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Systematic trends of nonuniversal behavior of electron-transmission phases through a quantum dot,

with no phase lapse for the transition N ¼ 1 ! N ¼ 2 and a lapse of � for the N ¼ 2 ! N ¼ 3 transition,

are predicted, in agreement with experiments, from many-body transport calculations involving exact

diagonalization of the dot Hamiltonian. The results favor shape anisotropy of the dot and strong e� e

repulsion with consequent electron localization, showing dependence on spin configurations and the

participation of excited doorway transmission channels.

DOI: 10.1103/PhysRevLett.101.136803 PACS numbers: 73.23.Hk, 31.15.�p, 71.15.�m, 73.21.La

Motivation.—Measurements via Aharonov-Bohm inter-
ferometry of transmission phases (in addition to conduc-
tances) provide valuable information about fundamental
transport properties through small systems [1,2]. An ex-
perimental setup conceived and employed in such studies
consists of placing a two-dimensional quantum dot (QD) in
one of the arms of the two-path interferometer [1,2]. In
earlier experiments [1] a universal behavior of the phase
was found where for each added electron the phase drops
discontinuously by � [phase lapse (PL)] before rising back
(as expected) continuously by the same amount. This
behavior was found to be independent of the number of
electrons, the dot shape, and spin degeneracy. The regime
of mesoscopic (nonuniversal) behavior of the transport
through the dot, exhibiting an irregular PL pattern and
dependencies on the number of electrons and dot parame-
ters, has been observed only recently [2] for dots with a
smaller number of electrons N < 15. The large majority of
theoretical studies attempted to address the PL behavior in
the universal regime. Nevertheless, this behavior remains
puzzling and challenging [3,4].

Here, we focus on the nonuniversal regime (small N)
where ‘‘the phase behavior for electron transmission
should in principle be easier to interpret’’ [2]. With this
in mind, we use a transport theory, based on a computa-
tional approach entailing exact diagonalization (EXD) [5]
of the QD many-body Hamiltonian. This approach in-
cludes electron correlation effects and allows systematic
investigations of the transport characteristics as a function
of the dot shape, number of electrons, and spin configura-
tions. Specifically, we follow the work of Bardeen [6]
where the correlated many-body states of the QD play a
determining role (see below) through the so-called quasi-
particle (QP) wave functions [6,7] [see Eq. (1)], replacing
the single-particle orbitals used in independent-particle
(and/or mean-field) approaches [8,9]. This allows evalu-
ation of both the current and transmission phase lapse.
Here our focus is on the phase-lapse phenomenon [10].

The transmission probability (current) is given [6] (to
lowest order) by the golden rule as a product of the square
of a dot to lead coupling matrix element M and a density
of states factor [11]. Exploration of the PL phenomenon in
electron transmission from a right (R) to a left (L) lead
through a weakly coupled dot involves (as part of M) the
product of correlated quasiparticle wave functions of the
dot evaluated inside the R and L lead to dot barriers. M
also involves products of the tails of the R and L lead states
in the barriers, but these depend only weakly (for high
barriers) on the experimentally used plunger potential, and
thus they do not enter PL considerations [2,6–8], when N
changes.
In the nonuniversal regime, it is desirable to have precise

knowledge about the dot parameters (e.g., shape anisotropy
and strength of interelectron repulsion). While such char-
acterization has not been done in Ref. [2], we inquire here
about trends that appear in the calculations as a function of
the dot parameters, with subsequent comparisons with the
available data. The two key parameters that we vary are
(a) the dielectric constant �, driving the QD towards the
regime of strong correlations, since the QDs in Ref. [2] are
shallower than usual (i.e., with larger RW , see below), and
(b) the anisotropy of the QD, since the sideway plunger
influences greatly the average confinement for small dots
[12].
We performed a systematic examination of the N ¼

1 ! N ¼ 2 and N ¼ 2 ! N ¼ 3 transitions. In addition
to being computationally least prohibitive in the EXD
method, these transitions exhibit the principal generic fea-
tures observed in the nonuniversal regime. In particular, for
the first transition no PL was measured, while a phase lapse
was found for the second one. Our calculations reproduce
these findings for an appropriate range of dot parameters.
We predict that (1) agreement with the experiment is
obtained when the dot parameters (shape anisotropy and
e� e interaction strength) are chosen to be favorable for
electron localization (formation of electron molecules),
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(2) spin states are important in the selection of transport
properties, and (3) excited doorway states play a key role.

Theory.—The current intensity and the electron-
transmission phase through the quantum dot relate to a
quasiparticle-type wave function that can be extracted
from the many-body EXD states as [6,7]

’QPðrÞ ¼ h�EXD
N�1j ðr;�Þj�EXD

N i; (1)

where the single-particle operator  ðr;�Þ annihilates an
electron with spin projection � at position r. For calculat-
ing the quasiparticle orbital ’QPðrÞ, one uses

 ðr;�Þ ¼ XK

i¼1

�iðrÞaið�Þ; (2)

where aið�Þ are the annihilation operators in the Fock
space and �iðrÞ are the single-particle eigenstates of the
two-dimensional anisotropic-oscillator potential Vðx; yÞ ¼
m�ð!2

xx
2 þ!2

yy
2Þ=2 that confines the electrons in the

quantum dot, with K ¼ 54 states in the single-particle
basis (which guarantees numerical convergence, see
Ref. [13]).

The EXD many-body wave functions are expressed as a
linear superposition over Slater determinants D’s con-
structed with the spin orbitals �iðrÞ� and �iðrÞ�, with �
(�) denoting up (down) spins, i.e.,

�EXD
N ðS; Sz; kÞ ¼

X

I

CNI ðS; Sz; kÞDNðI;SzÞ: (3)

While the Slater determinants conserve only the projec-
tion Sz of the total spin, the EXD wave functions in Eq. (3)
are eigenfunctions of the square S2 of the total spin,
since the many-body Hamiltonian H commutes with
S2: H ¼ PN

i¼1½p2
i =ð2m�Þ þ Vðxi; yiÞ� þP

i<je
2=ð�rijÞ.

k ¼ 1; 2; 3; . . . counts the ground and excited states.
Since in the experiments in the nonuniversal regime the

width of the levels of the QD is much smaller than the level
separation in the dot (weak dot-lead coupling; see p. 531,
left column in Ref. [2]), the QD levels do not overlap, thus
reinforcing our focus on the dependence of the transmis-
sion phase on the quasiparticle states of the QD [Eq. (1)].
The current intensity through the quantum dot is propor-
tional [6,11] to the quasiparticle weight

W ¼
Z

j’QPðrÞj2dr: (4)

The transmission phase lapse �PL through the quantum dot
is given by

�PL ¼ ��QP � �; (5)

where ��QP ¼ �QPðxL; 0Þ � �QPðxR; 0Þ; ��QP ¼ 0 if

<½’QPðrLÞ � ’QPðrRÞ�> 0 and ��QP ¼ � if <½’QPðrLÞ �
’QPðrRÞ�< 0 [7], with rL and rR being the positions spec-

ifying the left and right potential barriers that demarcate
the quantum dot.

Results.—We study the evolution of the quasiparticle
weightW and the transmission phase �QPðrÞ as a function
of the anisotropy parameter � ¼ !x=!y and the strength

of correlations expressed via the Wigner parameter RW (�)
for the two transitions N ¼ 1 ! N ¼ 2 and N ¼ 2 !
N ¼ 3; RWð�Þ ¼ ðe2=�l0Þ=@!0 is the ratio between the
e� e repulsion and the average energy quantum of the

confinement [l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm�!0Þ

p
is the characteristic length;

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2

x þ!2
yÞ=2

q
].

We display in Fig. 1 examples of quasiparticle wave
functions (amplitude and phase) for the N ¼ 2 ! N ¼ 3
transition for two different final states (corresponding to
the transitions marked 1 and 3 in Fig. 3 below). In Fig. 1(a),
j’QPj2 exhibits a two-peak structure separated by one

node, while ��QP ¼ � (with xL ¼ �80 nm and xR ¼
80 nm), indicating no phase lapse [see Eq. (5)]. In
Fig. 1(b), j’QPj2 exhibits a three-peak structure separated

by two nodes, while ��QP ¼ 0, indicating a PL of � [see

Eq. (5)]. The nodal structure reflects the good parity of
’QP, and it emerges from the many-body EXD calculation

(being a priori unknown).
We discuss next the N ¼ 1 ! N ¼ 2 case. The initial

state is the ground state with a single electron (assuming it
has a spin-up configuration) occupying the lowest single-
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FIG. 1 (color online). Quasiparticle wave functions (j’QPðrÞj2
in units of 10�4=nm2, left, and position-dependent phases
�QPðrÞ, right) for the N ¼ 2 ! N ¼ 3 transition in a quantum

dot with anisotropy � ¼ 0:724. �QPðrÞ is 0 or �, since ’QP can

be chosen real for zero magnetic field. The initial state is the
ground state (S ¼ 0; Sz ¼ 0) for N ¼ 2 electrons while the final
state is (a) the ground state (S ¼ 1=2, Sz ¼ 1=2, E1 ¼
20:888 meV) and (b) the second excited state (S ¼ 1=2, Sz ¼
1=2, E3 ¼ 23:013 meV) for N ¼ 3 electrons. Lengths in nano-
meters. @!x ¼ 4:23 meV, @!y ¼ 5:84 meV, � ¼ 12:50 (GaAs),

and m� ¼ 0:067 (GaAs).
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particle level in Vðx; yÞ. The final state, however, is not
restricted to the singlet ground state [with (S ¼ 0, Sz ¼ 0)]
of the N ¼ 2 quantum dot. Excited states need to be
considered, since an excited ‘‘doorway’’ state may be
more efficient (have a higher weight) in transmitting the
current through the QD. Focusing on the two lowest total
energies EkðS; SzÞ, we are led to consider three final states,
i.e., the ground-state singlet (S ¼ 0; Sz ¼ 0) and the two
excited triplets (S ¼ 1; Sz ¼ 0) and (S ¼ 1; Sz ¼ 1), which
are degenerate at zero magnetic field. The third triplet state
(S ¼ 1; Sz ¼ �1) has zero weight, since flipping of the
direction of the initial spin is not allowed. The calculated
EXD results are displayed in Fig. 2.

The heights of the bars in Fig. 2 represent the weightW ,
while the shading (or color online) of each bar denotes the
quasiparticle transmission phase, with a dark shade (red)
denoting ��QP ¼ � and a gray shade (yellow) denoting

��QP ¼ 0. Results are presented for a weaker e� e re-

pulsion with � ¼ 12:50 and a much stronger one with � ¼
1:25, and for � ¼ 1:0 (circular dot), � ¼ 0:724 (moderate
anisotropy), and � ¼ 0:5 (strong anisotropy).

Inspection of Fig. 2 reveals the following systematic
trends: (1) The singlet state and the t0 triplet have in all
instances ��QP ¼ 0 (with a PL �PL ¼ ��), while the t1

triplet has ��QP ¼ � (�PL ¼ 0, i.e., no PL). (2) The ex-

cited t1 triplet state has always the largest weight W , and
its relative advantage in W compared to the t0 and the s
states increases both for stronger correlations (smaller �)
and stronger anisotropies (smaller �). (3) The singlet-
triplet energy gap decreases both for smaller � and �,
i.e., favoring formation of Wigner molecules.
Consequently, the t1 triplet state can act as a doorway

state for the electron transmission in the case of strong
correlations and strong anisotropy. In this case there is no
phase lapse (�PL ¼ 0), as observed experimentally [2].
Furthermore, the experiment excluded the ground-state
singlet as being the final state of the two electrons [2], in
agreement with our analysis here which concluded that the
excited t1 triplet is a realistic candidate for acting as a
doorway state.
For the N ¼ 2 ! N ¼ 3 transition, the initial many-

body state is assumed to be the ground state of a QD
with two electrons, which is always a singlet [ðS ¼ 0; Sz ¼
0Þ]. Again the final state cannot be restricted to the ground
state [with ðS ¼ 1=2; Sz ¼ 1=2Þ] of theN ¼ 3 system [14],
since excited states may act as doorway states. Because the
transitions to a final (S ¼ 3=2; Sz ¼ 3=2) or (S ¼
3=2; Sz ¼ 1=2) state are forbidden (the corresponding
W ¼ 0 due to spin blockade), we are led to consider three
final states, i.e., the ground state with (S ¼ 1=2; Sz ¼ 1=2)
and the two lowest excited states also with (S ¼ 1=2; Sz ¼
1=2) [14]. In Fig. 3, these final states are denoted by the
indices 1, 2, and 3, respectively; our results apply unaltered
for final states with an Sz ¼ �1=2 spin projection.
In Fig. 3, we retain the same conventions as in Fig. 2

concerning the height and shadings (colors online) of the
bars. Unlike Fig. 2, the final two lowest excited states in
Fig. 3 are not degenerate, and thus in the latter case we list
a pair of energy gaps (in meV) with respect to the final
ground state. In the circular case (� ¼ 1), there are two
degenerate final ground states (with total angular momen-
tum L ¼ 1 and L ¼ �1) [14], and the smallest meaningful
excitation energy gap needs to be taken between the states
with indices 1 and 3 (or 2 and 3).
Inspection of Fig. 3 reveals that a transition to theN ¼ 3

ground state (marked 1) will always have ��QP ¼ � [cor-

responding to a dark shade (red)], and thus it will exhibit no
lapse in the transmission phase �PL [see Eq. (5)], in con-
trast to the experimental result. Transmission through a
doorway excited state may become possible for smaller �
(stronger Coulomb repulsion) and smaller � (stronger
anisotropy), since as a result (1) the energy gap between
the first excited state (index 2) and the ground state dimin-
ishes (observe the practically vanishing gap of 0.003 meV
for � ¼ 0:5 and � ¼ 1:25), and (2) the weight W of this
index-2 final state remains larger than that of the ground
state [see the cases with (� ¼ 1:25, � ¼ 0:724) and
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t

0.50.724

=12.50
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FIG. 2 (color online). The bar chart for the quasiparticle of the
N ¼ 1 ! N ¼ 2 transition in a quantum dot as a function of the
strength of the interelectron repulsion (stronger for smaller �)
and the anisotropy �. The heights of the bars indicate the weight
W [Eq. (4)], while shading denotes the quasiparticle trans-
mission phase [��QP in Eq. (5)]; dark shade (red) denotes

��QP ¼ � (no PL) and gray shade (yellow) denotes ��QP ¼ 0
(occurrence of a PL). The bars are arranged in groups of three
around each ð�;�Þ point; the right bar corresponds to the singlet
(s) final state, while the middle and left ones correspond to the
final triplet states with spin projection Sz ¼ 0 (t0) and Sz ¼ 1
(t1), respectively. The numbers above the bars denote the energy
difference (in meV) between the ground-state singlet and the
excited (degenerate) triplets. The effective mass is m� ¼
0:067me (GaAs). For � ¼ 1:0, @!x ¼ 5:0 meV and @!y ¼
5:0 meV. For � ¼ 0:724, @!x ¼ 4:23 meV and @!y ¼
5:84 meV. For � ¼ 0:5, @!x ¼ 3:137 meV and @!y ¼
6:274 meV. Smaller � and � enhance electron localization in
the dot. RWð� ¼ 12:50Þ ¼ 1:51 and RWð� ¼ 1:25Þ ¼ 15:1.
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(� ¼ 1:25, � ¼ 0:5)]. Transmission through such an
index-2 doorway state will lead to a phase lapse (�PL ¼
��), since in this case ��QP ¼ 0 [gray shade (yellow)]. A
phase lapse in the N ¼ 2 ! N ¼ 3 transition has indeed
been observed [2]. As for the N ¼ 1 ! N ¼ 2 transition,
this observation of a phase lapse and our EXD analysis of
the N ¼ 2 ! N ¼ 3 transition suggest that the dots in the
experiments were strongly deformed and exhibited rather
strong ineterelectron correlations.

Conclusions.—In summary, focusing on the mesoscopic
regime of electron interferometry, and using the Bardeen
weak-coupling theory in conjunction with exact diagonal-
ization of the many-body quantum dot Hamiltonian, we
have shown for the first two transitions, (a) N ¼
1 ! N ¼ 2 and (b) N ¼ 2 ! N ¼ 3, nonuniversal behav-
ior of the transmission phases with no phase lapse
for (a) and a phase lapse of � for (b), in agreement with
the experiment [2]. These results were obtained for a range
of dot parameters characterized by shape anisotropy and
strong e� e repulsion, with both favoring electron local-
ization and formation of Wigner molecules [5,15–17].

Additionally, our analysis of the quasiparticle wave func-
tion [Eq. (1)] highlights the dependence of the phase-lapse
behavior on the spin configurations of the initial and final
states, and the importance of excited doorway states as
favored transmission channels. Electron interferometric
measurements on dots with characterized shapes [18], as
well as extension of our analysis to a larger number of
electrons and the transition to the universal regime, includ-
ing stronger lead-dot coupling and possibly explicit incor-
poration of lead states, remain future challenges.
Work supported by the U.S. DOE (Grant No. FG05-

86ER45234).
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FIG. 3 (color online). The bar chart for the relevant quasipar-
ticles of the N ¼ 2 ! N ¼ 3 transition in a quantum dot as a
function of the strength of the interelectron repulsion (through
the dielectric constant �) and the anisotropy �. The heights of
the bars indicate the weightW [Eq. (4)], with a dark shade (red)
denoting ��QP ¼ � and a gray shade (yellow) denoting ��QP ¼
0. In all instances the initial state is the singlet [ðS ¼ 0; Sz ¼ 0Þ]
ground state of the N ¼ 2 dot. The bars are arranged in groups of
three around each ð�;�Þ point; the rightmost bar corresponds to
the finalN ¼ 3 ground state (index 1), while the middle (index 2)
and leftmost (index 3) ones correspond to the final N ¼ 3 two
lowest excited states with a nonzero weight. All three final states
happen to have a ðS ¼ 1=2; Sz ¼ 1=2Þ magnetic structure. The
numbers above the bars denote the energy difference (in meV)
between the N ¼ 3 ground state and the two lowest excited ðS ¼
1=2; Sz ¼ 1=2Þ states. The dot parameters are as in Fig. 2.
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