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Many-body calculations of the total energy of interacting Dirac electrons in finite graphene samples exhibit
joint occurrence of cusps at angular momenta corresponding to fractional fillings characteristic of formation of
incompressible �gapped� correlated states ��=1 /3, in particular� and opening of an insulating energy gap �that
increases with the magnetic field� at the Dirac point, in correspondence with experiments. Single-particle basis
functions obeying the zigzag boundary condition at the sample edge are employed in exact diagonalization of
the interelectron Coulomb interaction, showing, at all sizes, mixed equal-weight bulk and edge components.
The consequent depletion of the bulk electron density attenuates the fractional-quantum-Hall-effect excitation
energies and the edge charge accumulation results in a gap in the many-body spectrum.
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I. INTRODUCTION

The isolation of graphene sheets1 was soon followed by
experiments2,3 on the anomalous integer quantum Hall effect
�IQHE�, demonstrating the formation of Landau levels, de-
scribed with noninteracting electron theory. Subsequently,
theoretical explorations4,5 appeared pertaining to the frac-
tional quantum Hall effect �FQHE� in graphene, which, in
contrast to the IQHE, is known to be the manifestation of
collective correlated interacting electrons phenomena. For
Dirac electrons in the lowest �n=0� Landau level �LLL�, it
was found4,5 �in a spherical geometry� that the behavior of
the incompressible states in boundless graphene models
emulates that of the well-known FQHE in the semiconductor
two-dimensional electron gas.6–8 Recent experiments,9,10 em-
ploying small �1 �m� suspended single-sheet samples have
shown that the appearance of the FQHE in graphene is ac-
companied by the emergence of an insulating phase. The
physics that underlies this joint occurrence, coupled with the
systematic theoretical overestimation4,5 of the measured
FQHE excitation energies, remains unresolved; similar find-
ings in recent experiments on bilayer graphene11 further
highlight these open issues.

In this paper, we show, using exact diagonalization7

�EXD� �in the quantum Hall regime� of the many-body
hamiltonian for interacting Dirac electrons occupying the
LLL of finite planar graphene samples, that the incompress-
ible correlated electron physics is modified �using zigzag
boundary conditions12 �ZBC�� in two main ways: �i� the
FQHE excitation energies are significantly attenuated due to
depletion of the density of the bulk component of the Dirac
electrons spinor and �ii� the concurrent accumulation of
charge at the sample edge underlies the opening of a gap in
the many-electron spectrum �increasing with the magnetic
field, as observed experimentally�, relating to the aforemen-
tioned insulating phase.

Underlying the above many-body behavior is the exis-
tence of LLL single-particle states of mixed character, exhib-
iting bulk-�Darwin-Fock-type7 �DF�� and edge-type compo-
nents of equal weights13 �independent of sample size�, each
residing on a different graphene sublattice. With interelectron

repulsion, the bulk component exhibits FQHE characteristics
�with excitation-energy gaps reduced by a factor of four
compared to boundless graphene�. The edge component is
associated with formation of a single-ring rotating Wigner
molecule7 �RWM�. The size-independent influence of the
graphene edge on the many-body properties ushers a new
paradigm, contrasting the commonly accepted expectation
that materials bulk properties are unaffected by the detailed
configuration or conditions at the surface.14 This unique be-
havior derives from the two-sublattice topology of the
graphene net modeled here by the continuous Dirac-Weyl
�DW� equation.12

An important element in our approach is formulation of
the solutions of the Dirac-Weyl equation �with the zigzag
boundary conditions� using the Kummer confluent hypergeo-
metric function.15 This formulation provides systematic ana-
lytical insights into the nature of the DW single-particle
states �bulk and edge�, as well as it permits efficient and
accurate numerical evaluations �with the help of algebraic
computer languages16�.

In Sec. II we describe the confluent-hypergeometric-
function formulation of the solutions of the DW equation and
construct the LLL DW spinor in terms of equal-weight bulk
and edge components. Details of the solutions of the DW
equation in polar coordinates are given in Appendix A.

A brief description of the exact-diagonalization many-
body method, and the contributions of the bulk and edge
spinor components to the Coulomb interaction matrix ele-
ments are given in Sec. III. In Sec. IV we display results for
the ground-state and excited spectra, and their relation to the
�=1 /3 FQHE incompressible state and to the insulating be-
havior at �=0. A summary is presented in Sec. V.

Finally, in Appendix B we distinguish the mixed bulk-
edge Dirac spinor states �forming the quasidegenerate LLL
manifold in finite graphene samples with ZBC�, where one
of the spinor components is located in the bulk of the sample
and the other localized at the edge, from the “double-edge”
states where both components of the spinor represent edge
states. In the double-edge case, one component corresponds
to a bulk orbital which transforms �when the orbital’s cen-
troid falls near the graphene sample boundary� into an edge
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state familiar from the theory17 of the nonrelativistic integer
QHE. The other component of the double-edge spinor, as
well as the edge orbital of the aforementioned mixed bulk-
edge one, corresponds to an edge state unique to the two
sublattice topology of graphene. We discuss and illustrate the
natural way in which the above classification of Dirac-
electron-edge states arises within the framework of the Kum-
mer function formalism for the solution of the DW equation
described in Sec. II and Appendix A.

II. SINGLE-PARTICLE LOWEST-LANDAU-LEVEL
MANIFOLD WITH ZIGZAG BOUNDARY CONDITIONS

We first discuss the solution of the Dirac-Weyl equation in
polar coordinates under the imposition of the zigzag bound-
ary condition. We model the low-energy noninteracting
graphene electrons �around a given K point� via the continu-
ous DW equation.12 Circular symmetry leads to conservation

of the total pseudospin12 ĵ= l̂+ �̂z, where l̂ is the angular mo-
mentum of a Dirac electron. As a result, we seek solutions
for the two components �A�r� and �B�r� �associated with the
two graphene sublattices A and B� of the single-particle elec-
tron orbital �a spinor� that have the following general form in
polar coordinates:

�l�r� = ��A�r�
�B�r�

� = � eil��A�r�
iei�l+1���B�r�

� . �1�

The angular momentum takes integer values; for simplicity
in Eq. �1� and in the following, the subscript l is omitted in
the sublattice components �A, �B, and �A, �B.

With Eq. �1� and a constant magnetic field B �symmetric
gauge�, the DW equation reduces �for the K valley� to

d

dx
�B +

1

x
�l + 1 +

x2

2
��B = ��A

d

dx
�A −

1

x
�l +

x2

2
��A = − ��B, �2�

where the reduced radial coordinate x=r / lB with lB

=�	c / �eB� the magnetic length. The reduced single-particle
eigenenergies �=E / �	vF / lB�, with vF the Fermi velocity.
Since the properties of the solutions of the DW equation with
a magnetic field using the ZBC are not widely known, we
outline pertinent details on this subject in the following �see
also Appendices A and B�.

For a finite circular graphene sample of radius R, we seek
solutions of Eq. �2� for ��0 with l
−1 �corresponding to
j�−1 /2� that are regular at the origin �x=0�. The general
form of solution is

�A�x� = − C �

2�l�
e−x2/4x�l�M�1 −

�2

2
, �l� + 1,

x2

2
� ,

�B�x� = Ce−x2/4x�l�−1M�−
�2

2
, �l�,

x2

2
� , �3�

where M�a ,b ,z� is Kummer’s confluent hypergeometric
function15 and C is a normalization constant.

The ZBC requires that one sublattice component vanishes
at the physical edge situated at the finite radius R of the
graphene sample. Therefore at least one of the Kummer
functions in Eq. �3� must exhibit zeros �nodes� for x�0. The
search for such zeros is greatly facilitated with the use of the
following theorem.18 For the Kummer function M�a ,b ,z� �z
being real�, it is known that, if b�0 �which is the case for
both Kummer functions in Eq. �3��, there are no zeros of
M�a ,b ,z� for z�0 if a0, and there are precisely −�a� zeros
if a�0; the floor function is defined as: �a�=n if and only if
n
a�n+1, where n is any positive or negative integer �in-
cluding zero�.

The �B LLL component does exhibit precisely one zero,
enabling a transcendental equation �for a given xR� for the
single-particle energies �

�B��,l,xR� = 0, or M�−
�2

2
, �l�,

xR
2

2
� = 0. �4�

The solutions to Eq. �4� �for a range of xR�1, i.e., high
magnetic fields and for any l
−1� give states �which com-
pose the LLL manifold� with near vanishing energies 0
�� /�2�1. Consequently, within the graphene sample,
when R / lB�1, �B can be approximated by a bulk-type DF
orbital, i.e.,

�b	 = Ce−x2/4x�l�−1, �5�

with C=1 /�2�l�−1���l�� normalizing �b	 to unity in �0,xR�.
From the theorem discussed above, it follows that the �A

LLL component cannot have any zeros, and thus for xR
=R / lB�1 it will develop into an edge state

�e	 = − �C̃�ex2/4x�l�, �6�

due to the asymptotic behavior15,19

M�1 − �2/2, �l� + 1,x2/2� 
 exp�x2/2�xR
−2�l� �7�

for x
xR. The normalization constant C̃ conforms to the re-
quirement that �A and �B �see Eq. �1�� should have equal

weights for the �’s obtained via solution of Eq. �4�; C̃ is

determined from C̃2�0
xRex2/2x2�l�+1dx=1.

Finally, for R / lB�1, the following simplified expression
for the LLL spinor can be written:

�l�r� =
1
�2
� eil��e	/�2�

iei�l+1���b	/�2�
� , �8�

where �b	 and �e	 are each normalized to unity in �0,xR�. A
numerical graphical illustration showing that the general ex-
pression for the spinor components in Eq. �3� can be well
approximated by Eq. �8� is given in Appendix B.

III. EXACT DIAGONALIZATION OF THE MANY-BODY
PROBLEM

In the EXD method,7 the many-body wave function is
given as a linear superposition
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�M
EXD�r1, . . . ,rN�

= �
m1�. . .�mN

m1+. . .+mN=M

V�m1, . . . ,mN��m1,. . .,mN�r1, . . . ,rN� ,

�9�

where the Slater determinants �m1,. . .,mN are constructed out
of the quasidegenerate ��
0� LLL spinor orbitals �l�r� �see
Eq. �8��, where we define m= �l�; l
−1. We omit the Cou-
lomb coupling between valleys, and also consider fully spin-
polarized electrons.

The eigenvectors V’s in Eq. �9� and corresponding many-
body energies EEXD are calculated through a direct matrix
diagonalization of the many-body hamiltonian

H = �
i�j

VC�i, j� , �10�

where VC�i , j�=e2 / ���ri−r j�� is the two-body Coulomb inter-
action, within the Hilbert space of Slater determinants7

�m1,. . .,mN. Being constant �here 0�, the kinetic energy terms
in the many-body hamiltonian Eq. �10� have been
neglected.7,8

The EXD computations require an accurate evaluation of
the two-body Coulomb matrix elements

� � dr1dr2�m1

� �r1��m2

� �r2�VC�1,2��m3
�r1��m4

�r2� , �11�

which expand to a sum of four similar integrals. Denoting

�b̃m	= iei�l+1���b	 /�2� and �ẽm	=eil��e	 /�2�, this expansion
is written as

1

4
��b̃1b̃2�b̃3b̃4	 + �ẽ1ẽ2�ẽ3ẽ4	 + �b̃1ẽ2�b̃3ẽ4	 + �ẽ1b̃2�ẽ3b̃4	� .

�12�

Note that, due to the equal weights of the bulklike and edge-
like components, a prefactor of 1/4 appears in front of each
term in Eq. �12�; the consequences of this prefactor are dis-
cussed in Sec. IV A.

IV. RESULTS

A. Energetics

In Figs. 1 and 2, we display total EXD energies for the
yrast �i.e., the lowest in energy� and first-excited states of
spin-polarized electrons in a graphene finite sample with N
=6 and N=7 Dirac electrons as a function of the total angu-
lar momentum M �which is conserved in the EXD calcula-
tion�. Moreover, the displayed energies correspond to: �i�
only the bulk-type terms �“b”�, �ii� combined bulk-type and
edge-type terms �“b+e”�, and �iii� with the inclusion of cross
bulk-edge terms �“b+e+be”� in the two-body Coulomb ma-
trix elements �see Eq. �12��. Each of the terms �b, “e,” and
“be”� is reduced by a factor of 1/4 as discussed above. For all
cases, we note the appearance of cusp states �states with
enhanced stability and larger excitation gaps relative to their
immediate neighborhood7,8,20� at the magic angular momenta
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FIG. 1. �Color online� EXD energies for N=6 Dirac electrons.
Energies for the lowest �yrast, solid dots� and first-excited states
�solid squares� are plotted as a function of the total angular momen-
tum M =�i=1

N mi �mi��li��. b, e, and be denote, respectively, the bulk,
edge, and cross bulk-edge contributions to the total energies. The b
contribution reflects a 50% depletion of the bulk component due to
the form of the Dirac- electron spinor in Eq. �8�. The arrow in the b
curve points to the �=1 /3 �M =45� excitation-energy gap �the dif-
ference between first-excited and yrast energies�. The radius of the
sample was taken as R=30lB. �=1 for suspended graphene.
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FIG. 2. �Color online� EXD energies for N=7 Dirac electrons.
Energies for the lowest �yrast, solid dots� and first-excited states
�solid squares� are plotted as a function of the total angular momen-
tum M =�i=1

N mi �mi��li��. b, e, and be denote, respectively, the bulk,
edge, and cross bulk-edge contributions to the total energies. The b
contribution reflects a 50% depletion of the bulk component due to
the form of the Dirac- electron spinor in Eq. �8�. The radius of the
sample was taken as R=25lB. �=1 for suspended graphene.
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Mm = M0 + kN or Mm = M0 + k�N − 1� , �13�

where M0=N�N−1� /2, k=0,1 ,2 ,3 , . . ., and N is the number
of electrons. For the bulk component, the cusp states are
interpreted8,20 as a signature of the formation of correlated
incompressible states that may exhibit certain correlated liq-
uid characteristics and underlie the FQHE physics in the
thermodynamic limit. In particular, the magic angular mo-
menta are associated8,20 with fractional fillings �=M0 /Mm.
Note that the angular momenta of the Laughlin FQHE
function6 correspond to Eq. �13� with k= �N−1�p for the first
case and k=Np for the second case, with the associated frac-
tions given by �=1 / �2p+1� �p being a positive integer�.

The EXD energies displayed in Figs. 1 and 2 �and addi-
tional calculated results for other sizes N=3–5 and 8 �not
shown�� reveal three prominent trends. �I� The b+e energies
are always higher than those calculated only with the bulk-
type component �denoted as b�. More importantly �as
checked for various sample sizes, e.g., R / lB=15, 25, and 30�,
the difference between the b+e �i.e., including the edge con-
tribution� and b EXD energies �for any N� approaches as-
ymptotically for M→� the value �E1�N� /4; �E1�N� is the
electrostatic energy of N point charges localized on the pe-
rimeter at the vertices of a regular polygon, i.e.,

�E1�N� =
NSN

4xR

e2

�lB
, �14�

with SN=� j=2
N �sin��j−1�� /N��−1. The factor 1/4 is due to the

half weight of the electrons accumulating on the physical
edge �recall the spinor in Eq. �8��. The result in Eq. �14�
�deduced from analysis of the EXD computed energies, see,
e.g., Figs. 1 and 2� suggests that a single-ring Wigner mol-
ecule is formed at the edge; this is in agreement with the
conditional probability distribution �CPD� analysis in Sec.
IV B. �II� The b+e+be energies are always higher than the
b+e ones. Moreover, the difference between the b+e+be
and b+e EXD energies �for any N� approach asymptotically
for M→� the value �E2�N� /4, where �E2�N� is the electro-
static energy due to the repulsion between a point charge of
strength Ne located at the center and Ne charges distributed
at the perimeter of the sample,

�E2�N� =
N�N − 1�

xR

e2

�lB
. �15�

The factor 1/4 is again due to half of the electrons being
accumulated on the physical edge while the other half being
located in the bulk component; the factor N−1 accounts for
the self-interaction correction.

It is apparent that the EXD density of states associated
with the b+e+be LLL spectrum will show �for a given N�
the opening of an interaction-induced energy gap

�E�N� = �E1�N�/4 + �E2�N�/4 �16�

compared to that associated with the bulk-only �b� spectrum.
The emergence of this edge-induced, electrostatic energy gap
is related to �see below� the experimentally observed9,10 in-
sulating behavior at the charge neutrality point ��=0�. �III�
Due to the fact that both the e and e+be contributions �ex-
pressed in units of e2 /�lB� decrease as a function of R / lB �see

points �I� and �II� above, and the factor 1 /xR= lB /R in Eqs.
�14� and �15��, it follows that in the thermodynamic limit the
excitation gaps �which determine the strength of the FQHE�
will approach those of the b contribution alone �which is
independent of R / lB�. As a result, the FQHE excitation en-
ergy gaps for a graphene sample with zigzag edges �and in
particular for �=1 /3� are 1/4 �see the prefactor of the bulk-
only contribution in Eq. �12�� of those calculated4,5 using
boundless-graphene modeling. For boundless graphene,
available in the literature EXD calculations in a spherical
geometry reported two values for the FQHE energy gap: the
first value5,9 is 
0.1 e2 /�lB for polarized electrons while the
second value4 is 0.042 e2 /�lB when pseudoskyrmion effects
are considered.21 From our disk-geometry EXD calculations,
we find �in units of e2 /�lB, and including the above 1/4
factor� an excitation energy gap for the b component
of 0.0153�N=6, M1/3=45�, 0.0160�N=7, M1/3=63�,
0.0145�N=8, M1/3=84�, 0.0150�N=9, M1/3=108�,
0.0149�N=10, M1/3=135�, and 0.0147�N=11, M1/3=165�
�M1/3 gives the magic angular momenta corresponding to �
=1 /3�. These values extrapolate to an excitation energy gap
of 0.0137 e2 /�lB for N→� �with a standard error of
�0.0009�. Our result is in good agreement with the experi-
mentally measured9,10 value �0.008 e2 /�lB�, with a possible
added effect of residual disorder.

To estimate the magnitude of the experimentally observ-
able insulating gap, ���=0�=�E�Nmax+1�−�E�Nmax� �re-
call Eq. �16��, one needs to consider the maximum number,
Nmax, of RWM electrons on the edge of the graphene disk
�see point �I� above�. A rough estimate is given by Nmax

2�R / �2�lB�, where R is the radius of the graphene sample
and � is a fitting parameter. The variation in ���=0� with B
shown in Fig. 3�a� �calculated for R=1 �m� is found to
behave as B�, �0.54; the increase in the gap with B is
consistent with recent experiments on suspended
graphene.9,10 The evolution of the insulating gap with the
size of the system is found to essentially saturate for large R
�see Fig. 3�b� calculated for B=8 T�.

B. Conditional probability distributions for the edge
component

The calculated electron density is azimuthally uniform
due to the conservation of the total angular momentum M in
the many-body EXD calculations. The spatial arrangement of
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FIG. 3. �Color online� Variation in the insulating gap �. �a� As a
function of B when R=1 �m. �b� As a function of R when B
=8 T. Note the ��B0.54 increase shown in �a� and the effective
saturation for large R exhibited in �b�. �=2.
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the edge-type component of the N correlated electrons can be
revealed in the intrinsic frame of reference via the two-body
correlation function7 P�r ,r0�, referred to as a CPD. The CPD
is defined as

P�r,r0� � ��M
EXD��

i�j

��ri − r���r j − r0���M
EXD	 . �17�

The CPDs are giving the probability of finding one electron
at position r assuming that another one is fixed at the point
r0. The CPD for the edge �e� component of the yrast cusp
state having N=6 and M =39 is displayed in Fig. 4. It is
apparent that an RWM reflecting a single-ring arrangement is
formed at the edge of the graphene sample.

V. SUMMARY

We developed here a consistent picture of the many-body
properties of interacting correlated Dirac electrons in
graphene which is in correspondence with experimental find-
ings pertaining to the incompressible FQHE states and insu-
lating phase emerging at high magnetic fields. Key to the
success of our theoretical model is the proper inclusion of
the effect of the graphene-sample edge, treated here with the
use of the zigzag boundary condition. This boundary condi-
tion weights by a factor 1 /�2 the bulk-type wave functions
in the two-component LLL Dirac spinor �Eq. �8��; account-
ing for a 50% depletion of the bulk electron density. The
other component �also weighted by 1 /�2� resides on the
sample edge, leading to the emergence of an insulating
phase.

These findings point to the unique role of the graphene
edge in modulating the strength of the interelectron interac-

tions governing the correlated many-body states in graphene,
thus providing an impetus for future explorations, including
controlled treatments of the graphene-sample boundaries.
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APPENDIX A: SOLUTIONS OF THE DIRAC-WEYL
EQUATION IN POLAR COORDINATES

The derivation of the solutions of the Dirac-Weyl Eq. �2�
involves two subcases, i.e, for ��0 and �=0.

For ��0, the solutions of Eq. �2� that are regular at the
origin �x=0� can be found through the substitution of the
following form in the DW equation:

�A = Ce−x2/4x�l�f l�x� , �A1�

which will specify f l�x�.
For any l, and prior to invoking the zigzag boundary con-

dition, the �A component is given by

�A�x� = Ce−x2/4x�l�M� �l� + l

2
+ 1 −

�2

2
, �l� + 1,

x2

2
� . �A2�

In Eq. �A2�, �=E / �	vF / lB� is the reduced Dirac-electron en-
ergy, with vF the Fermi velocity and lB= �	c /eB�1/2 the mag-
netic length. The general form of the �B component depends
on whether l is positive or negative, i.e.,

�B�x� = − C
2�l�
�

e−x2/4x�l�−1M�−
�2

2
, �l�,

x2

2
� , �A3�

for l
−1, and

�B�x� = C
�

2�l + 1�
e−x2/4xl+1M�l + 1 −

�2

2
,l + 2,

x2

2
� ,

�A4�

for l0.
For �=0, the two equations in the Dirac-Weyl system �Eq.

�2�� decouple. In this case, the regular at the origin �x=0�
solutions are

�A�x� = 0

�B�x� = CBx�l�−1e−x2/4, �A5�

for l
−1, and

�A�x� = CAxlex2/4

�B�x� = 0. �A6�

for l0.
The interacting-electron EXD energies corresponding to

these ��=0� single-particle levels �taken as a basis� are
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FIG. 4. �Color online� CPD for the edge component portraying
the formation of a single-ring RWM. An illustrative yrast cusp state
�with N=6 and M =39� in a graphene sample of radius R / lB=30 is
considered. The azimuthal CPD at the physical edge of the sample
is plotted, i.e., P�r ,r0� as a function of r=30�cos � , sin ��. The
fixed point is located at r0=30�cos � , sin ��. Note the five maxima
corresponding to the remaining five electrons, with the sixth one
taken at r0. r and r0 are in units of lB.
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higher than those resulting from the bulk-edge mixed states
���0�; consequently they correspond to excited states lying
above the yrast band.

APPENDIX B: TWO DIFFERENT TYPES OF EDGE
STATES

From early on, the concept of edge states has played a
central role in the theory of the quantum Hall effect for non-
relativistic electrons.17 In addition to these nonrelativistic
edge states, the sublattice structure of graphene �relativistic,
Dirac electrons� allows in high B for other unique types of
edge states with no analog in nonrelativistic systems; in par-
ticular, the mixed �bulk-edge� states described by the spinor
in Eq. �8�. In this appendix, we elaborate further on this
point.

To this effect, it is instructive first to investigate the be-
havior of the LLL energies ��0 obtained as solutions of the
transcendental Eq. �4�. For a graphene sample with radius
R=15lB, the variation in the single-particle energies with m
= �l� is shown in Fig. 5. We observe a flat region where � is
vanishingly small ��
0� transforming for higher angular
momenta to a steeply rising branch. To gain insight into the
nature of the single-particle levels in these two regions, we
plot the two components of the Dirac-electron spinor for two
characteristic angular momenta m.

In Fig. 6 we show the case of m=3 �l=−3, with �
=4.383�10−22�, which lies deep inside the flat region in Fig.
5. Inside the graphene sample �x�xR�, the �B component can
be approximated by the bulk-type orbital in Eq. �5�; outside
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LLL

FIG. 5. LLL reduced single-particle energies � as a function of
the single-particle angular momentum m= �l�. Note the flat section
of the curve that is followed by a rapid rise when the �B bulk-type
component reaches the edge of the graphene sample. The graphene
sample boundary is taken at R=15lB. � is dimensionless �see text�.
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FIG. 6. �Color online� The two LLL orbital components �B�x�
�marked as B, top frame� and �A�x� �marked as A, bottom frame� in
Eq. �3� for m=3, �l=−3�, and xR=15 �a mixed bulk-edge DW
spinor�. The corresponding single-particle energy �see Eq. �4� and
Fig. 5� is �=4.383�10−22. The vertical arrows at x=xR=R / lB=15
mark the position of the physical edge of the graphene sample.
Inside the graphene sample �x�xR�, the �B component can be ap-
proximated by the bulk- type orbital in Eq. �5�; outside the graphene
sample �x�xR�, it develops an exponentially growing tail reflecting
the fact that the full wave function in the entire range 0
x�� is
described via a confluent hypergeometric function exhibiting a zero
at x=xR. The �A component is well represented by the edge orbital
in Eq. �6�.
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FIG. 7. �Color online� The two LLL orbital components �B�x�
�marked as B, top frame� and �A�x� �marked as A, bottom frame� in
Eq. �3� for m=90 �l=−90� and xR=15 �a double-edge DW spinor
with both components representing edgelike orbitals�. The corre-
sponding single-particle energy �see Eq. �4� and Fig. 5� is �
=0.349. The vertical arrows at x=xR=R / lB=15 mark the position of
the physical edge of the graphene sample. The �B component is
similar to the nonrelativistic edge states familiar from the theory of
the integer QHE in semiconductor heterostructures �Ref. 17�. The
�A component is similar to the edge orbital in Eq. �6�.
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the graphene sample �x�xR�, it develops an exponentially
growing tail reflecting the fact that the full wave function in
the expanded range 0
x�� is described via a confluent
hypergeometric function exhibiting a zero at x=xR. The �A

component is well represented by the edge orbital in Eq. �6�,
and as aforementioned it does not have an analog for nonrel-
ativistic LLL electrons.

We contrast this behavior by illustrating in Fig. 7 the
spinor components corresponding to m=90 ��=0.349� which
is characteristic of the steeply rising branch in Fig. 5. The �B

component is similar now to a nonrelativistic edge state fa-
miliar from the theory of the integer QHE in semiconductor
heterostructures17 while the �A component exhibits again a

behavior similar to the edge orbital in Eq. �6�.
From the above we conclude that the origin of the rising

energy of the single-particle states with larger m �see Fig. 5�
reflects the shift of the centroid of the �B component toward
the boundary while �simultaneously� satisfying the vanishing
of this component on the sample boundary, thus disturbing
the orbital shape �see Fig. 7�. Note that the position of the
centroid depends on m �compare Figs. 6 and 7� and that
�x2	2�m+1� for ��x2	�xR. Working in the regime R / lB
�1, the states in the flat region of the energy curve in Fig. 5
form an effective LLL manifold composed of mixed bulk-
edge single-particle spinors �approximated by the Dirac-
electron spinor in Eq. �8��.
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