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The properties of a special class of correlated many-body wave functions, named rotating vortex clusters
�RVCs�, that preserve the total angular momentum of a small cloud of trapped rotating bosons are investigated.
They have lower energy and provide a superior description for the formation of vortices compared to the
mean-field Gross-Pitaevskii �GP� states that break the rotational symmetry. The GP vortex states are shown to
be wave packets composed of such RVC states. Our results suggest that, for a small number of bosons, the
physics is different from that of ideal Bose-Einstein condensates which characterize larger assemblies.
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Mean-field descriptions of the many-body problem ex-
hibit a ubiquitous symmetry-breaking behavior that extends
across several fields of physics, from nuclear physics �1�,
quantum chemistry �2�, and metallic microclusters �3� to
semiconductor quantum dots �4� and trapped ultracold atoms
�4–6�.

Mean-field broken-symmetry solutions are expected to
play the role of an effective ground state in the thermody-
namic limit, N→�, when quantum fluctuations about the
mean-field state may be omitted �7�. A prominent example of
such broken-symmetry states is given by the Gross-
Pitaevskii �GP� vortex states in a harmonic trap �8�. Specifi-
cally, although each individual vortex carries a quantized
amount of angular momentum �9�, the GP vortex solutions as
a whole break the rotational symmetry of the confining har-
monic trap �10�, and thus they are not eigenstates of the total

angular momentum L̂=�i=1
N l̂i. In agreement with the general

ideas of Ref. �7�, GP vortex states have been observed ex-
perimentally �see, e.g., Refs. �11–14�� for rotating Bose gases
with large N. Indeed the energy advantage of symmetry re-
stored states �see below� over the mean-field solutions di-
minishes as N increases �see Sec. 1.2 in Ref. �4��.

Recently, the availability of optical lattices �15,16� with a
small number of particles per lattice site serves to motivate
studies of small clouds of rotating bosons. For a small num-
ber N of atoms, however, quantum fluctuations cannot be
neglected, and one needs to consider methods beyond the
mean-field approximation �4�.

A natural way for accounting for quantum correlations
about the GP vortex solutions in a harmonic trap is the
method of restoration of rotational symmetry via projection
techniques. This method �4� was introduced recently in quan-
tum dots �17,18� and harmonic traps �5,19� to describe indi-
vidual particle localization and formation of rotating elec-
tron molecules �REMs� �20� and rotating boson molecules
�RBMs�, respectively. Here, we use projection techniques to
define and study vortex states with good total angular mo-
mentum, showing that these states can be properly referred
to as rotating vortex clusters �RVCs�. We stress again that the
RVCs are eigenstates of the total angular momentum in con-
trast to the GP vortex states. For small N, the rotating-vortex-
cluster states are the natural entities to be employed �in place
of the GP vortices� for comparisons with exact solutions,
which are eigenstates of the total angular momentum by their

very nature. Furthermore we note the generality of the meth-
odology of symmetry restoration. It applies as well to other
broken symmetries, such as spin symmetries �4�.

We derive the RVC wave function by using an adaptation
of the two-step many-body method of symmetry breaking
and/or symmetry restoration. We start with the observation
that the many-body GP vortex solution �GP �as well as any
mean-field solution exhibiting a breaking of the rotational
symmetry� is a wave packet, and thus it can be expanded as
a linear superposition over eigenstates �N,L of the many-
body Hamiltonian H with good total angulal momentum L,
i.e.,

�N
GP�r1,r2, . . . ,rN� = �

L

CL�N,L�r1,r2, . . . ,rN� . �1�

For the two-dimensional case considered here �which is
appropriate for a rapidly rotating harmonic trap�, the eigen-
states �N,L’s can be approximated by using the projection
operator

P̂L =
1

2�
�

0

2�

d�ei��L−L̂� = ��L − L̂� , �2�

which projects states with good total L out of the GP vortex
state. The RVC wave functions are then given by

��N,L
RVC� = P̂L��N

GP� = �
0

2�

d���N
GP����ei�L, �3�

where ��N
GP���� is the original many-body GP vortex solution

rotated by an azimuthal angle �. The projection techniques
use the fact that the broken-rotational-symmetry states form
a manifold of energy degenerate states �i.e., their total energy
is independent of the azimuthal angle ��; in this respect, the
phases ei�L in Eq. �3� are the characters of the rotational
group in two dimensions.

The expansion coefficients CL in Eq. �1�, which specify
the spectral decomposition of the many-body Gross-
Pitaevskii vortex state, can be calculated using the projected
wave functions �3� for the �N,L’s in the right-hand side of
Eq. �1�. Taking into consideration that �N

GP�r1 ,r2 , . . . ,rN�
=	i=1

N �0�ri�, one finds

PHYSICAL REVIEW A 78, 011606�R� �2008�

RAPID COMMUNICATIONS

1050-2947/2008/78�1�/011606�4� ©2008 The American Physical Society011606-1

http://dx.doi.org/10.1103/PhysRevA.78.011606


CL =
1

2�
�

0

2�

d�n���ei�L, �4�

where the overlap kernel is given by n���= 
�0��
=0� ��0����N, and the multiply occupied single orbital �0�r�
is a solution of the familiar Gross-Pitaevskii equation

�H�r� + g�N − 1���0�r��2��0�r� = �0�0�r� , �5�

with the single-particle Hamiltonian given by H�r�
=p2 / �2m�−	l̂+m
0

2r2 /2, where 	 is the rotational fre-
quency of the trap and 
0 characterizes the circular harmonic
confinement.

The total energy of the RVC is given by

EN,L
RVC = �

0

2�

h���ei�Ld���
0

2�

n���ei�Ld� , �6�

with the Hamiltonian kernel being h���= 
�N
GP��

=0��H��N
GP����, where the many-body Hamiltonian is H

=�i=1
N H�ri�+g�i�j

N ��ri−r j�. The above constitutes an effec-
tive continuous configuration-interaction scheme which low-
ers the mean-field energy by introducing correlations �4�.
The lowering of the ground-state energy brought about by
the angular-momentum projection can be seen �see Ref. �21��
from evaluation of the GP ground-state energy using the
spectral decomposition given in Eq. �1�. This yields the ex-
pression EN

GP=�L�CL�2EN,L
RVC with �L�CL�2=1. Since EN

GP is ex-
pressed as a weighted average of EN,L

RVC with positive weights,
it is obvious that at least one of these energies obeys EN,L

RVC

�EN
GP.

To illustrate the essential qualitative difference between
the RVCs and the GP vortex states, we contrast in Fig. 1 their
single-particle densitites �SPDs� for the case of N=9 trapped
bosons and when the GP solutions exhibit either a �0,4�
single-polygonal ring of four �Fig. 1�a�� or a �2,5� double-
polygonal-ring configuration of seven �Fig. 1�b�� localized
vortices �for the trap and other parameters employed, see the
caption of Fig. 1�; �n1 ,n2� denotes n1 �n2� vortices on the
inner �outer� ring. In sharp contrast to the GP single-particle
densities, the RVC SPDs are circularly symmetric: the one
�Fig. 1�c�� corresponding �through the aforementioned pro-
jection� to the four GP vortices exhibits instead a single con-
tinuous ring of depleted matter, while the other one �Fig.
1�d�� corresponding to the seven GP vortices exhibits instead
two concentric continuous rings of depleted matter.

Due to the symmetry restoration, the vortex structures be-
come “hidden” in the RVC single-particle densities. How-
ever, they can be revealed through the use of conditional
probability distributions �CPDs� defined as

P�r,r0� = 
�N,L
RVC��

i�j

��ri − r���r j − r0���N,L
RVC� . �7�

CPDs give the probability of finding a boson at position r
given that another boson is located at a fixed point r0.

In the CPDs calculated for the RVC states �see Figs.
1�e�–1�h��, the fixed point is associated with a hump �local
maximum� and the vortices are given by depressions �local
minima� in the matter density. The number of vortices of a

GP state and of an RVC projected out from it is the same for
all 	’s; e.g., in the CPD in Fig. 1�e� four vortices are seen
corresponding to the four GP vortices in Fig. 1�a�. This re-
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FIG. 1. �Color online� Rotating vortex cluster and GP vortex
solutions for N=9 trapped bosons in a rotating trap with angular
frequencies of trap rotation 	 /
0=0.5 �top three panels in the left
column� and 	 /
0=0.565 �all four panels in the right column plus
�h��. For 	 /
0=0.5, a �0,4� single-polygonal ring of four vortices is
involved, while for 	 /
0=0.565 a �2,5� double-polygonal ring of
seven vortices develops. �a�, �b� GP single-particle densities
�SPDs�. �c�, �d� RVC single-particle densities. �e�–�h� RVC condi-
tional probability distributions �CPDs�, with the fixed point �marked
by a thick vertical arrow� at r0= �0,2.07l0� �e�, r0= �0,1.14l0� �f�,
and r0= �0,3.2l0� �g�, �h�. �h� A horizontal slice of the CPD in �g�
which magnifies the five vortices of the outer ring. The RVC total
angular momenta are L=28 ��c� and �e�� and L=36 ��d�, �f�–�h��.
The corresponding GP total-angular-momentum averages

�
�N
GP�L̂��N

GP�� are 26.93 and 38.11, respectively. Note the elliptic
shape of the vortex cores in the CPDs �see �e�–�h�� reflecting azi-
muthal fluctuations in the RVC state. The strength of the interpar-
ticle repulsion was taken R�=50 �R��gm / �2�2�, see Ref. �5��.
Unit length: l0= / �m
0�.
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flects the fact that the projection maintains the same �intrin-
sic or hidden� point-group symmetry.

For the �2,5� double-ring RVC, the fixed point can be
placed on the inner or the outer ring. In the first case, the
calculated CPD �Fig. 1�f�� shows two vortices on the inner
ring and remains uniform along the outer ring, while in the
second case the calculated CPD �Figs. 1�g� and 1�h�� shows
five vortices on the outer ring and remains uniform along the
inner ring. This suggests that the rings rotate independently
of each other in analogy with the case of rotating boson
molecules �19� and rotating electron molecules in quantum
dots �4�.

To further investigate the wave-packet properties of the
GP vortices, we have numerically calculated their spectral
decomposition in terms of RVC states �see Eq. �1��. In Fig. 2,
we plot the expansion coefficients CL �calculated numeri-
cally according to Eq. �4�� for N=9 bosons and for several
characteristic angular frequencies. The 	=0 case is a rather
trivial one where the GP solution preserves the circular sym-
metry, exhibits no vortices, and coincides with the corre-
sponding RVC for L=0 �in this limiting case, one has C0
=1 and CL=0 for any L�0�.

For the chosen value R�=50 �see the caption of Fig. 1�,
nontrivial cases arise for 	 /
0�0.175. For 	 /
0=0.2 �Fig.
2�b�� and 	 /
0=0.45 �Fig. 2�c�� the GP vortex solutions
exhibit a �0,2� and �0,3� single polygonal-ring configurations,
respectively. The expansion coefficients CL clearly demon-
strate that the GP vortex states given as examples in these
figures can be reconstructed from linear superpositions of
RVC states �observe the many nonvanishing values of CL in
Figs. 2�b� and 2�c��. Of central importance is the selection
rules that the RVC angular momenta must obey in order to

be compatible with the �n1 ,n2� intrinsic RVC point-group
symmetry �which coincides with the explicit point-group
symmetry of the associated GP vortex states�. Indeed, for the
�0,2� vortex ring the RVC angular momenta obey the relation
L=2k, while for the �0,3� case, one has L=3k, with k
=0,1 ,2 , . . .. The RVC angular momenta vary in a stepwise
manner, and the value of the step coincides with the number
of GP vortices on the single ring. For 	 /
0=0.55, the GP
vortex state exhibits a double �2,5� polygonal-ring structure,
which imposes upon the RVC decomposition a more com-
plex, but approximate, selection rule L=2k1+5k2, with both
k1 and k2 being positive integer numbers. While the larger
CL’s �Fig. 2�d�� conform to this rule, there are several smaller
CL’s whose angular momenta fall outside this rule. The rea-
son is that in the GP solution �see Fig. 1�b�� the arrangement
of vortices on the outer ring deviates slightly from being a
perfect regular pentagon �22�.

From the many RVC states that contribute at a given 	 to
the spectral decomposition of the GP vortex states �including
in the latter both ground and low-lying excited configura-
tions�, there is one with lowest energy EGS

RVC, which is the
ground state within the RVC approximation at this specific
rotational frequency. For the 	’s and the parameters consid-
ered in Fig. 2, we found that the RVC ground states have
angular momenta LGS associated with the largest coefficients
�CL� in the GP decompositions; these LGS’s always obey the
polygonal-ring selection rules discussed above.

As aforementioned from the general theory of projection
techniques �21�, the RVC ground-state energies are lower
than �or equal at most to� the corresponding GP ones for all
values of the rotational frequency �Fig. 3�. Furthermore, the
angular momenta associated with the RVC ground states are
quantized and thus exhibit a stepwise increase as a function
of the rotational frequency �see Fig. 4�. The magnitude of the
steps in the ground-state RVC angular momenta changes
with 	, since RVCs with different �n1 ,n2� intrinsic vortex
configurations become the ground state as 	 increases. This
behavior contrasts with that of the ground-state GP angular
momenta that vary continuously as a function of 	 without
any direct association to the �n1 ,n2� vortex configuration
�Fig. 4�. In several instances, the RVC ground state has an
intrinsic �n1 ,n2� point-group symmetry that is different from
that of the GP vortex ground state at the same 	. This hap-
pens when the projection of an excited GP state results in a
larger energy gain compared with that of the GP ground
state.
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FIG. 2. �Color online� Spectral decomposition �CL coefficients
modulus square, Eq. �4�� for GP vortex ground states in character-
istic cases. Angular frequency of the trap: �a� 	 /
0=0, �b� 	 /
0

=0.2, �c� 	 /
0=0.45, �d� 	 /
0=0.55. The total angular momenta
associated with the largest coefficients are Lmax=0, 12, 21, and 36,
respectively. The polygonal ring configurations of the GP vortices
are also marked as �n1 ,n2�. The ratio of the interparticle repulsion
and the kinetic energy was taken R�=50 �see caption of Fig. 1�. In
the figure, 	 is given in units of 
0. The GP total-angular-
momentum expectation values are �a� 0.0, �b� 11.01, �c� 21.42, and
�d� 36.53.
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under the RVC curve.
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While we focus here on obtaining a proper symmetry-
conserving vortex theory for a finite �small� number of
trapped bosons, we comment on the RVC behavior compared
with that obtained through exact diagonalization �EXD� cal-
culations, which have become in recent years computation-
ally feasible for smaller N. In particular, unlike the RVC case
studied here �see Fig. 4�, EXD calculations in the lowest
Landau level for N=9 bosons exhibit quantized ground-state
“magic” angular momenta that follow a Lm=n1k1+n2k2 se-
lection rule, but with the additional condition n1+n2=N �un-
like the RVC behavior where n1+n2=q�N�; see, e.g., Fig.
10 in Ref. �23� and Fig. 2 in Ref. �24�. Moreover, it was
shown in Ref. �23� that EXD ground-state wave functions
describe formation of a rotating boson molecule �5,19� ex-

hibiting two distinct �1,8� and �2,7� isomers of localized
bosons.

The above characteristic difference between the RVC and
RBM �19,23� solutions maintains for other values of N and
R�, reflecting the intrinsic point group symmetry of the an-
gular momentum conserving theory �RVC, RBM via projec-
tion methods �19� or EXD �23��. This is particularly the case
for low N and high R�, where the RBMs are energetically
favored and the RVCs may be regarded as higher lying ex-
cited states. However, for higher N �occurring earlier for low
R�� the RVC may compete effectively with the localized
RBM states, and eventually become the ground state.

In conclusion, we have introduced a correlated many-
body wave function, referred to as a rotating vortex cluster,
which conserves the total angular momentum and has lower
energy compared to the Gross-Pitaevskii solution. The RVC
is better suited to describe formation of vortices in small
rotating clouds of trapped bosons compared to the mean-field
GP vortex states that break the rotational symmetry. The GP
vortex states were shown to be wave packets composed of
such RVC states. The calculation of the properties of
rotating-vortex-cluster states allowed for comparisons of
qualitative signatures �e.g., ground-state angular momenta
sequences� between the RVC and exact-diagonalization re-
sults. We conclude that the physics of small rotating bosonic
clouds is markedly different from that of larger assemblies
known to behave as ideal Bose-Einstein condensates �prop-
erly described by the broken symmetry GP vortex solutions�.
We hope that these results will motivate further experimental
research in the area of correlated states in small bosonic sys-
tems �see e.g., Ref. �25��.

This work was supported by the US D.O.E. �Grant No.
FG05-86ER45234�.
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FIG. 4. �Color online� RVC �solid� and GP �dotted� ground-state
angular momenta for N=9 bosons and R�=50, plotted versus the
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