch of the S-curve, and the other, FNLPS,2,
lying on the upper branch) and one maximum (the latter is marked as a
region of instability, denoted by a dotted line). When entering the
S-shaped region from lower BE values FNLPS,1 < FNLPS,2, until for BE =
0.237 the two minima take the same value, and for larger BE values
FNLPS,1 > FNLPS,2. For sufficiently high bond number, the liquid droplet
undergoes crystallization. Our NLPS model is valid up to the electro-
crystallization point.
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λ = 1 and vary λ in small increments (Δλ = 0.01), evaluating the
free energy and recording the extremal points for each value
of E0. Key ingredients in this model are the new free-energy
contribution Fsat, the function ε(E) parametrized as described
above using the MD simulation results, and the internal field
strength E(E0, λ) which is obtained via eq 5.5 in the course of the
incremental λ search for each external field E0.
Droplet Shape versus Bond Number. The aspect ratios of

the droplet deduced directly from the MD simulation data by
means of axial and radial binning of the molecular number
density (described earlier, see Section 4) are shown in Figure 5
(symbols) as a function of the electric bond number BE. The
aspect ratios that were found to minimize (through the numer-
ical search procedure outlined above) the NLPS free energy
(eqs 5.11a�d) for each value of E0 are given by the solid curves.
The regions associated with field strengths below E0 = 0.486
V/nm (BE = 0.220) [nearest MD simulated point at E0 = 0.5 V/nm
and BE = 0.228] and above E0 = 0.538 (BE = 0.269) [nearest MD
simulated point at E0 = 0.625 V/nm and BE = 0.356] are depicted
by the curve segments colored red, and they correspond to the
NLPS free energy, FNLPS, having only oneminimumwith respect
to the aspect ratio. For intermediate values of the Bond number,
that is within the S-shaped region, 0.220 e BE e 0.269, the free
energy, FNLPS, has two minima: one lying on the lower branch,
FNLPS,1 (BE, λ1), and the other lying on the upper branch, FNLPS,2
(BE, λ2), with λ1 < λ2 (represented, respectively, by the red and
blue heavy line segments). In addition to the two minima, the
free energy has also one maximum for each of the bond numbers
associated with the S-shape interval, corresponding to shape
instability of the droplet (represented by the middle black dot-
ted segment); for a discussion on multiple solutions, see, for
example, refs 5, 29, 33, and 57. When entering the S-shaped
region from lower BE values, FNLPS,1 < FNLPS,2, until for BE =
0.237 the two minima take the same value, and for larger BE
values FNLPS,1 > FNLPS,2.
We call attention to the very good agreement that is found

between theMD results and the predictions of the NLPSmodel
developed here. In particular, note the MD point (blue open
circle on the heavy blue curve at BE = 0.228) that was obtained
in the simulation by lowering the applied field from the pre-
vious stable configuration of the elongated droplet (open blue
point on the red color curve at BE = 0.698) into the S-shaped
region.
It is of particular interest to assess the contribution of the

saturation term in FNLPS (eq 5.11d). The predicted aspect ratios
obtained from the NLPS (and PS) model are shown in Figure 5
(upper dashed line) up to the point of droplet crystallization for a
model where one takes the dielectric constant of the droplet to be
independent of the strength of the field (that is, the common PS
model) and equal to the zero field value ε(E = 0)∼ 39.2 (see ref
58). When the dielectric constant ε(E) is allowed to vary, but the
dielectric saturation term Fsat is not included in the free-energy
minimization, the predicted aspect ratios vary as depicted by the
lower dashed curve in Figure 5. From these results, we conclude
that both the field-dependent dielectric constant and the satura-
tion term are essential for a correct description of the field-
induced droplet shape.
Comparison of Free Energies Calculated from MD and the

NLPS Model. The free energy of the droplet under the influence
of an applied field can be calculated in several ways. Besides the
minimization of the NLPS model free energy described above,
one may use the MD results and the basic relation in eq 5.7 to

evaluate directly

FMD ¼ �
0

Z E0

PMDðE0ÞdE0 ð5:12Þ

where PMD(E0) is a piecewise polynomial fit to the calculated
dipole moments of the droplet (proportional to the data pre-
sented in Figure 1d). We present in Figure 6 the free energies
obtained from both the MD results, FMD, and the NLPS model,
FNLPS. The energies are normalized through division by the sur-
face energy at zero field Fsurf0� 4πR2γ (∼0.0119 eV/molecule),
resulting in the normalized NLPS free energy FNLPS being equal
to unity at E0 = 0. The normalized free energy, FMD, from the
integratedMDdata does not include the zero field surface energy
term, and therefore it is shifted upward by 1.0 for comparison
with FNLPS.
The free energy FMD (eq 5.12), shown as a blue dashed line in

Figure 6, is in remarkable agreement with the numerical mini-
mization of the free energy FNLPS (eqs 5.6, 5.10, and 5.11) based
on the NLPS model. As for the aspect ratios (Figure 5), we show
here also the predicted free energies (light dashed lines) obtained
when a nonvarying dielectric constant is used, ε = ε(E = 0), or
when a nonconstant ε(E) is employed but a saturation term is
not included in the free-energy expression. Comparison of these
results with the MD data and the full FNLPS reaffirms our con-
clusion concerning the importance of including the term describ-
ing saturation effects in the free energy.
The individual contributions to the free energy, arising from

the polarization, surface, and saturation terms, are displayed in
Figure 7.We show the predictions of the NLPSmodel developed
for a fluid droplet (that is up to the point of droplet crystal-
lization) as solid colored lines. For the more general MD free
energy (eq 5.12), we extend the integration into the ordered
droplet region. The polarization, surface, and saturation terms
based solely on the configuration of the droplet as given by the
MD data (this does not involve any minimization) are depicted

Figure 6. Comparison of the free energy FNLPS (solid red curve)
computed with the use of the minimization of the NLPS free energy
with respect to the aspect ratio (for each value of E0), with the free
energy FMD (blue dashed curve, marked as FMD (shifted)) computed
directly from integration of the droplet’s dipole moments as obtained
from the MD simulations. The two dashed curves show the predicted
free energy for a constant and a variable dielectric constant when the free
energy does not include the saturation term. The energies are normal-
ized through division by the surface energy at zero field Fsurf0 � 4πR2γ
(∼0.0119 eV/molecule), resulting in the normalized NLPS free energy
FNLPS being equal to unity at E0 = 0.
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by the dark dashed curves for the three components of the free
energy in Figure 7, and they are found to be in very good agree-
ment with those predicted by our model (shown by the solid
curves).
It has been noted51 that an increase in the permittivity of a

medium (not involving shape and/or areal changes and not
including dielectric saturation effects) results in a lowering of the
free energy, and the reverse is true for a decrease in the medium’s
permittivity. On the other hand, in our case we observe that with
increasing applied fields the free energy of the droplet takes lower
values (more negative values, see Figure 6), although, as dis-
cussed above, we found a lowering of the dielectric constant
(under the influence of the applied field) relative to its zero field
value (Figures 3 and 4). This behavior is not contradictory, and it
is a consequence of the finite size of our nanodroplet (i.e., the
effect of the variable surface contribution in connection with the
droplet’s field-induced shape changes), as well as the influence of
the saturation term. Indeed, for any given (nonzero) value of the
applied field (E0), we find (see Figure 6) that the free energy for a
model with a constant dielectric permittivity (ε � ε(E = 0)) is
lower (more negative) than that calculated with a field-depen-
dent ε(E) < ε. On the other hand, a model with a field-dependent
dielectric permittivity, but without the inclusion of saturation

effects, gives for any value of the applied field a free energy which
is larger than the one where dielectric saturation is included (see
Figure 6). We remark in closing this discussion that the effects of
a varying dielectric constant also influence the polarization term
Fpolz of the free energy, and it is the minimization of the total free
energy with respect to the aspect ratio, involving the interplay
of all of the contributions to it, that determines the state of the
droplet and its free energy.
van der Waals Contribution. An interesting relationship is

found for the variations in the surface energy and the contribu-
tions to the droplet’s potential energy arising from the van der
Waals (vdW) component of the internal energy. The normalized
surface energy isγA(λ) expressed in units ofγA(λ=1),whereA(λ) is
the area of the prolate spheroidal droplet, and it is a function of
the shape of the droplet only (eq 5.11c). The normalized surface
energy was computed with the use of a polynomial fit to the
values of the aspect ratio λ recorded in the MD simulation, and it
is depicted by the upper dashed curve in Figure 7; the curve
essentially overlaps the surface contribution (Fsurf) to FNLPS. The
vdW contributions to the internal energy, averaged for each
MD equilibration (also normalized by dividing by 4πR2γ ∼
0.0119 eV/molecule and shifted to 1.0 to coincide with Fsurf(E0 = 0))
is shown in the upper part of Figure 7 (triangles). Up to the
droplet crystallization point, we find close correspondence
between the variations (from zero field) of the vdW internal
energy contributions and the variations of the surface energy
(even in the metastable region). Crystalline ordering of the
droplet is accompanied by a drop of the vdW energy to its low-
field value (i.e., E0 e 0.5 V/nm).
For many materials, a close association is found between the

surface energy and the vdW forces for manymaterials,59 although
the nature of the contributions to the surface energy becomes
more complex for highly polar hydrogen-bonding liquids such as
formamide.59 Since the surface energy is correlated with the re-
duced coordination of molecules at the surface, it is rather natural
that the changes in energy arising from the short-range inter-
molecular vdW interactions are closely related to the variations in
the surface energy as the surface area and geometry undergo
changes.
C. Entropy. To gain a better understanding of the driving

forces underlying the field-induced structural variations of the
droplet, we compute changes in the free energy and the entropy
that are associated with the response of the droplet to the applied
electric field. Taking the point of zero electric field as a reference,
the changes in the Helmholtz free energy are given by ΔF =
ΔU � TΔS, where ΔU and ΔS are, respectively, the changes in
internal potential energy and entropy as the electric field E0 is
varied. The calculation of the free energy ΔF = ΔFMD, through
numerical integration of the polarization energy (eq 5.12), was
described in the preceding section and is shown in Figure 8.
Along with the free energy ΔFMD, we display again in Figure 8
(dashed line) the free energy of the nonlinear prolate spheroid
model, ΔFNLPS (given relative to its value at zero field), as ob-
tained from minimization of the prolate spheroid free energy.
Comparison between ΔFMD and ΔFNLPS illustrates the remark-
able agreement between the MD and analytical model results
(note that, as before, the energies are scaled by the zero-field
surface energy); the energy and entropy changes are plotted in
Figure 8 relative to their values under field-free (E0 = 0)
conditions which are taken as reference.
The internal energyΔUMD shown in Figure 8 was obtained as

a piecewise polynomial fit to the time-averaged potential energies

Figure 7. Polarization Fpolz (solid thin blue line), surface Fsurf (solid
darker blue line), and saturation Fsat (solid green line) contributions to
the total free energy FNLPS (solid red line) computed through the
minimization of the NLPS free energy (for each value of the external
applied field, E0), plotted versus the applied electric field. The light blue
line continuations of Fpolz and Fsurf (to the left of the vertical dashed line
at E0 = 0.55 v/nm) correspond to the hysteresis obtained for the NLPS
model when lowering the applied field from a state of an elongated
droplet; these light blue lines connect to the corresponding solid blue
curves (to the left of the vertical dashed line) through the instability
region (see also Figure 5). The free energy obtained from the MD
simulations (FMD, see eq 5.12) and the corresponding contributions to it
(computed by substituting the observedMD results into the expressions
for the three terms of the NLPS free energy, with no minimization
involved) are depicted by the respective dashed line. The very close
agreement found for all of the terms between the MD results and the
NLPS model predictions is evident. Also shown is the close correspon-
dence between the relative variations in surface free energy and the
observed relative variations in the vdW component of the internal
energy. The triangles (filled for increasing E0 and empty for decreasing
field) give the MD calculated vdW contribution to the internal energy.
The energies are normalized through division by the surface energy at
zero field Fsurf0 � 4πR2γ (∼0.0119 eV/molecule), resulting in the
normalized NLPS free energy FNLPS being equal to unity at E0 = 0.
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obtained from the MD equilibration for each applied field
E0. The marked drop in potential energy that occurs when
the droplet orders corresponds to a latent heat (enthalpy
of fusion) ΔH ∼ 0.045 eV/molecule or ∼4.3 kJ/mol (the
experimental60 enthalpy of fusion for bulk formamide at 276 K
is ∼8 kJ/mol).
The entropic contribution to the free energy, �TΔS = ΔF �

ΔU, is also shown in Figure 8. We find in the low-field region
(E0 < 0.5 V/nm) prior to elongation of the liquid droplet that
�TΔS andΔU are both negative, with essentially the same mag-
nitude, and the two become more negative as E0 increases and
approaches the point of shape instability (E0∼ 0.55 V/nm). The
entropy therefore increases with field strength for small droplet
elongations where the field may influence the molecular degrees
of freedomonly slightly. Subsequent to the sharp transition of the
droplet to a more highly elongated state, the molecular dipoles
become better aligned, and the entropic term �TΔS changes
sign. As seen from Figure 8, for higher applied fields,�TΔS takes
positive values (that is, ΔS takes negative values, corresponding
to lowering of the entropy of the droplet as the field is increased
further) and it makes a large contribution to the free energy. The
entropy therefore reaches a maximum in the region E0 ∼ 0.5�
0.6 V/nm where the droplet undergoes a transition to a more
highly elongated state. Subsequently, the entropy decreases in a
roughly linear manner with the increasing applied external field
strength E0, and the entropic component of the free-energy
change,�TΔS, remains about a third themagnitude of the poten-
tial energy component ΔU up to the point of droplet crystal-
lization. For the entropy of fusion of the droplet, we find ΔS/
(310 K)∼ 14 J/(mol K); the experimental value60 for bulk form-
amide is ∼30 J/(mol K).We note that a depression in the

enthalpy and the entropy of melting for nanoscale clusters is a
current topic of experimental and theoretical interest.61,62

6. SUMMARY

Our investigations focused on characterization of the re-
sponse of a neutral liquid dielectric droplet to applied uniform
electric fields, on exploration and understanding of the molec-
ular-scale origins of the behavior of the droplet and on formula-
tion and testing of a proper continuum theory which would
provide a faithful description of the field-dependent properties
of the droplet. To these aims, we performed extensive constant-
temperature molecular dynamics simulations of a formamide
droplet with a 10 nm diameter, under field-free conditions, and
when placed in electric fields of variable strengths. Analysis of
the results obtained from the MD simulations formed the basis
for the formulation of a theoretical model for the response of the
droplet in terms of a nonlinear, field-dependent, dielectric per-
mittivity and a continuum free energy expression, which were
found to yield results in agreement with those obtained from our
MD simulations.

To allow an efficient exploration of the equilibrium states of
the formamide droplet (comprising 7150 molecules) for a wide
range of applied electric fields (both of increasing and decreasing
strength), we employed a fast multipole method (FMM), adapted
to the elongated shape of the droplet under sufficiently high fields
(see Section 2), which allowed long equilibration simulations with
accurate and efficient evaluation of the electrostatic long-range
intermolecular interactions. Prior to the investigation of the res-
ponse of the dielectric droplet to applied fields, we have simu-
lated and analyzed pertinent properties of field-free liquid form-
amide. The results that we obtained for the density, melting point,
diffusion constant, and surface tension of the liquid compare
well with the experimentally measured values, thus validating the
simulation model.

Under the influence of an applied electric field, the initially
spherical droplet was found to deform into a prolate spheroidal
shape. Field-induced shape and crystallization transitions, found
through molecular dynamics simulations, were described in
Section 4. At a critical external field E0c ∼ 0.50 V/nm, these
deformations culminate in a shape instability and a first-order
shape transition to a slender liquid needle (see diffusion constant
in Figure 1(b)) with an aspect ratio λ = c/a = 12 (Figures 1(a)
and 2). In these elongated droplets, the molecular dipoles are
found to be reoriented by the field along the long axis of the
droplet (coinciding with the field direction), thus exhibiting a
ferroelectric state (unlike the state of the droplet in field-free
conditions).

For larger fields, further gradual enhancement of the dipole
reorientation is observed (Figure 1(d)) leading to a first-order
electro-crystallization transition63 at E0ec = 1.4375 V/nm. These
processes are portrayed in increases in the positional order
parameter (Figure 1(c)) and enhanced ordering of the mo-
lecular dipoles along the field direction (Figure 1(d))
and in accompanying decrease of the molecular diffusion
(Figure 1(b)). Both transitions exhibit hysteresis as the change
in the electric field is reversed. We note, in particular, the
delayed remelting of the crystallized droplet (Figure 1(b)),
occurring (in the course of decreasing the applied field) for
E0 ∼ 1.0 V/nm.

From the results of theMD simulations, we have determined the
field-dependent dielectric permittivity, ε(E) (see eqs 5.1�5.3 and

Figure 8. Entropic contribution (�TΔS, red line) to the free energy
(ΔFMD, green line) plotted as a function of the applied electric
field. Also shown is the change in the internal potential energy, ΔUMD

(blue line), and the free energy calculated via the NLPS model
(ΔFNLPS, dashed black line). The entropy change and the energy
changes are plotted relative to their values under field-free (E0 = 0)
conditions which are taken as reference. The energies are normalized
through division by the surface energy at zero field Fsurf0 � 4πR2γ
(∼0.0119 eV/molecule). The entropy increases (�TΔS decreases)
with increasing field for small droplet elongation and decreases for
increasing fields after the droplet has become highly elongated. The
entropy reaches a maximum in the region E0 ∼ 0.5�0.6 V/nm where
the droplet undergoes a transition to a more highly elongated state
(see Figure 1(a)). The calculated fusion enthalpy is ΔH = 0.045
eV/molecule = 4.3 kJ/mol.
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symbols in Figures 3 and 4). An analytic continuum model for
the dielectric permittivity of the droplet, which includes
nonlinear contributions in the form of a field-dependent
response and including dielectric saturation effects at high
fields (see the generalized Booth equation, eq 5.4), was developed
in Section 5.A. The model shows a decrease of the dielectric
constant for increasing electric fields, and it was found to
describe well the results of the MD simulations (Figures 3
and 4). We remark here on our observation that the droplet
transforms from a liquid to a solid phase when the field-depen-
dent dielectric constant reaches the value ε(Eliq-sol) ∼ 18 (see
Figures 3 and 4) correlating with previous observations (see
review in ref 5).

This led us to develop an expression for the free energy of
the droplet modeled as prolate spheroidal dielectric. The
expression for the free energy of the nonlinear prolate
spheroidal model, FNLPS, includes polarization, surface, and
saturation terms (eqs 5.6 and 5.10), and it may be expressed
(eq 5.11) in terms of the electric Bond number, BE = ε0E0

2R/γ.
This allows us to evaluate the aspect ratios that minimize
FNLPS for the whole range of Bond numbers covered by the
simulations. The results of such calculations plotted as λ vs BE
(Figure 5) exhibit an S-shaped curve, showing high and low
Bond number regions where the minimization yields a unique
aspect ratio (corresponding to a unique prolate spheroidal
shape), and an intermediate Bond number interval where
multiple solutions are found (that is, two λ values correspond-
ing to free-energy minima and one λ corresponding to a free-
energy maximum). These results obtained from the NLPS
model for the total free energy, as well as the contributions of
the polarization, surface, and saturation terms (Figures 6 and 7),
agree with those obtained from the MD simulations, evaluated
via an integral of the dipole moment of the droplet along the
applied field direction (see eq 5.12). In all of the above, proper
inclusion of saturation effects in the continuum description of
the droplet free energy, expressed in terms of an electric
field-dependent dielectric permittivity, is found to play an
important role.

Subsequently, we included a brief discussion of the variation of
the van der Waals intermolecular interaction energy (calculated
in the course of the MD simulations), which, as a function of the
applied field, was found to vary in a manner similar to the surface
energy contribution, Fsurf, of the NLPS continuum model FNLPS
(see Figure 7). We concluded with an analysis of the entropy
variation with the applied field, showing that after the shape
transition (i.e., for E0 > E0c) the elongation of the droplet,
entailing preferential orientation of the molecular dipoles along
the field directions (and crystalline ordering for larger fields), is
associated with a decrease in the entropy (i.e., �TΔS > 0) (see
Figure 8).

’APPENDIX

In this appendix we provide details of the derivation of eq 5.7

dF ¼ � PdE0 ðA:1Þ

for the NLPS model from direct differentiation of the integrated
form of this (see eq 5.6)

FNLPS ¼ � 1
2
PE0 þ γAðλÞ þ 1

2
ε0V

0

Z EðE0 ;λÞ
E2ε0ðEÞdE ðA:2Þ

Defining polarization, surface, and saturation components (Fpolz,
Fsurf, and Fsat, respectively), the free energy can be written as

FNLPS ¼ Fpolz þ Fsurf þ Fsat ðA:3Þ
The differential of eq A.3 is

dFNLPS ¼ ½∂FNLPS=∂E0�dE0 þ ½∂FNLPS=∂λ�dλ ðA:4Þ
We focus now on the first component of dFNLPS; the second

component involving λ is set to zero, since it is the condition for
extremum (minimum) of FNLPS. The polarization term, Fpolz, of
FNLPSmay be written (using the expression for P given by eq 5.3b)

Fpolz ¼ � 1
2
PE0 ¼ � 1

2
½ε0VðεðEÞ � 1Þ=f1 þ ðεðEÞ � 1ÞnðλÞgE0�E0

ðA:5Þ
The differential of Fpolz is

dFpolz ¼ f∂Fpolz=∂E0ðexplicit E0Þ þ ½∂Fpolz=∂ε�ε0ðEÞ½∂E=∂E0�gdE0
ðA:6Þ

The derivative of the first term, involving the explicit appearance of
E0, gives

dFpolzðexplicit E0Þ ¼ � PdE0 ðA:7Þ
This is already the sole component of the total differential of the
free energy A.1 (also eq 5.7), and thus the remaining contributions
are expected to sum to zero.

The second term of dFpolz (eq A.6) involving the implicit
appearance of E0 (see eqs A.5 and A.6) gives

dFpolzðimplicit E0Þ
¼ 1

2
ε0VE0

2½ � 1=N þ ðεðEÞ � 1ÞnðλÞ=N2�ε0ðEÞ½∂E=∂E0�gdE0
ðA:8Þ

where we have defined N = 1 + (ε(E) � 1)n(λ). This can be
simplified to

dFpolzðimplicit E0Þ ¼ � 1
2
ðε0VE02=N2Þε0ðEÞ½∂E=∂E0�dE0

ðA:9Þ
Using eq 5.3a, written as E = E0/N, gives

dFpolzðimplicit E0Þ ¼ � 1
2
ε0VE

2ε0ðEÞ½∂E=∂E0�dE0
ðA:10Þ

as the second polarization contribution (the first is eq A.7) to
dFNLPS (eq A.4).

The saturation component of FNLPS (see eq A.2) is

Fsat ¼ 1
2
ε0V

0

Z EðE0;λÞ
E2ε0ðEÞdE ðA:11Þ

and its differential is

dFsat ¼ 1
2
ε0VE

2ε0ðEÞ½∂E=∂E0�dE0 ðA:12Þ

being the sole saturation contribution to dFNLPS (see eq A.4).
The three contributions to dFNLPS are given by eqs A.7, A.10,

and A.12 which are to be summed to give the complete expres-
sion for dFNLPS (eq A.4). Note that the contributions dFpolz
(implicit E0) (see eq A.10) and dFsat (eq A.12) to dFNLPS cancel
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each other with the result that dFNLPS is given by the same
expression (see eq A.1)

dFNLPS ¼ � PdE0 ðA:13Þ

as in the PS model which assumes the dielectric constant ε to be
literally constant as opposed to the NLPS model where it is a
function, ε(E), of the electric field strength.
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