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Quantal molecular description and universal aspects of the spectra of bosons and fermions
in the lowest Landau level
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Through the introduction of a class of trial wave functions portraying combined rotations and vibrations of
molecules formed through particle localization in concentric polygonal rings, a correlated basis is constructed
that spans the translationally invariant part of the lowest-Landau-level (LLL) spectra. These trial functions,
referred to as rovibrational molecular (RVM) functions, generalize our previous work that focused exclusively on
electronic cusp states, describing them as pure vibrationless rotations. From a computational viewpoint, the RVM
correlated basis enables controlled and systematic improvements of the original strongly correlated variational
wave function. Conceptually, it provides the basis for the development of a quantal molecular description
for the full LLL spectra. This quantal molecular description is universal, being valid for both bosons and
fermions, for both the yrast and excited states of the LLL spectra, and for both low and high angular momenta.
Furthermore, it follows that all other translationally invariant trial functions (e.g., the Jastrow-Laughlin, compact
composite-fermion, or Moore-Read functions) are reducible to a description in terms of an excited rotating and
vibrating quantal molecule.
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I. INTRODUCTION

A. Motivation

Following the discovery [1] of the fractional quantum
Hall effect (FQHE) in two-dimensional (2D) semiconductor
heterostructures under high magnetic fields (B) in the 1980’s,
the description of strongly correlated electrons in the lowest
Landau level (LLL) developed into a major branch of the-
oretical condensed matter physics [2–19]. Early on, it was
realized that the essential many-body physics in the LLL can
be captured through trial wave functions. Prominent examples
are the Jastrow-type Laughlin (JL) [2], composite fermion (CF)
[6], and Moore-Read (MR) [7] Pfaffian functions, representing
quantum-liquid states [2]. In the last ten years, the field of
semiconductor quantum dots [15] helped to focus attention
on finite systems with a small number (N ) of electrons.
Theoretical investigations of such finite systems led to the
introduction of “crystalline”-type LLL trial functions referred
to as rotating electron molecules [12,15] (REM’s). In particular
in their intrinsic frame of reference, the REM’s describe
electrons localized at the apexes of concentric polygonal-ring
configurations (n1, n2, . . . , nr ), where

∑r
q=1 nq = N and r is

the number of concentric rings.
More recently, the emerging field of graphene quantum dots

[20,21] and the burgeoning field of rapidly rotating trapped
ultracold neutral gases [22–34] have generated significant
interest pertaining to strongly correlated states in the LLL.
Furthermore, it is anticipated that small (and/or mesoscopic)
assemblies of ultracold bosonic atoms will become technically
available in the near future [32–35] and that they will provide
an excellent vehicle [27,28,31–35] for experimentally reaching
exotic phases and for testing the rich variety of proposed LLL
trial wave functions.
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Despite the rich literature and unabated theoretical interest,
a unifying physical (as well as mathematical) description of
the full LLL spectra (including both yrast [36] and all excited
states), however, is still missing. In this article, a universal
theory for the LLL spectra of a finite number of particles
valid for both statistics (i.e., for both bosons and fermions)
is introduced. The LLL spectra are shown to be associated
with fully quantal [37] and strongly correlated rovibrational
molecular (RVM) states, that is, with (analytic) trial functions
describing vibrational excitations relative to the set of the
special yrast states known as cusp states.

The cusp states exhibit enhanced stability and magic
angular momenta and as such they have attracted considerable
attention. However, the cusp states represent only a small
fraction of the LLL spectrum. The molecular trial functions
associated with them are purely rotational (i.e., vibrationless)
and were introduced for the case of electrons in Ref. [12] as
REM’s. The corresponding purely rotational bosonic analytic
trial functions for cusp states [called RBM’s] are introduced
in this article; see Sec. II A. More importantly, this article
shows that the quantal molecular description can be extended
to all other LLL states (beyond the special cusp states)
by introducing (see Sec. II D) analytic expressions for trial
functions representing rovibrational excitations of both REM’s
and RBM’s. These rovibrational trial functions include the
REM or RBM expressions as a special case and they will be
referred to in general as RVM trial functions.

It is remarkable that the numerical results of the present
theory were found in all tested cases to be amenable (if
so desired) to an agreement within machine precision with
exact-diagonalization (EXD) results, including energies, wave
functions, and overlaps. This numerical behavior points
toward a deeper mathematical finding, that is, that the RVM
trial functions for both statistics provide a complete and
correlated basis that spans the translationally invariant (TI)
subspace [5] of the LLL spectrum. An uncorrelated basis,
without physical meaning, built out of products of elementary
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symmetric polynomials is also known to span the (bosonic) TI
subspace [38].

For the sake of clarity, we comment here on the use of the
terms “correlated functions” and/or “correlated basis.” Indeed,
the exact many-body eigenstates are customarily called corre-
lated when interactions play a dominant role. Consequently,
a basis is called correlated when its members incorporate
or anticipate effects of the strong two-body interaction a
priori (before the explicit use of the two-body interaction in
an exact diagonalization). In this respect, Jastrow-type basis
wave functions (e.g., the Feenberg-Clark method of correlated-
basis functions [39–41] and/or the composite-fermion basis
[18,19,42,43]) are described as correlated since the Jastrow
factors incorporate the effect of a strong two-body repulsion
in keeping the interacting particles apart on the average. Our
RVM basis is referred to as correlated since, in addition
to keeping the interacting particles away from each other,
the RVM functions incorporate the strong-two-body-repulsion
effect of particle localization in concentric polygonal rings
and formation of Wigner molecules; this localization effect
was repeatedly demonstrated via EXD calculations in the
past decade (see, e.g., the review in Ref. [15] and references
therein). In this spirit, we describe the basis of elementary
symmetric polynomials as “uncorrelated,” since the elemen-
tary symmetric polynomials do not incorporate or anticipate
this dominant effect of a strong two-body repulsion (i.e., that
of keeping the interacting particles apart).

We are unaware of any other strongly correlated functions
that span the TI subspace. Indeed, although the JL function
(used for describing yrast states) is translationally invariant, its
quasihole and quasielectron excitations are not [5]. Similarly,
the compact CF trial functions are translationally invariant
[30], but the CF excitations that are needed to complete
the CF basis are not [18,19,42,44]. The shortcoming of the
aforementioned well-known correlated LLL theories to sat-
isfy fundamental symmetries of the many-body Hamiltonian
represents an unsatisfactory state of affairs and the present
article provides a remedy to this effect. In this context, we note
that, although the MR functions [7] are also translationally
invariant, they address only certain specific LLL states and
they do not form a basis spanning the TI subspace.

Our introduction of a correlated basis that spans the
TI subspace is of importance in the following two ways:
(1) From a practical (and calculational) viewpoint, one can
perform controlled and systematic stepwise improvements of
the original strongly correlated variational wave function, for
example, the pure REM or RBM. (For detailed illustrative
examples of the rapid-convergence properties of the RVM
basis, see the Appendix.) This calculational viewpoint was
also the motivation behind the introduction of other correlated
bases in many-body physics; (see, e.g., the treatment of
quantum liquids and nuclear matter in Refs. [39–41] and the
composite-fermion correlated basis in Refs. [18,19,42,43]).
(2) Conceptually, it guarantees that the properties of the
RVM functions and, in particular, the molecular point-group
symmetries are irrevocably incorporated in the properties of
the exact LLL wave functions. Furthermore, it follows that
all other translationally invariant trial functions (e.g., the JL,
compact CF, or MR functions), are reducible to a description
in terms of an excited rotating and vibrating quantal molecule.

Specific examples of the reducibility of the JL and MR states
to the molecular description introduced in this article are
provided in Secs. III C and III D. This is a surprising result,
since these Jastrow-based trial functions are widely described
in the previous literature as being liquid-like in an essential
way.

B. Characteristic properties of the lowest-Landau-level spectra

For completeness and clarity in the presentation, we briefly
provide in this section a graphical illustration of some of the
main characteristics of the LLL spectra, calculated via the
exact-diagonalization approach.

First we describe here the special form [11,15,30] of the
many-body Hamiltonian used for calculating the global ground
state of a finite number N of electrons at a given magnetic field
B. This special form takes advantage of the simplifications at
the limit of large B, that is, when the relevant Hilbert space
can be restricted to the LLL, given that h̄ω0 � h̄ωc/2; the
frequency ω0 specifies the external harmonic confinement and
ωc = eB/(mc) is the cyclotron frequency. Then the many-
body Hamiltonian reduces to

H
e,global
LLL = N

h̄ωc

2
+ h̄

(√
ω2

0 + ω2
c/4 − ωc/2

)
L

+
N∑

i<j

e2

κ|zi − zj | , (1)

where L =∑N
i=1 li is the total angular momentum

and z = x + iy.
In the case of N rapidly rotating bosons (with ω0 spec-

ifying the external confinement of the 2D harmonic trap
and � denoting the rotational frequency), the corresponding
Hamiltonian [24,25,29,45] (in the limit �/ω0 → 1) is written
as [46]

H
b,global
LLL = Nh̄ω0 + h̄(ω0 − �)L +

N∑
i<j

gδ(zi − zj ). (2)

Since we will consider many-body energy eigenstates that
are eigenstates of the total angular momentum as well, it
follows that only the interaction terms are nontrivial in both
Hamiltonians (1) and (2). As a result, we will henceforth follow
the practice of focusing on the simpler interaction-only LLL
Hamiltonian

HLLL =
N∑

i<j

v(zi − zj ), (3)

where v(zi − zj ) denotes the two-body interaction (Coulomb
for electrons and repulsive contact potential for bosons). The
“ground states” of the Hamiltonian in Eq. (3) coincide with
the “yrast” band [36].

We remind the reader that the EXD method is based on
the fact that the full LLL Hilbert space at a given total angular
momentum L is spanned by the set of all possible uncorrelated
permanents (for bosons) or Slater determinants (for electrons)
made out from the Darwin-Fock zero-node single-particle
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FIG. 1. (Color online) LLL spectra for N = 3 scalar bosons
calculated using exact diagonalization. Only the Hamiltonian term
containing the two-body repulsive contact interaction gδ(zi − zj )
[see Eq. (3)] was considered in the exact diagonalization. The gray
solid dots (marked by arrows; green online) denote the translationally
invariant states. The dark solid dots are the spurious states (see text).
The dashed line denotes the yrast band, while the cusp states are
marked by a circle. Energies in units of g/(π�2). The number of
translationally invariant states is much smaller than the total number
of LLL states.

levels (referred to also as orbitals)

ψli (z) = zli

√
πli!

exp(−zz∗/2), (4)

with li � 0. The position variable z is given in units of
� = √

h̄/(mω0) in the case of a rotating harmonic trap (with
lateral confinement frequency ω0) or lB

√
2 in the case of

an applied magnetic field B, with lB = √
h̄/(mωc) being the

magnetic length and ωc the cyclotron frequency [46]. (For
details concerning the EXD method, see, e.g., Refs. [15,29].)
In the following, we use the convention that an uncorrelated
state is described by a single permanent (or Slater determinant)
made out from the orbitals in Eq. (4), which are characterized
by good single-particle angular momenta li .

A small part (sufficient for our purposes here) of the EXD
LLL spectra (as a function of L) are plotted in Fig. 1 for
N = 3 scalar bosons and in Fig. 2 for N = 4 spin-polarized
electrons. As is usually done in the LLL, the one-body terms of
the Hamiltonian (i.e., confining potential and kinetic-energy)
were omitted [11,15,30] and the exact diagonalization involved
only the two-body interaction [see Eq. (3)].

In Figs. 1 and 2, the yrast bands [36] are denoted by a dashed
line. Along the yrast bands there appear special cusp states
denoted by a circle. The cusp states are important because
they exhibit enhanced stability when the one-body terms of
the Hamiltonian (i.e., external confinement and kinetic energy)
are added [see Eqs. (1) and (2)] and thus they determine [47]
the global ground states [11,15,24,29,48] as a function of
the applied magnetic field B or the rotational frequency �
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FIG. 2. (Color online) LLL spectra for N = 4 spin-polarized
electrons calculated using exact diagonalization. Only the Hamilto-
nian term containing the two-body Coulomb interaction, e2/(κ|zi −
zj |), [see Eq. (3)] was considered in the exact diagonalization.
The gray solid dots (marked by arrows; green online) denote the
translationally invariant states. The dark solid dots are the spurious
states (see text). The dashed line denotes the yrast band, while the
cusp states are marked by a circle. Energies in units of e2/(κlB ).
The number of translationally invariant states is much smaller than
the total number of LLL states.

of the trap (for the correspondence between B and �, see
Ref. [46]). In all studied cases [11,15,24,28,29,31,48] (includ-
ing both electrons and bosons up to N = 9 particles), the total
angular momenta of the global ground states belong to the set
of magic angular momenta given by Eq. (30). We note that
the emergence of these magic angular momenta are a direct
signature of the molecular nature of the cusp states, a fact
that further motivates our present investigations concerning
the molecular description of the full LLL spectra beyond the
electronic [12,13,15] cusp states.

In the LLL, all many-body wave functions have the general
form [5,25,30]

W (z1, z2, . . . , zN )|0〉, (5)

where W (z1, z2, . . . , zN ) is an homogeneous polynomial of
degree L (being antisymmetric for fermions and symmetric
for bosons).

In Eq. (5), the symbol |0〉 stands for a product of Gaussians
[see Eq. (4)]

|0〉 = exp

(
−

N∑
i=1

ziz
∗
i /2

)
. (6)

To simplify the notation, this common factor will be omitted
henceforth in the algebraic expressions and manipulations
[except in Eqs. (18) and (33), where it is repeated for clarity].
Its contribution, however, is necessary when numerical results
are calculated.

A central property of the LLL spectra is the existence of
a translationally invariant (TI) subspace [5,25,30] for a given
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L. This subspace is associated with a special subset of the
general wave functions in Eq. (5), that is, with wave functions
having TI polynomials W (z1, z2, . . . , zN ). Specifically, the TI
polynomials obey the relationship

W (z1 + c, z2 + c, . . . , zN + c) = W (z1, z2, . . . , zN ), (7)

for any arbitrary constant complex number c.
The LLL states belonging to the TI subspaces are denoted

by gray solid dots (marked by an arrow; green online) in
Figs. 1 and 2. The dimension DTI(L) of the translational in-
variant subspace is much smaller than the dimension DEXD(L)
of the exact-diagonalization (EXD) [15] space (which is
spanned by uncorrelated permanents or Slater determinants as
discussed earlier). The remaining DEXD(L)−DTI(L) states are
spurious center-of-mass excitations, generated by multiplying
the TI states with the operator zm

c , m = 1, 2, . . . , where

zc = 1

N

N∑
i=1

zi, (8)

is the coordinate of the center of mass [49].
The energies of these spurious states coincide with those

appearing at all the other smaller angular momenta [5]. Thus
(see Tables I, II, and IV)

DTI(L) = DEXD(L) − DEXD(L − 1). (9)

We further note that for N particles (bosons or fermions)

DTI
b (L) = DTI

f (L + N (N − 1)/2), (10)

where the subscripts b and f stand for bosons and fermions
(electrons), respectively. N (N − 1)/2 is the smallest value of
the total angular momentum for spin-polarized fermions in the
LLL.

C. Plan of the article

The article is organized as follows. The analytic trial
functions associated with pure rotations of bosonic molecules
(i.e., the RBM’s) are introduced in Sec. II A, followed by
a description of the purely rotational electronic molecular
functions (i.e., the REM’s) in Sec. II B. Properties of the
RBM’s and REM’s are discussed in Sec. II C. Section II D
introduces the general rovibrational trial functions (i.e., the
RVM’s).

Case studies of the quantal molecular description of the
LLL spectra are presented in Sec. III. In particular, Sec. III A
discusses the case of N = 3 LLL scalar bosons, while
Sec. III B discusses the case of N = 3 spin-polarized LLL
electrons. The case of N = 4 LLL electrons is presented in
Sec. III C, along with an analysis of the JL state (for fractional
filling ν = 1/3) from the viewpoint of the present molecular
theory. Section III D investigates the case of N = 5 LLL
bosons, along with an analysis of the MR state according to the
molecular picture. Section IV offers a summary and discus-
sion. Finally, the Appendix discusses the rapid-convergence
properties of the RVM basis.

We note that, going from N = 3 to N = 5 particles, the
molecular description requires consideration of successively
larger numbers of isomeric molecular structures as elaborated
in Sec. III. In particular, for N = 3 only one molecular isomer

is needed, while three different molecular isomers are needed
for N = 5. It is remarkable that these isomers are independent
of the statistics (bosons or fermions).

II. MOLECULAR TRIAL FUNCTIONS

The molecular trial functions introduced in this article are
derived with the help of a first-principles methodology of
hierarchical successive approximations that converge to the
exact solution of the many-body Schrödinger equation [15].
Specifically, this methodology is based on the theory of
symmetry breaking at the mean-field level and of subsequent
symmetry restoration via projection techniques [15]. In this
section, we present (and/or review where appropriate) this
derivation in some detail.

A. Purely rotational bosonic trial functions (RBM’s)

RBM analytical wave functions in the LLL for N bosons in
2D rotating traps can be derived following earlier analogous
derivations for the case of electrons [12]. Our approach consists
of two steps:

At the first step, one constructs a permanent (Slater
determinant for fermions) 	N (z1, . . . , zN ) out of displaced
single-particle states u(zj , Zj ), j = 1, . . . , N that represent
scalar bosons localized at the positions Zj , with (omitting the
particle indices) z = x + iy and Z = X + iY = Reiφ ,

	N [z] = perm(MN [z]), (11)

with the matrix MN [z] being

MN [z] =

⎡⎢⎢⎣
u(z1, Z1) · · · u(zN, Z1)

...
. . .

...

u(z1, ZN ) · · · u(zN, ZN )

⎤⎥⎥⎦ . (12)

For the permanent of a matrix, we follow here the def-
inition in Ref. [51], that is, the permanent is an analog
of a determinant where all the signs in the expansion by
minors are taken as positive. This definition provides an
unnormalized expression for the permanent. If a normalized
expression is needed, one has to multiply with a normalization
constant

N = 1√
N !p1!p2! . . . pM !

, (13)

where {p1, p2, . . . , pM} denote the occupations (multiplici-
ties) of the orbitals, assuming that there are M distinct orbitals
in a given permanent (M � N ) [52].

In the LLL, one can specifically consider the limit when
the confining potential can be neglected compared to the
effect induced by the gauge field. The localized u(z, Z)
single-particle states (referred to also as orbitals) are then taken
to be displaced zero-node Darwin-Fock states with appropriate
Peierls phases due to the presence of a perpendicular magnetic
field [see Eq. (1) in Ref. [12]] or due to the rotation of the
trap with angular frequency �. Then, assuming a symmetric
gauge, the orbitals can be represented [12,13,53] by displaced
Gaussian analytic functions, centered at different positions
Zj ≡ Xj + Yj according to the equilibrium configuration of
N classical point charges [54,55] arranged at the vertices
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of nested regular polygons (each Gaussian representing a
localized particle). Such displaced Gaussians are written
as

u(z, Zj ) = (1/
√

π ) exp[−|z − Zj |2/2] exp[−i(xYj − yXj )],

(14)

where the phase factor is due to the gauge invariance. z ≡
x + iy and all lengths are in units of � in the case of a
rotating trap or lB

√
2 in the case of an applied magnetic field;

see Sec. I B.
The localized orbital u(z, Z) can be expanded in a series

over the complete set of zero-node single-particle wave
functions in Eq. (4). One gets (see Appendix in Ref. [56])

u(z, Z) =
∞∑
l=0

Cl(Z)ψl(z), (15)

with

Cl(Z) = (Z∗)l exp(−ZZ∗/2)/
√

l! (16)

for Z �= 0. Naturally, C0(0) = 1 and Cl>0(0) = 0.
For an N -particle system, the bosons are situated at the

apexes of r concentric regular polygons. The ensuing multiring
structure is denoted by (n1, n2, . . . , nr ) with

∑r
q=1 nq = N .

The position of the j th electron on the qth ring is given by

Z
q

j = Z̃q exp[i2π (1 − j )/nq], 1 � j � nq. (17)

The single permanent 	N [z] represents a static boson
molecule. Using Eq. (15), one finds the following expansion
(within a proportionality constant)

	N [z] =
∞∑

l1=0,...,lN =0

Cl1 (Z1)Cl2 (Z2) · · · ClN (ZN )√
l1!l2! · · · lN !

× P (l1, l2, . . . , lN )|0〉, (18)

where P (l1, l2, . . . , lN ) ≡ perm[zl1
1 , z

l2
2 , . . . , z

lN
N ]; the elements

of the permanent are the functions z
lj
i , with z

l1
1 , z

l2
2 , . . . , z

lN
N

being the diagonal elements. The Zk’s (with 1 � k � N ) in
Eq. (18) are the Z

q

j ’s of Eq. (17), but relabeled.
In Eq. (18), the common factor |0〉 represents the product

of Gaussians defined in Eq. (6). To simplify the notation this
common factor is usually omitted.

Second step: In the following, we will continue with the
details of the complete derivation in the simplest case of a
single (0, N) ring. Thus we consider the special case

Zj = Re2πi(1−j )/N , 1 � j � N, (19)

where R is the radius of the single ring.
The Slater permanent 	N [z] breaks the rotational sym-

metry and thus it is not an eigenstate of the total angular
momentum h̄L̂ = h̄

∑N
j=1 l̂j . However, one can restore [12,15]

the rotational symmetry by applying onto 	N [z] the projection
operator

PL ≡ 1

2π

∫ 2π

0
dγ eiγ (L̂−L), (20)

where h̄L are the eigenvalues of the total angular momentum.

When applied onto 	N [z], the projection operator PL acts
as a Kronecker delta: From the unrestricted sum in Eq. (18)
it picks up only those terms having a given total angular
momentum L (henceforth we drop the constant prefactor
h̄ when referring to angular momenta). As a result the
projected wave function �N

L = PL	N is written as (within
a proportionality constant)

�N
L [z] =

l1+···+lN =L∑
l1,...,lN

P (l1, . . . , lN )

l1! . . . lN !
ei(φ1l1+···+φN lN ), (21)

with φj = 2π (j − 1)/N .
We further observe that it is advantageous to rewrite

Eq. (21) by restricting the summation to the ordered arrange-
ments l1 � l2 � · · · � lN , in which case we get

�N
L [z] =

l1+l2+···+lN =L∑
0�l1�l2�···�lN

P (l1, . . . , lN )

l1! . . . lN !

× perm[eiφ1l1 , eiφ2l2 , . . . , eiφN lN ]

p1!p2! . . . pM !
. (22)

The second permanent in Eq. (22) can be shown [57] to be
equal (within a proportionality constant) to a sum of cosine
terms times a phase factor

eiπ(N−1)L/N , (23)

which is independent of the individual lj ’s.
The final result for the (0, N ) RBM wave function is (within

a proportionality constant)

�RBM
L (0, N)[z] =

l1+l2+···+lN =L∑
0�l1�l2�···�lN

Cb(l1, l2, . . . , lN )

× perm
[
z
l1
1 , z

l2
2 , . . . , z

lN
N

]
, (24)

where the coefficients are given by different expressions for
even or odd numbers of bosons N .

(i) For even N , one has

Cb(l1, l2, . . . , lN ) =
(

N∏
i=1

li!

)−1 ( M∏
k=1

pk!

)−1

×
∑

σ

cos

{
[(N − 1)lσ1 + (N − 3)lσ2

+ · · · + lσ(N/2) − lσ(N/2+1) − · · ·

− (N − 3)lσ(N−1) − (N − 1)lσN
]
π

N

}
,

(25)

where the summation
∑

σ runs over the permutations of the
set of N indices {1, 2, . . . , N}.

(ii) With the notation K = N − 1, the corresponding
coefficients for odd N are

Cb(l1, l2, . . . , lN ) =
(

N∏
i=1

li!

)−1 ( M∏
k=1

pk!

)−1

×
∑
σ {K}

cos

{
[Klσ1 + (K − 2)lσ2 + · · ·
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+ 2lσ(K/2) − 2lσ(K/2+1) − · · ·

− (K − 2)lσ(K−1) − KlσK
]
π

N

}
, (26)

where
∑

σ {K} runs over all permutations of N − 1 indices
selected out from the set {1, 2, . . . , N} (of N indices); all N

selections of N − 1 indices need to be considered.
In both Eqs. (25) and (26), the index M (with 1 �

M � N denotes the number of different single-particle an-
gular momenta lj ’s (j = 1, 2, . . . ,M) in the ordered list
{l1, l2, . . . , lN } and the pk’s are the multiplicities of each
one of the different lj ’s [occupations of the corresponding
single-particle orbitals ψlj (z)]. For example, for N = 4 and
{l1 = 2, l2 = 2, l3 = 2, l4 = 5}, one has M = 2 and p1 = 3,
p2 = 1; for {l1 = 0, l2 = 0, l3 = 0, l4 = 0}, one has M = 1
and p1 = 4; for {l1 = 1, l2 = 2, l3 = 3, l4 = 9}, one has M =
4 and p1 = p2 = p3 = p4 = 1.

We further note that for both Eqs. (25) and (26) the total
number of distinct cosine terms is N !/2 [58], with the division
by 2 following from the symmetry properties of cosine, that
is, from cos(−x) = cos(x).

The RBM expression for an (n1, n2) two-ring configuration
(with N = n1 + n2) can be derived following similar steps
as in the derivation of the expressions for the multiring
REM’s [12]. If L1 + L2 = L, the final two-ring RBM expres-
sion is

�RBM
L (n1, n2)[z]

=
l1+l2+···+ln1 =L1∑
0�l1�l2�···�ln1

ln1+1+ln1+2+···+lN =L2∑
0�ln1+1�ln2+2�···�lN

Cb(l1, l2, . . . , ln1 )

×Cb(ln1+1, ln1+2, . . . , lN )perm
[
z
l1
1 , z

l2
2 , . . . , z

lN
N

]
, (27)

where Cb(l1, l2, . . . , ln1 ) and Cb(ln1+1, ln1+2, . . . , lN ) are cal-
culated by applying the single-ring expressions of Eqs. (25)
and (26).

Generalizations of expression (27) to structures with a
larger number r of concentric rings involve for each qth
ring (1 � q � r): (I) Consideration of a separate factor
Cb(lnq−1+1, lnq−1+2, . . . , lnq−1+nq

); (II) A restriction on the
summation of the associated nq angular momenta lnq−1+1 +
lnq−1+2 + · · · + lnq−1+nq

= Lq , with
∑r

q=1 Lq = L.

B. Purely rotational fermionic trial functions (REM’s)

The REM expresion for any (n1, n2, . . . , nr ) multiring
configuration (with N =∑r

q=1 nq) was derived earlier in
Refs. [12,13] following similar steps as those in Sec. II A.
A determinant needs to be used, however, instead of a
permanent to conform with the antisymmetrization prop-
erties of the electronic (fermionic) many-body wave func-
tion. If L1 + L2 = L, the final two-ring REM expres-
sion is

�REM
L (n1, n2)[z]

=
l1+l2+···+ln1 =L1,ln1+1+ln1+2+···+lN =L2∑

0�l1<l2<···<ln1 <ln1+1<···<lN

Cf (l1, l2, . . . , ln1 )

×Cf (ln1+1, ln1+2, . . . , lN )det
[
z
l1
1 , z

l2
2 , . . . , z

lN
N

]
, (28)

where the fermionic coefficients Cf (l1, l2, . . . , ln1 ) and
Cf (ln1+1, ln1+2, . . . , lN ) are calculated by applying to each one
of them the single-ring [(0, N )] expression

Cf (l1, l2, . . . , lN )=
(

N∏
i=1

li!

)−1
⎛⎝ ∏

1�i<j�N

sin
[ π

N
(li − lj )

]⎞⎠ .

(29)

It is straightforward to generalize the two-ring REM
expression in Eq. (28) to more complicated or simpler [i.e.,
(0, N ) and (1, N − 1)] configurations by (I) considering
a separate factor Cf (lnq−1+1, lnq−1+2, . . . , lnq−1+nq

) for each
qth ring; (II) restricting the summation of the associated
nq angular momenta lnq−1+1 + lnq−1+2 + · · · + lnq−1+nq

= Lq ,
with

∑r
q=1 Lq = L.

Apart from the permanent being replaced by a determinant,
we note two other main differences between the REM and
RBM expressions. That is, for electrons (1) M = N in all
instances (single occupancy) and (2) a product of sine terms
in the coefficients Cf (. . .) replaces the sum of cosine terms in
the coefficients Cb(. . .).

C. Properties of RBM’s and REM’s

The analytic expressions for �RXM
L (n1, n2, . . . , nr )[z] (the

index RXM standing for either RBM or REM) describe pure
molecular rotations associated with magic angular momenta

L = L0 +
r∑

q=1

nqkq, (30)

with kq , q = 1, . . . , r being nonnegative integers; L0 =
N (N − 1)/2 for electrons and L0 = 0 for bosons.

A central property of these trial functions is that identically

�RXM
L (n1, n2, . . . , nr )[z] = 0 (31)

for both bosons and electrons when

L �= L0 +
r∑

q=1

nqkq. (32)

This selection rule follows directly from the point group
symmetries of the (n1, n2, . . . , nr ) multiring polygonal config-
urations. Indeed under condition (32) the Cb(. . .) and Cf (. . .)
coefficients are identically zero, as can be easily checked using
MATHEMATICA [57]. In other words, purely rotational states are
allowed only for certain angular momenta that do not conflict
with the intrinsic molecular point-group symmetries.

The yrast states corresponding to magic L’s [Eq. (30)] are
associated with the special cusp states described previously
in Figs. 1 and 2 and in Sec. I B. Furthermore, the enhanced
stability associated with the cusp states (see Sec. I B) is
obviously due to the selection rule described by Eqs. (31)
and (32).

An important property of the REM and RBM trial func-
tions is their translational invariance (in the sense described
in Sec. I B).
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D. General rovibrational trial functions (RVM’s)

The RVM functions that account for the general excitations
of the rotating molecules have the form (within a normalization
constant)

�RXM
L (n1, n2, . . . , nr )Qm

λ |0〉. (33)

The index RXM stands for either REM or RBM. The purely
rotational functions �RXM

L (n1, n2, . . . , nr ) were described in
detail in earlier sections. The product in Eq. (33) combines
rotations with vibrational excitations, the latter being denoted
by Qm

λ , with λ being an angular momentum; the superscript
denotes raising to a power m. Both �RXM

L and Qm
λ are

homogeneous polynomials of the complex particle coordinates
z1, z2, . . . , zN , of order L and λm, respectively. The total
angular momentum L = L + λm. Qm

λ is always symmetric
in these variables; �RXM

L is antisymmetric (symmetric) for
fermions (bosons). |0〉 is the product of Gaussians defined in
Eq. (6); this product of Gaussians is usually omitted.

The vibrational excitations Qλ are given by the same
expression for both bosons and electrons, namely, by the
symmetric polynomials

Qλ =
N∑

i=1

(zi − zc)λ, (34)

where zc is the coordinate of the center of mass defined in
Eq. (8) and λ > 1 is an integer positive number. Vibrational
excitations of a similar form

Q̃λ =
N∑

i=1

zλ
i , (35)

(and certain other variants) were used earlier to approximate
part of the LLL spectra. Such earlier endeavors provided
valuable insights, but overall they remained inconclusive;
for electrons over the maximum density droplet [with magic
L = L0], see Refs. [8] and [9]; for electrons over the ν = 1/3
(ν = L0/L) Jastrow-Laughlin trial function [with magic L =
3L0], see Ref. [10]; and for bosons in the range 0 � L � N ,
see Refs. [22,25,26].

The advantage of Qλ [50] (compared to Q̃λ) is that it is
TI [5,25], a property shared with both �RBM

L and �REM
L . In

the following, we will discuss illustrative cases, which will
show that the RVM functions of Eq. (33) provide a correlated
basis (RVM basis) that spans the TI subspace [5,25,30] of
nonspurious states in the LLL spectra.

III. MOLECULAR DESCRIPTION OF LLL SPECTRA

A. Three spinless bosons

Only the (0, 3) molecular configuration and the dipolar λ =
2 vibrations are at play (as checked numerically); the full TI
spectra at any L are spanned by the wave functions

�RBM
3k (0, 3)Qm

2 ⇒ {k,m}, (36)

with k,m = 0, 1, 2, . . . , and L = 3k + 2m; these states are
always orthogonal.

Following Eq. (24), a simplified analytic expression for the
(0,3) RBM can be derived

�RBM
L (0, 3) =

l1+l2+l3=L∑
0�l1�l2�l3

Cb(l1, l2, l3) Perm
[
z
l1
1 , z

l2
2 , z

l3
3

]
, (37)

where the coefficients Cb(. . .) are given by

Cb(l1, l2, l3) =
(

3∏
i=1

li!

)−1 ( M∏
k=1

pk!

)−1

×
⎧⎨⎩ ∑

1�i<j�3

cos

[
2π (li − lj )

3

]⎫⎬⎭ , (38)

where 1 � M � 3 denotes the number of different single-
particle angular momenta in the triad (l1, l2, l3) and the pk’s
are the multiplicities of each one of these different angular
momenta.

Table I provides the systematics of the molecular descrip-
tion for the beginning (0 � L � 12) of the LLL spectrum.
There are several cases when the TI subspace has dimension
one and the exact solution �exact coincides with a single {k,m}
state. For L = 0 the exact solution coincides with �RBM

0 = 1
(Q0

λ = 1); this is the only case when an LLL state has a
Gross-Pitaevskii form—it is a single (normalized) permanent
[see Eq. (33)] given by |0〉 as defined in Eq. (6).

For L = 2, we found �exact
[1] ∝ Q2, with the index [i]

indicating the energy ordering in the full EXD spectrum
(including both spurious and TI states). Since [see Eq. (34)]

Q2 ∝ (z1 − zc)(z2 − zc) + (z1 − zc)(z3 − zc)

+ (z2 − zc)(z3 − zc), (39)

this result agrees with the findings of Refs. [25,59] concerning
ground states of bosons in the range 0 � L � N .

For L = 3, one finds �exact
[1] ∝ �RBM

3 . Since [see Eq. (37)]

�RBM
3 ∝ (z1 − zc)(z2 − zc)(z3 − zc), (40)

this result agrees again with the findings of Refs. [25,59].
For L = 5, the single nonspurious state is an excited one,

�exact
[2] ∝ �RBM

3 Q2.
For L = 6 (ν = 1/2), the ground-state is found to be

�exact
[1] ∝ −160

9
�RBM

6 + 1

4
Q3

2

= (z1 − z2)2(z1 − z3)2(z2 − z3)2, (41)

that is, the bosonic Jastrow-Laughlin function for ν = 1/2
is equivalent to an RBM state that incorporates vibrational
correlations.

For L � N (N − 1) (i.e., ν � 1/2), the EXD yrast energies
equal zero and with increasing L the degeneracy of the
zero-energy states for a given L increases. It is important that
this nontrivial behavior is reproduced faithfully by the present
method (see Table I).

B. Three electrons

Although unrecognized, the solution of the problem of
three spin-polarized electrons in the LLL using molecular trial
functions was presented by Laughlin in Ref. [60]. Indeed, the
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TABLE I. LLL spectra of three spinless bosons interacting via a repulsive contact interaction gδ(zi − zj ). Second column: Dimensions of
the EXD and the nonspurious TI (in parentheses) spaces (the EXD space is spanned by uncorrelated permanents of Darwin-Fock orbitals).
Fourth to sixth columns: Matrix elements [in units of g/(π�2), � = √

h̄/(mω0)] of the contact interaction between the correlated RVM states
{k,m} [see Eq. (36)]. The total angular momentum L = 3k + 2m. Last three columns: Energy eigenvalues from the RVM diagonalization of
the associated matrix of dimension DTI(L). There is no nonspurious state with L = 1. The full EXD spectrum at a given L is constructed by
including, in addition to the listed TI eigenvalues [DTI(L) in number], all the energies associated with angular momenta smaller than L. An
integer in square brackets indicates the energy ordering in the full EXD spectrum (including both spurious and TI states). Seven decimal digits
are displayed, but the energy eigenvalues from the RVM diagonalization agree with the corresponding EXDTI ones within machine precision.

L DEXD(DTI) {k, m} Matrix elements Energy eigenvalues (RVM diag. or EXDTI)

0 1(1) {0,0} 1.5000000 1.5000000[1]
2 2(1) {0,1} 0.7500000 0.7500000[1]
3 3(1) {1,0} 0.3750000 0.3750000[1]
4 4(1) {0,2} 0.5625000 0.5625000[2]
5 5(1) {1,1} 0.4687500 0.4687500[2]
6 7(2) {2,0} 0.0468750 0.1482318

{0,3} 0.1482318 0.4687500 0.0000000[1] 0.5156250[4]
7 8(1) {1,2} 0.4921875 0.4921875[4]
8 10(2) {2,1} 0.0937500 0.1960922

{0,4} 0.1960922 0.4101562 0.0000000 0.5039062[6]
12 19(3) {4,0} 7.3242187×10−4 1.0863572×10−2 1.5742811×10−2

{2,3} 1.0863572×10−2 0.1611328 0.2335036
{0,6} 1.5742811×10−2 0.2335036 0.3383789 0.0000000 0.0000000 0.5002441[13]

main result of Ref. [60] [see Eq. (18) therein] was the following
wave functions (we display the polynomial part only)

|k,m〉 ∝
[

(za + izb)3k − (za − izb)3k

2i

] (
z2
a + z2

b

)m
, (42)

where the three-particle Jacobi coordinates are

zc = z1 + z2 + z3

3
, (43)

za =
(

2

3

)1/2 [
z1 + z2

2
− z3

]
, (44)

zb = 1√
2

(z1 − z2). (45)

Expression (42) is precisely of the form �REM
3k Qm

2 , as can be
checked after transforming back to Cartesian coordinates z1,
z2, and z3. Thus the wave functions |k,m〉 of Ref. [60] describe
both pure molecular rotations as well as vibrational excitations
and they cover the TI LLL subspace. We note that the pairs of
indices {k,m} are universal and independent of the statistics,
that is, the same for both bosons [Eq. (36)] and electrons
[Eq. (42)], as can be explicitly seen through a comparison of
Table I here and Table I in Ref. [60].

We further note that Laughlin did not present molecular
trial functions for electrons with N > 3 or for bosons for any
N . This is done in the present article.

C. Four electrons

For N = 4 spin-polarized electrons, one needs to consider
two distinct molecular configurations, that is, (0, 4) and (1, 3).
Vibrations with λ � 2 must also be considered. In this case the
RVM states are not always orthogonal and the Gram-Schmidt
orthogonalization is implemented.

Of particular interest is the L = 18 case (ν = 1/3) which
is considered [2] as the prototype of quantum-liquid states.
However, in this case we found (see Table II) that the exact
TI solutions are linear superpositions of the following seven
RVM states [involving both the (0,4) and (1,3) configurations]

|1〉 = �REM
18 (0, 4), |2〉 = �REM

14 (0, 4)Q2
2,

|3〉 = �REM
10 (0, 4)Q4

2, |4〉 = �REM
6 (0, 4)Q6

2, (46)

|5〉 = �REM
18 (1, 3), |6〉 = �REM

12 (1, 3)Q3
2,

|7〉 = �REM
15 (1, 3)Q3.

The expansion coefficients of the three lowest-in-energy
EXDTI states (labeled [1], [2], and [4]; see Table II) in this
RVM basis are listed in Table III. One sees that for each case,
one component (underlined) dominates this expansion; this
applies for both the yrast state (No. [1]) and the two excitations
(Nos. [2] and [4]). To further illustrate this, we display in Fig. 3
the conditional probability (pair correlation) distributions
(CPD’s)

P (z, z0) = 〈�|
∑
i �=j

δ(zi − z0)δ(zj − z0)|�〉, (47)

for these three EXDTI states (top row) and for the RVM
functions (bottom row) corresponding to the dominant ex-
pansion coefficients. The similarity of the CPD’s in each
column is noticeable and demonstrates that the single RVM
functions capture the essence of many-body correlations in
the EXDTI states. Full quantitative agreement (within machine
precision) in total energies can be reached by taking into
consideration all seven RVM basis states [see Eq. (46)].
Naturally, a smaller number of RVM states yields intermediate
degrees of high-quality quantitative agreement.
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TABLE II. LLL spectra of four spin-polarized electrons interacting via the Coulomb repulsion e2/(κ|zi − zj |). Second column: Dimensions
of the full EXD and the nonspurious TI (in parentheses) spaces (the EXD space is spanned by uncorrelated determinants of Darwin-Fock
orbitals). Last three columns: Energy eigenvalues [in units of e2/(κlB )] from the diagonalization of the Coulomb interaction in the TI subspace
spanned by the trial functions �REM

6+4k(0, 4)Qm
λ and �REM

6+3k(1, 3)Qm
λ (RVM digonalization). Third to sixth columns: The molecular configurations

(n1, n2) and the quantum numbers k, λ, and m are indicated within brackets. There is no nonspurious state with L = 7. The full EXD spectrum
at a given L is constructed by including, in addition to the listed TI energy eigenvalues [DTI(L) in number], all the energies associated
with angular momenta smaller than L. An integer in square brackets indicates the energy ordering in the full EXD spectrum (including
both spurious and TI states), with [1] denoting an yrast state. Eight decimal digits are displayed, but the energy eigenvalues from the RVM
diagonalization agree with the corresponding EXDTI ones within machine precision.

L DEXD(DTI) [(n1, n2){k, λ,m}] Energy eigenvalues (RVM diag. or EXDTI)

6 1(1) [(0,4){0,λ,0}] 2.22725097[1]
8 2(1) [(0,4){0,2,1}] 2.09240211[1]
9 3(1) [(1,3){1,λ,0}] 1.93480798[1]

10 5(2) [(0,4){1,λ,0}] [(0,4){0,2,2}] 1.78508849[1] 1.97809256[3]
11 6(1) [(1,3){1,2,1}] 1.86157215[2]
12 9(3) [(0,4){1,2,1}] [(0,4){0,2,3}] [(1,3){2,λ,0}] 1.68518201[1] 1.76757420[2] 1.88068652[5]
13 11(2) [(1,3){1,2,2}] [(0,4){1,3,1}] 1.64156849[1] 1.79962234[5]
14 15(4) [(0,4){2,λ,0}] [(0,4){1,2,2}] [(0,4){0,2,4}] 1.50065835[1] 1.63572496[2] 1.72910626[5]

[(1,3){2,2,1}] 1.79894008[8]
15 18(3) [(1,3){3,λ,0}] [(1,3){2,3,1}] [(1,3){1,3,2}] 1.52704695[2] 1.62342533[3] 1.74810279[8]
18 34(7) [(0,4){3,λ,0}] [(0,4){2,2,2}] [(0,4){1,2,4}] 1.30572905[1] 1.41507954[2] 1.43427543[4]

[(0,4){0,2,6}] [(1,3){4,λ,0}] [(1,3){2,2,3}] 1.50366728[8] 1.56527615[11] 1.63564655[15]
[(1,3){3,3,1}] 1.68994048[20]

The celebrated Jastrow-Laughlin ansatz [2],

�JL[z] =
∏

1�i<j�N

(zi − zj )2p+1, (48)

was given exclusively an interpretation of a quantum-fluid
state [2,11]. However, since the RVM functions span the TI
subspace, it follows that any TI trial function (including the
JL ansatz and the compact CF states) can be expanded in
the RVM basis. As an example, we give in Table III (fourth
column) the RVM expansion of the JL state for N = 4e and
L = 18. One sees that, compared to the EXD yrast state (first
column), the relative weight of the pure (0,4) REM (denoted
by |1〉) is reduced, while the weights of higher-in-energy
vibrational excitations are enhanced. In this context, the liquid
characteristics are due to the stronger weight of molecular
vibrations that diminish the rigidity of the molecule.

Of great interest also is the L = 30 (ν = 1/5) case, which
in the composite-fermion picture was found to be susceptible

TABLE III. N = 4 LLL electrons with L = 18: Expansion
coefficients in the RVM basis (labeled by the |i〉’s) for the three
lowest-in-energy EXDTI states (labeled [1], [2], [4]; see Table II).
The fourth column gives the RVM expansion coefficients of the
corresponding Jastrow-Laughlin expression.

RVM EXDTI [1] EXDTI [2] EXDTI [4] JL

|1〉 0.9294 −0.3430 0.0903 0.8403
|2〉 −0.1188 −0.0693 0.8930 −0.1086
|3〉 0.0067 0.0382 −0.2596 0.0076
|4〉 0.0137 0.0191 −0.0968 0.0395
|5〉 0.2540 0.8486 0.1519 0.4029
|6〉 0.0211 0.0283 0.3097 0.0616
|7〉 −0.2387 −0.3935 0.0877 −0.3380

to a competition [17] between crystalline and liquid orders.
However, we found that the exact nonspurious states for
L = 30 are actually linear superpositions of the following
19 [= DTI(L = 30)] RVM functions

�REM
6+4k(0, 4)Q12−2k

2 , with k = 0, 1, 2, 3, 4, 5, 6;

�REM
6+3k(1, 3)Q12−3k/2

2 , with k = 2, 4, 6;
(49)

�REM
6+4k(0, 4)Q8−4k/3

3 , with k = 0, 3;

�REM
6+3k(1, 3)Q8−k

3 , with k = 2, 3, 4, 5, 6, 7, 8.
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FIG. 3. (Color online) CPD’s for N = 4 LLL electrons with L =
18 (ν = 1/3). Top row: The three lowest-in-energy EXDTI states (see
Table II). Bottom row: The RVM trial functions associated with the
largest expansion coefficients (underlined, see Table III) of these three
EXDTI states in the correlated RVM basis. See the text for details.
The solid dot denotes the fixed point r0. Distances in nm.
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TABLE IV. LLL spectra of five spinless bosons interacting via a repulsive contact interaction gδ(zi − zj ). Second column: Dimensions
of the full EXD and the nonspurious TI (in parentheses) spaces (the EXD space is spanned by uncorrelated permanents of Darwin-Fock
orbitals). Last three columns: Energy eigenvalues [in units of g/(π�2)] from the diagonalization of the contact interaction in the TI subspace
spanned by the trial functions �RBM

5k (0, 5)Qm
λ , �RBM

4k (1, 4)Qm
λ , and �RBM

3k (2, 3)Qm
λ (RVM digonalization). Third to sixth columns: The molecular

configurations (n1, n2) and the quantum numbers k, λ, and m are indicated within brackets. There is no nonspurious state with L = 1. The
full EXD spectrum at a given L is constructed by including, in addition to the listed TI energy eigenvalues [DTI(L) in number], all the
energies associated with angular momenta smaller than L. An integer in square brackets indicates the energy ordering in the full EXD spectrum
[including both spurious and TI states (EXDTI)], with [1] denoting an yrast state. Eight decimal digits are displayed, but the energy eigenvalues
from the RVM diagonalization agree with the corresponding EXDTI ones within machine precision.

L DEXD(DTI) [(n1, n2){k, λ,m}] Energy eigenvalues (RVM diag. or EXDTI)

0 1(1) [(0,5){0,λ,0}] 5.00000000[1]
2 2(1) [(0,5){0,2,1}] 3.75000000[1]
3 3(1) [(0,5){0,3,1}] 3.12500000[1]
4 5(2) [(1,4){1,λ,0}] [(0,5){0,2,2}] 2.50000000[1] 3.18750000[3]
5 7(2) [(0,5){1,λ,0}] [(0,5){0,5,1}] 1.87500000[1] 3.03125000[3]
6 10(3) [(1,4){1,2,1}] [(0,5){0,2,3}] [(0,5){0,3,2}] 1.90664171[2] 2.42925914[3] 3.02347415[5]
7 13(3) [(1,4){1,3,1}] [(0,5){1,2,1}] [(2,3){1,2,2}] 1.77354877[1] 2.07258062[4] 3.00543311[7]
8 18(5) [(1,4){2,λ,0}] [(1,4){1,2,2}] [(0,5){1,3,1}] 1.18821986[1] 1.60795253[2] 1.91688009[6]

[(0,5){0,2,4}] [(2,3){2,2,1}] 2.24905854[8] 3.00273273[11]
9 23(5) [(1,4){1,5,1}] [(0,5){1,2,2}] [(2,3){3,λ,0}] 1.12895814[1] 1.52195553[3] 1.89102917[7]

[(2,3){2,3,1}] [(2,3){1,3,2}] 2.06074601[10] 3.00082677[15]
10 30(7) [(0,5){2,λ,0}] [(0,5){1,5,1}] [(0,5){0,5,2}] 0.90026059[1] 1.29362646[4] 1.51398054[5]

[(1,4){2,2,1}] [(1,4){1,2,3}] [(1,4){1,3,2}] 1.66194766[8] 1.95923264[14] 2.12274862[17]
[(2,3){2,2,2}] 3.00035191[21]

11 37(7) [(0,5){1,3,2}] [(0,5){1,2,3}] [(1,4){2,3,1}] 1.03755324[2] 1.07552423[3] 1.50429489[7]
[(2,3){3,2,1}] [(2,3){2,5,1}] [(2,3){1,2,4}] 1.58737738[10] 1.94750687[18] 2.03365831[20]
[(2,3){1,4,2}] 3.00012024[27]

12 47(10) [(0,5){2,2,1}] [(1,4){3,λ,0}] [(1,4){2,2,2}] 0.61480761[1] 0.93028069[3] 1.05066256[5]
[(1,4){2,4,1}] [(1,4){1,4,2}] [(1,4){1,2,4}] 1.34022509[10] 1.50000444[11] 1.50755634[13]
[(2,3){4,λ,0}] [(2,3){3,3,1}] [(2,3){1,3,3}] 1.64279523[18] 1.98164620[27] 2.05477689[29]
[(2,3){0,4,3}] 3.00004768[36]

Diagonalization of the Coulomb interaction in this TI
subspace yielded an energy 0.25084902 e2/(κlB) per electron
for the yrast state; this value agrees again, within machine
precision, with the EXD result. The most sophisticated variants
of the composite-fermion theory [including composite-
fermion diagonalization (CFD), composite-fermion crystal
(CFC), and mixed liquid-CFC states [11,17–19]] fall short in
this respect. Indeed the following higher energies were found
[17]: 0.250863(6) (CFD), 0.25094(4) (mixed), 0.25101(4)
(CFC); numbers shown in parentheses are statistical
uncertainties arising from Monte Carlo sampling. The CFD
basis is not TI [18,19]. Consequently, to achieve machine-
precision accuracy, the CFD will have to be performed in the
larger space of dimension DEXD(L = 30) = 169.

D. Five bosons

For N = 5 spinless bosons, one needs to consider rovibra-
tional states [see Eq. (33)] for three distinct molecular config-
urations, �RBM

5k (0, 5)Qm
λ , �REM

4k (1, 4)Qm
λ , and �REM

3k (2, 3)Qm
λ .

Vibrations with λ � 2 must also be considered; since the
RVM states are not always orthogonal, a Gram-Schmidt
orthogonalization is implemented. Table IV summarizes the
quantal molecular description in the start of the LLL spectrum
(0 � L � 12).

Of particular interest is the L = 8 case, since it corresponds
to the bosonic MR state, given [24,31] by the analytic

expression

�MR[z] = S
∏

i<j∈A

(zi − zj )2
∏

k<l∈B

(zk − zl)
2, (50)

where sets A and B contain (N − 1)/2 and (N + 1)/2
particles, respectively, if N is odd. (For N even, both sets
contain N/2 particles.) S symmetrizes over all possible ways
of carrying such a division of N particles into the two sets.

Based on sizable overlaps with the EXD wave functions
[24,31], the bosonic MR states [7] are thought to represent
the yrast states in the LLL with the same angular momentum,
L = (N − 1)2/2 for odd N and L = N (N − 2)/2 for even
N [24].

However, for N = 5 and L = 8, we found (see Table IV)
that the exact TI solutions are linear superpositions of the
following five RVM states [involving both the (0,5), (1,4), and
(2,3) configurations]

|1〉 = �RBM
8 (1, 4), |2〉 = �RBM

4 (1, 4)Q2
2,

|3〉 = �RBM
5 (0, 5)Q3, |4〉 = �RBM

0 (0, 5)Q4
2, (51)

|5〉 = �RBM
6 (2, 3)Q2.

The expansion coefficients of the yrast EXDTI state (labeled
[1]; see Table IV) in this RVM basis are listed in Table V. One
sees that one component (labeled |1〉, underlined) dominates
this expansion. To further illustrate this, we display in Fig. 4
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TABLE V. N = 5 LLL bosons with L = 8: Expansion coef-
ficients in the RVM basis [Eq. (51)] (labeled by the |i〉’s). The
second column gives the yrast EXDTI state (labeled [1]; see Table
IV). The third column gives the RVM expansion coefficients of the
corresponding MR expression [Eq. (50)].

RVM EXDTI [1] MOORE-READ

|1〉 0.7879 −0.5159
|2〉 −0.1162 0.1502
|3〉 −0.6005 0.7999
|4〉 −0.0684 0.1873
|5〉 −0.0198 −0.1908

the N -body correlation functions for this EXDTI state (i.e., the
quantity)

P
(
z; z0

1, z
0
2, z

0
3, z

0
4

) ∝ ∣∣�(z; z0
1, z

0
2, z

0
3, z

0
4

)∣∣2, (52)
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FIG. 4. (Color online) N -body correlation functions for N = 5
LLL bosons with total angular momentum L = 8. (a-b): The yrast
EXDTI state (labeled [1]; see Table IV). (c): The MR state given
by Eq. (50). (d): Corresponding radial single-particle densities for
the yrast EXDTI state (solid line; red online) and the MR state
(dashed line; blue online). Solid dots denote the four fixed points
placed at r0 exp[jπi/2], j = 1, 2, 3, 4 (with r0 = 1.3�) in (a),
(0, 0) and r0 exp[jπi/2], j = 1, 2, 3 (with r0 = 1.3�) in (b), and
r0 exp[2jπi/5], j = 1, 2, 3, 4 (with r0 = 1.02�) in (c). Crosses
denote the expected position of the fifth localized boson according to
the classical (1,4) polygonal-ring configuration in (a-b) and the (0,5)
single-ring configuration in (c). For the (1,4) configuration, there are
two nonequivalent ways of choosing the four fixed points. In (c), a
node, associated with an octupole vibration (see text), develops at
the expected position of the fifth particle. In the radial single-particle
densities in (d), note the maximum (local minimum) at the origin
of the solid line (dashed line) in agreement with the underlying
(1,4)[(0,5)] configuration.

which gives the probability distribution of finding the fifth
boson at a position z under the condition that the remaining
four bosons are fixed at positions z0

j , j = 1, 2, 3, 4. The N -
body correlations exhibit a (1,4) configuration that corresponds
to the dominant �RBM

8 (1, 4) RVM component [component |1〉,
defined in Eq. (51)]. In particular, when the four fixed points
are forming a complete square inscribed in a circle of radius
r0 = 1.3� [see Fig. 4(a)], the fifth boson is localized around
the origin. When three fixed points coincide with only three
vertices of this square, with the fourth being at the origin, the
fifth boson is localized around the fourth vertex of the square,
as expected from the classical (1,4) configuration.

In contrast to this, we found that the MR state [see Eq. (50)]
exhibits a drastically different behavior in its N -body correla-
tion function [portrayed in Fig. 4(c)]. To analyze this behavior,
we expanded the MR state (for N = 5 bosons and L = 8) in
the RVM basis of Eq. (51). As was the case with the JL 1/3
function for N = 4 electrons, such an expansion is possible
due to the fact that the MR state is TI. The corresponding
expansion coefficients are listed in Table V. It is remarkable
that one dominant coefficient (underlined) does appear, but
it is associated with the RVM basis state �RBM

5 (0, 5)Q3

(denoted as |3〉), instead of the RVM state |1〉 that dominates
the expansion of the EXDTI yrast state. This basis state |3〉
corresponds to an octupolar single-phonon vibration of a (0,5)
polygonal configuration, and this is reflected in the N -body
correlation plotted in Fig. 4(c). Indeed, with the four fixed
points positioned at the vertices of a regular pentagon inscribed
in a circle of radius r0 = 1.02�, the probability of finding
the remaining boson is concentrated in the neighborhood
of the fifth vertex that completes the pentagon (denoted by
X), but in addition it exhibits a prominent node precisely
at X.

Figure 4(d) contrasts the radial single-particle densities of
the EXDTI and MR states. Naturally, the radial single-particle
densities provide a reduced amount of information regarding
the correlation structure. However, note that they reflect the
underlying (1,4) and (0,5) molecular configurations through
the maximum at the origin of the solid line (EXDTI state) or
the local minimum at the origin of the dashed line (MR state),
respectively.

This analysis cautions against drawing conclusions by
relying exclusively on overlaps (as is often the practice in the
literature of fast rotating ultracold bosons [24,31]). Indeed, we
can conclude that the MR state examined here disagrees in an
essential way with the EXD many-body wave functions.

TABLE VI. Matrix elements of the contact interaction [in units
of g/(π�2)] between the RVM basis states for N = 5 LLL bosons
with L = 8. The notation for the RVM functions is the same as in
Eq. (51). Only four decimal points are shown.

|1〉 |2〉 |3〉 |4〉 |5〉
|1〉 1.3964 1.5813 × 10−2 0.2567 7.7995 × 10−2 0.1358
|2〉 2.4933 −0.1896 −0.2631 −0.3711
|3〉 1.5554 0.0000 0.1930
|4〉 2.4609 0.2492
|5〉 2.0588
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TABLE VII. RVM-diagonalization total energies [in units of g/(π�2)], relative errors, and overlaps at
each intermediate step for the case of the yrast state for N = 5 LLL bosons with L = 8 (see Sec. III D).
The notation for the RVM functions is the same as in Eq. (51). The composition of each step is shown in
the second column. The last row displays the corresponding quantities for the MR function [Eq. (50)].

Step Composition Energy Relative error (%) Overlap

1 |1〉 1.3964006(RVM) 17.5 0.788
2 |1〉 + |3〉 1.2071388(RVM) 1.6 0.990
3 |1〉 + |3〉 + |2〉 1.1947104(RVM) 0.500 0.997
4 |1〉 + |3〉 + |2〉 + |4〉 1.1884821(RVM) 0.02 0.9998
5 |1〉 + |3〉 + |2〉 + |4〉 + |5〉 1.1882199(RVM) 0.00 1.000

MOORE-READ 1.2658991 6.5 0.913

We stress that the EXD yrast states with the same angular
momenta as the MR states exhibit correlations that conform
with the molecular structures associated with the magic
angular momenta defined in Eq. (30). In particular, L = 8
(corresponding to the MR state for N = 5) is a magic angular
momentum associated with a (1,4) configuration (i.e., 8 mod
4 = 0). Another example is L = 12 (corresponding to the
MR state for N = 6). In this latter case, the EXD N -body
correlation function for the yrast state was studied in Ref. [29],
where it was found (see in particular Figs. 5 and 6 therein)
that it conformed to a (0,6) polygonal-ring configuration, in
agreement with the fact that 12 mod 6 = 0.

IV. SUMMARY AND DISCUSSION

The many-body Hilbert space corresponding to the TI part
of the LLL spectra of small systems (whether fermions or
bosons and for both low and high angular momenta) is spanned
by the RVM trial functions introduced in Eq. (33). The yrast
and excited states for both short and long-range interactions
can always be expressed as linear superpositions of these RVM
functions. Thus the nature of strong correlations in the LLL
reflects the emergence of intrinsic point-group symmetries
associated with rotations and vibrations of molecules formed
through particle localization. We stress the validity of the
molecular theory for low angular momenta, where “quantum-
liquid” physical pictures [2,11,31] were thought to apply
exclusively. Our analysis suggests that liquid-type pictures,
associated with TI trial functions (e.g., the Jastrow-Laughlin,

compact composite-fermion, and MR functions) are reducible
to a description in terms of an excited rotating or vibrating
quantal molecule.

In addition to these conceptual advances, from a computa-
tional point of view, the introduction of the RVM correlated
basis is promising concerning future computational develop-
ments. Indeed, it has the potential for enabling controlled
and stepwise improvements of the variational wave func-
tion, in analogy with previous experiences from correlated
bases in other fields of many-body physics [39–41]. Such
developments may enhance computational capabilities for
systems with a larger number of particles than it is currently
possible.

The main body of the present article consisted of two parts.
The general theoretical background of our methodology was
presented in Sec. II, while Sec. III was devoted to case studies.
In particular:

The analytic trial functions associated with pure rotations of
bosonic molecules (i.e., the RBM’s) were derived in Sec. II A,
followed by a description of the purely rotational electronic
molecular functions (i.e., the REM’s) in Sect. II B. Properties
of the RBM’s and REM’s and their association with magic
angular momenta were discussed in Sec. II C, and the general
rovibrational trial functions (i.e., the RVM’s) were introduced
in Sec. II D.

Concerning illustrative examples of the quantal molecular
description of the LLL spectra, Sec. III A discussed the case
of N = 3 LLL scalar bosons, while Sec. III B investigated
the case of N = 3 spin-polarized LLL electrons. The case

TABLE VIII. RVM-diagonalization total energies [in units of e2/(κlB )], relative errors, and overlaps at
each intermediate step for the case of the yrast state for N = 4 LLL electrons with L = 18 (see Sec. III C).
The notation for the RVM functions is the same as in Eq. (46). The composition of each step is shown in
the second column. The last row displays the corresponding quantities for the Laughlin function [Eq. (48)].

Step Composition Energy Relative error (%) Overlap

1 |1〉 1.3217670(RVM) 1.23 0.929
2 |1〉 + |5〉 1.3174550(RVM) 0.90 0.961
3 |1〉 + |5〉 + |7〉 1.3081859(RVM) 0.19 0.992
4 |1〉 + |5〉 + |7〉 + |2〉 1.3059258(RVM) 0.015 0.99965
5 |1〉 + |5〉 + |7〉 + |2〉 + |6〉 1.3058052(RVM) 0.006 0.99988
6 |1〉 + |5〉 + |7〉 + |2〉 + |6〉 + |4〉 1.3057413(RVM) 0.001 0.99997
7 |1〉 + |5〉 + |7〉 + |2〉 + |6〉 + |4〉 + |3〉 1.3057290(RVM) 0.000 1.00000

JASTROW-LAUGHLIN 1.3105953 0.37 0.979
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of N = 4 LLL electrons was elaborated in Sec. III C, along
with an analysis of the Jastrow-Laughlin state (for fractional
filling ν = 1/3) from the viewpoint of the present molecular
theory. Finally, Sec. III D studied the case of N = 5 LLL
bosons, along with an analysis of the MR state according to the
molecular picture. It was shown that the intrinsic correlation
structure of the MR state disagrees strongly with that of the
EXD wave function [in spite of having a rather good overlap
with the EXD state, calculated by us to be 0.913 (see also
Ref. [24])].

The Appendix discusses in detail the rapid-convergence
properties of the RVM basis.

In the case of bosons in harmonic traps, mean-field vortex
solutions of the Gross-Pitaevskii (GP) equation have been
proven most useful for the interpretation of experiments in
a variety of situations of Bose-Einstein condensates with very
large N ; see, e.g., Refs. [61,62]. Consequently, the results
presented in this article and previously [15,28,29] pertaining
to crystalline-type correlations in finite systems with a small
number N of LLL bosons (as well as the earlier prediction
of the development of molecular-crystalline patterns in nonro-
tating finite boson systems [63]) are unexpected. While these
results are of intrinsic interest for small systems, one may also
inquire about the size-dependent evolution of the properties of
the system with increasing N . This question, and in particular
the possibility of a transition of LLL bosons to mean-field GP
behavior for large N , is of high importance conceptually and
practically and we expect that it will be the focus of future
experimental and theoretical studies [64].
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APPENDIX: CONVERGENCE IN THE RVM BASIS

1. The example of N = 5 bosons

In this section, we analyze in detail the convergence
properties of the RVM diagonalization for the yrast state
of N = 5 bosons with L = 8 (a case associated with a MR
function) that was discussed in Sec. III D.

In Table VI, we display the coupling matrix elements for the
contact interaction between the RVM basis functions given in
Eq. (51). The convergence properties in the RVM basis cannot
be immediately seen from an inspection of these coupling

matrix elements; while most of the off-diagonal elements
in Table VI are smaller than the differences between the
associated diagonal elements, a couple of them are indeed
larger.

The fast-convergence properties of the RVM basis can
be seen through a tabulation of the intermediate RVM-
diagonalization total energies as the size of the RVM basis
increases in successive steps. In Table VII, in addition to these
intermediate RVM energies, we also display the corresponding
relative error (relative to the EXD result) and the corresponding
overlap with the EXD wave function for the yrast state (denoted
by the index [1] in Sec. III D).

We stress that convergence (as a function of the number of
the RVM basis functions used in the calculation) is seen from
Table VII to be achieved rapidly (i.e., already with the use of
only two basis functions one obtains a relative error of 1.6%
for the energy eigenvalue and a 99% overlap with the exact
eigenfunction). In particular, we note that at the second step
the RVM wavefunction is already more accurate compared
to the MR function, which exhibits a relative error of 6.5% for
the energy and an overlap of 91.3% [see Table VII].

2. The example of N = 4 electrons

In this section, we analyze in detail the convergence
properties of the RVM diagonalization for the yrast state
of N = 4 electrons with L = 18 (a case associated with a
Jastrow-Laughlin function) that was discussed in Sec. III C.

As previously, the convergence properties of the RVM basis
can be seen through a tabulation of the intermediate RVM-
diagonalization total energies as the size of the RVM basis
increases in successive steps. In Table VIII, in addition to these
intermediate RVM energies, we also display the corresponding
relative error (relative to the EXD result) and the corresponding
overlap with the EXD wave function for the yrast state (denoted
by the index [1] in Sec. III C).

Convergence (as a function of the number of the RVM
basis functions used in the calculation) is seen from
Table VIII to be achieved rapidly (i.e., already with the use of
only two basis functions one obtains a relative error of 0.90%
for the energy eigenvalue and a 99% overlap with the exact
eigenfunction). In particular, we note that at the third step the
RVM wave function is already more accurate compared to the
Laughlin function: Indeed the latter exhibits a relative error of
0.37% for the energy and an overlap of 97.9%, compared to
0.19% and 99.2%, respectively, in the case of the former [see
Table VIII].
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