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We discuss symmetry breaking in two-dimensional quantum dots resulting from strong interelectron re-

pulsion relative to the zero-point kinetic energy associated with the confining potential. Such symmetry 

breaking leads to the emergence of crystalline arrangements of electrons in the dot. The so-called Wigner 

molecules form already at field-free conditions. The appearance of rotating Wigner molecules in circular 

dots under high magnetic field, and their relation to magic angular momenta and quantum-Hall-effect 

fractional fillings is also discussed. Recent calculations for two electrons in an elliptic quantum dot, using 

exact diagonalization and an approximate generalized-Heitler–London treatment, show that the electrons 

can localize and form a molecular dimer for screened interelectron repulsion. The calculated singlet-triplet 

splitting (J) as a function of the magnetic field (B) agrees with cotunneling measurements; its behavior re-

flects the effective dissociation of the dimer for large B. Knowledge of the dot shape and of J(B) allows 

determination of two measures of entanglement (concurrence and von Neumann entropy for indistin-

guishable fermions), whose behavior correlates also with the dissociation of the dimer. The theoretical 

value for the concurrence at B = 0 agrees with the experimental estimates. 

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Symmetry breaking in quantum dots 

Two-dimensional (2D) quantum dots (QDs), created at semiconductor interfaces through the use of li-

thographic and gate-voltage techniques, with refined control of their size, shape, and number of elec-

trons, are often referred to as “artificiall atoms” [1–3]. These systems which, with the use of applied 

magnetic fields, are expected to have future applications as nanoscale logic gates and switching devices, 

have been in recent years the subject of significant theoretical and experimental research efforts. As 

indicated above, certain analogies have been made between these man-made systems and their natural 

counterparts, suggesting that the physics of electrons in the former is similar to that underlying the tradi-

tional description of natural atoms – pertaining particularly to electronic shells and the Aufbau principle 

in atoms (where electrons are taken to be moving in a spherically averaged effective central mean-field 

potential). 

 The above-mentioned analogy has been theoretically challenged recently [4, 5] on the basis of calcula-

tions that showed evidence for formation, under favorable conditions (that are readily achieved in the 

laboratory), of “electron molecules,” which are alternatively called Wigner molecules (WMs) after the 

physicist who predicted formation of electron crystals in extended systems [6]. These spin-and-space 

(sS) unrestricted Hartree–Fock (UHF) calculations (denoted in the following as sS-UHF or simply UHF) 

of electrons confined in 2D QDs by a parabolic potential, led to the discovery of spontaneous symmetry 
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breaking in QDs, manifested in the appearance of distinct interelectronic spatial (crystalline) correlations 

(even in the absence of magnetic fields). Such symmetry breaking may indeed be expected to occur 

based on the interplay between the interelectron repulsion, Q, and the zero-point kinetic energy, K. It is 

customary to take 2

0
Q e lκ= /  and 

0
K ω�∫ , where 

1 2

0 0
( * )l m ω

/
= /�  is the spatial extent of an electron in 

the lowest state of the parabolic confinement; m* is the electron effective mass, κ  is the dielectric con-

stant, and 
0

ω  is the frequency that characterizes the parabolic (harmonic) confining potential. Thus, de-

fining the Wigner parameter as 
W

R Q K= / , one may expect symmetry breaking to occur when the inte-

relectron repulsion dominates, i.e., for 
W

1R > . Under such circumstances, an appropriate solution of the 

Schrödinger equation necessitates consideration of wave functions with symmetries that are lower than 

that of the circularly symmetric QD Hamiltonian. Such solutions may be found through the use of the sS-

UHF method, where all restrictions on the symmetries of the wave functions are lifted. On the other 

hand, when 
W

1R < , no symmetry breaking is expected, and the sS-UHF solution collapses onto that 

obtained via the restricted Hartree–Fock (RHF) method, and the aforementioned circularly symmetric 

“artificial-atom” analogy maintains. From the above we note that the state of the system may be con-

trolled and varied through the choice of materials (i.e., κ ) and/or the strength of the confinement (
0

ω ), 

since 
W 0

1 ( )R κ ωµ / . 

1.1 Two-electron circular dots 

To illustrate the formation of “electron molecules”, we show first exact results obtained for a two-

electron QD, through separation of the center-of-mass and inter-electron relative-distance degrees of 

freedom [7]. The spectrum obtained for 
W

200R =  (Fig. 1), exhibits features that are characteristic of a 

collective rovibrational dynamics, akin to that of a natural “rigid” triatomic molecule with an infinitely 

heavy middle particle representing the center of mass of the dot. This spectrum transforms to that of a 

“floppy” molecule for smaller value of 
W

R  (i.e., for stronger confinements characterized by a larger 

value of 
0

ω , and/or for weaker inter-electron repulsion), ultimately converging to the independent-

particle picture associated with the circular central mean-field of the QD. Further evidence for the forma-

tion of the electron molecule was found through examination of the conditional probability distribution  
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Fig. 1 (online colour at: www.pss-a.com) Calculated spectrum of a two-electron parabolic quantum dot, 

with 
W

200R = . The quantum numbers are ( )N M n m, , ,  with N corresponding to the number of radial 

nodes in the center of mass (CM) wavefunction, and M is the CM azimuthal quantum number. The inte-

gers n and m are the corresponding quantum numbers for the electrons’ relative motion (RM) and the total 

energy is given by CM RM ( | |)
NM nm NM

E E E n m
,

= + , . The spectrum may be summarized by the “spectral rule” 

given in the figure, with 0 037C = . , the phonon stretching vibration 
s

3 50ω� = . , and the phonon for the 

bending vibration coincides with that of the CM motion, i.e., 
b 0

2ω ω� �= = . All energies are in units of 

0
2ω� / , where 

0
ω  is the parabolic confinement frequency. 
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(CPD); that is, the anisotropic pair correlation 
0

( )P ,r r , which expresses the probability of finding a par-

ticle at r  given that the “observer” (reference point) is riding on another particle at 
0
r  [5, 7], 

 
0 0

1

( ) ( ) ( ) / |

N N

i j

i j i

P Ψ δ δ Ψ Ψ Ψ

= π

, = - - .Â Âr r r r r r  (1) 

Here 
1 2

( . . . )
N

Ψ , , ,r r r  denotes the many-body wave function under consideration. It is instructive to note 

here certain similarities between the formation of a “two-electron molecule” in man-made quantum dots, 

and the collective (rovibrational) features observed in the electronic spectrum of doubly-excited helium 

atoms [8–10]. 

 For confined (finite) systems with a larger number of particles, one must resort to approximate com-

putational schemes. Of particular interest are methodologies that permit systematic evaluation of high-

accuracy solutions to these many-body strongly-correlated systems, under field-free conditions, as well 

as under the influence of an applied magnetic field. We remark here, that the relatively large (spatial) 

size of QDs (resulting from materials’ characteristics, e.g., a small electron effective mass and large 

dielectric constant), allows the full range of orbital magnetic effects to be covered for magnetic fields 

that are readily attained in the laboratory (less then 40 T). In contrast, for natural atoms and molecules, 

magnetic fields of sufficient strength (i.e., larger than 105 T) to produce novel phenomena related to 

orbital magnetism (beyond the perturbative regime), are known to occur only in astrophysical environ-

ments (e.g., on the surface of neutron stars). 

 The 2D hamiltonian of the problem under consideration is given by 

 

2 2

2 2

0

1 1 1

*1

2*2

N N N N

i i i

i i i j i ij

e m e
H

c rm

ω

κ

Ê ˆ
Á ˜
Á ˜
Ë ¯= = = >

= - + + ,Â Â Â Âp A r  (2) 

describing N electrons (interacting via a Coulomb repulsion) confined by a parabolic potential of fre-

quency 
0

ω  and subjected to a perpendicular magnetic field B, whose vector potential is given in the 

symmetric gauge by ( ) 2 ( 0) 2By Bx= ¥ / = - , , /A r B r . For sufficiently high magnetic field values (i.e., in 

the fractional quantum Hall effect, or FQHE, regime), the electrons are fully spin-polarized and the Zee-

man term (not shown here) does not need to be considered. In the BÆ•  limit, the external confinement 

0
ω  can be neglected, and H can be restricted to operate in the lowest Landau level (LLL), reducing to the 

form [11–14] 

 
2

c

LLL

1
2

N N

i j i ij

e
H N

r

ω

κ

�

= >

= + ,Â Â  (3) 

where 
c

*( )eB m cω = /  is the cyclotron frequency. 

 For finite N, the solutions to the Schrödinger equations corresponding to the hamiltonians given by 

Eq. (2) (with or without a magnetic field), or by Eq. (3) (in the BÆ•  limit), must have a good angular 

momentum, L, and good spin quantum numbers (the latter is guaranteed in the high B, fully spin-

polarized case). As described in detail elsewhere [11–16], these solutions can be well approximated by a 

two-step method consisting of symmetry breaking at the spin-and-space unrestricted Hartree–Fock level 

and subsequent symmetry restoration via post-Hartree–Fock projection techniques. We recall that the 

sS-UHF method relaxes both the double-occupancy requirement (namely, different spatial orbitals are 

employed for different spin directions), as well as the requirement that the electron (spatial) orbitals be 

constrained by the symmetry of the external confining potential. 

 Results obtained for various approximation levels for a two-electron QD with B = 0 and 
W

2 40R = .  

(that is, in the Wigner-molecule regime) are displayed in Fig. 2. In these calculations [16], the spin pro-

jection was performed following Ref. [17], i.e., one constructs the wave function 

 SP spin UHF( ) ( )s sΨ Ψ= ,P  (4) 
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Fig. 2 (online colour at: www.pss-a.com) Various approximation levels for a field-free two-electron QD with 

W
2 40R = . . a) Electron density of the RHF solution, exhibiting circular symmetry (due to the imposed symmetry 

restriction). The correlation energy 
c

2 94ε = .  meV, is defined as the difference between the energy of this state and 

the exact solution [shown in frame e)]. b1) and b2) The two occupied orbitals (modulus square) of the symmetry-

broken “singlet” sS-UHF solution b1), with the corresponding total electron density exhibiting non-circular shape 

b2). The energy of the sS-UHF solution shows a gain of 44.3% of the correlation energy. c) Electron density of the 

spin-projected (SP) singlet, showing broken spatial symmetry, but with an additional gain of correlation energy.  

d) the spin-and-angular-momentum projected state (S&AMP) exhibiting restored circular symmetry with a 73.1% 

gain of the correlation energy. The choice of parameters is: dielectric constant 8κ = , parabolic confinement 

0
5ω =  meV, and effective mass 

e

* 0 067m m= . . Distances are in nanometers and the densities in 10–4 nm–2. 

 
where 

UHF
Ψ  is the original symmetry-broken UHF determinant. In Eq. (4), the spin projection operator is 

given by 

 
2 2

spin 2

ˆ ( 1)
( )

[ ( 1) ( 1)]
s s

S s s
s

s s s s¢π

- +¢ ¢
∫ ,

+ - +¢ ¢
’

�

�
P  (5) 

where the index s¢ runs over the quantum numbers of 2
ˆS , with ˆS  being the total spin. 

 The angular momentum projector is given by 

 

2π

0

ˆ2π d exp [ ( )]
L

i L Lγ γ∫ - - ,ÚP  (6) 

where 
1 2

ˆ ˆˆL l l= +  is the total angular momentum operator. As seen from Eq. (6), application of the projec-

tion operator 
L
P  to the spin-restored state 

SP
( )sΨ  corresponds to a continuous configuration interaction 

(CCI) formalism. 

 In the following we focus on the ground state of the system, i.e., L = 0 at B = 0. The energy of the 

projected state is given by 

 

2π 2π

PRJ

0 0

( ) ( ) e d ( ) e di L i L
E L h n

γ γ
γ γ γ γ= ,Ú Ú  (7) 

with 
SP SP

( ) ( 0) | | ( )h s H sγ Ψ Ψ γ= · ; ; Ò and 
SP SP

( ) ( 0) | ( )n s sγ Ψ Ψ γ= · ; ; Ò, where 
SP
( )sΨ γ;  is the spin-

restored wave function rotated by an azimuthal angle γ  and H  is the many-body hamiltonian. We note 

that the UHF energies are simply given by 
UHF

(0) (0)E h n= / . 

 The electron densities corresponding to the initial RHF approximation [shown in Fig. 2(a)] and the 

final spin-and-angular-momentum projection (S&AMP) [shown in Fig. 2(d)], are circularly symmetric, 

while those corresponding to the two intermediate approximations, i.e., the sS-UHF and spin-projected 

(SP) solutions [Fig. 2(b2) and 2(c), respectively] break the circular symmetry. This behavior illustrates 

graphically the meaning of the term restoration of symmetry, and the interpretation that the sS-UHF 

broken-symmetry solution refers to the intrinsic (rotating) frame of reference of the electron molecule. In 

light of this discussion the final projected state is called a rotating Wigner molecule, or RWM. 
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Fig. 3 (online colour at: www.pss-a.com) Conditional probability distributions (CPDs) at high B, evalu-

ated for parabolic quantum dots through: (i) the two-step procedure of symmetry breaking and subsequent 

restoration, resulting in rotating Wigner molecules (RWM) (shown in the left columns for given N), and 

(ii) exact diagonalization (EXD, shown in the right columns for given N). The angular momentum values, 

and corresponding values of the fractional filling [see Eq. (8)], are given on the left. The optimal polygo-

nal structure for a given N is given by 
1 2

( )n n,  with 
1 2
n n N+ = . For 7N = , 8, and 9, these arrangements 

are (1, 6), (1, 7), and (2, 7), respectively. The reference point for the calculation of the CPD is denoted by 

a filled dot. Note in particular the two CPDs shown for 9N = , illustrating that for a reference point lo-

cated on the outer ring, the inner ring appears uniform, and vice versa for a reference point located on the 

inner ring (bottom row on the right). These results illustrate that the rings rotate independently of each 

other. 

1.2 Electrons in circular quantum dots under high magnetic fields 

To illustrate the emergence of RWMs in parabolically confined QDs under high B, we show in Fig. 3 

results obtained [14] through the aforementioned two-step computational technique for 7N = , 8, and 

9 electrons, and compare them with the results derived from exact diagonalization of the Hamiltonian 

[see Eq. (2)]. Systematic investigations of QDs under high B revealed electronic states of crystalline 

character. These states are found for particular “magic” angular momentum values (L) that exhibit en-

hanced stability and are called cusp states. For a given value of B, one of these L’s corresponds to the 

global minimum, i.e., the ground state, and varying B causes the ground state and its angular momentum 

to change. The cusp states have been long recognized [18] as the finite-N precursors of the fractional 

quantum Hall states in extended systems. In particular, the fractional fillings v (defined in the thermody-

namic limit) are related to the magic angular momenta of the finite-N system as follows [19] 

 
( 1)

2

N N

L
ν

-

= . (8) 

 In the literature of the fractional quantum Hall effect (FQHE), ever since the celebrated paper [20] by 

Laughlin in 1983, the cusp states have been considered to be the antithesis of the Wigner crystal and to 

be described accurately by liquid-like wave functions, such as the Jastrow–Laughlin (JL) [20, 21] and 

composite-fermion (CF) [22, 23] ones. This view, however, has been challenged recently [11, 12] by the 

explicit derivation of trial wave functions for the cusp states that are associated with a rotating Wigner 

molecule. As discussed elsewhere [11, 12], these parameter-free wave functions, which are by construc-

tion crystalline in character, have been shown to provide a simpler and improved description of the cusp 

states, in particular for high angular momenta (corresponding to low fractional fillings). 

 The crystalline arrangements that were found [11–14] consist of concentric polygonal rings [see the 

conditional probabilities displayed in Fig. 3, with the reference (observation) point denoted by a filled 

dot]. These rings rotate independently of each other (see in particular the two cases shown for 9N = ), 

with the electrons on each ring rotating coherently [14]. The rotations stabilize the RWM relative to the 

static one – namely, the projected (symmetry restored) states are lower in energy compared to the bro-

ken-symmetry ones (the unrestricted Hartree–Fock solutions). 
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1.3 Symmetry breaking of trapped bosons 

In closing this section, we remark that the emergence of crystalline geometric arrangements, discussed 

above for electrons confined in 2D quantum dots, appears to be a general phenomenon that is predicted 

[24] to occur also for trapped bosonic atomic systems (neutral or charged) when the interatomic repul-

sion is tuned to exceed the characteristic energy of the harmonic trap. Indeed, application of the afore-

mentioned two-step method, allowed the evaluation [24] of solutions to the many-body Hamiltonians 

describing such bosonic systems, going beyond the mean-field (Gross–Pitaevskii) approach. These 

highly-correlated trapped 2D states exhibit localization of the bosons into polygonal-ringlike crystalline 

patterns, thus extending earlier work that predicted localization of strongly repelling 1D bosons (often 

referred to as the Tonk–Girardeau regime [25, 26]), to a higher dimension. It is expected that these theo-

retical findings will be the subject of experimental explorations, using methodologies that have led re-

cently to observations of localization transitions in 1D boson systems [27, 28]. 

2 Localization and entanglement in a two-electron elliptic quantum dot 

As discussed in the previous section, electron localization leading to formation of molecular-like struc-

tures [the aforementioned Wigner molecules] within a single circular two-dimensional (2D) quantum dot 

at zero magnetic field (B) has been theoretically predicted to occur [4, 5, 7, 29, 30], as the strength of the 

e–e repulsive interaction relative to the zero-point energy increases. Of particular interest is a two-

electron (2e) WM, in light of the current experimental effort [31, 32] aiming at implementation of a spin-

based [33] solid-state quantum logic gate that employs two coupled one-electron QDs (double dot). 

 Here, we present an exact diagonalization (EXD) and an approximate (generalized Heitler–London, 

GHL) microscopic treatment for two electrons in a single elliptic QD specified by the parameters of a 

recently investigated experimental device [34]. While formation of Wigner molecules in circular QDs 

requires weak confinement, and thus large dots of lower densities (so that the interelectron repulsion 

dominates), we show that formation of such WMs is markedly enhanced in highly deformed (e.g., ellip-

tic) dots due to their lower symmetry. The calculations provide a good description of the measured J(B) 

curve (the singlet-triplet splitting) when screening [35, 36] due to the metal gates and leads is included 

(in addition to the weakening of the effective inter-electron repulsion due to the dielectric constant of the 

semiconductor, GaAs). In particular, our results reproduce the salient experimental findings pertaining to 

the vanishing of J(B) for a finite value of B ∼ 1.3 T [associated with a change in sign of J(B) indicating a 

singlet-triplet (ST) transition], as well as the flattening of the J(B) curve after the ST crossing. These 

properties, and in particular the latter one, are related directly to the formation of an electron molecular 

dimer and its effective dissociation for large magnetic fields. The effective dissociation of the electron 

dimer is most naturally described through the GHL approximation, and it is fully supported by the more 

accurate, but physically less transparent, EXD. 

 Of special interest for quantum computing is the degree of entanglement exhibited by the two-electron 

molecule in its singlet state [33]. Here, in relation to the microscopic calculations, we investigate two 

different measures of entanglement [37]. The first, known as the concurrence (C) for two indistinguish-

able fermions [38, 39], has been used in the analysis of the experiment in Ref. [34] (this measure is re-

lated to the operational cycle of a two-spin-qubit quantum logic gate [38, 39]). The second measure, 

referred to as the von Neumann entropy (S) for indistinguishable particles, has been developed in Ref. 

[40] and used in Ref. [41]. We show that the present wave-function-based methods, in conjunction with 

the knowledge of the dot shape and the J(B) curve, enable theoretical determination of the degree of 

entanglement, in particular for the elliptic QD of Ref. [34]. The increase in the degree of entanglement 

(for both measures) with stronger magnetic fields correlates with the dissociation of the 2e molecule. 

This supports the experimental assertion [34] that cotunneling spectroscopy can probe properties of the 

electronic wave function of the QD, and not merely its low-energy spectrum. Our methodology can be 

straightforwardly applied to other cases of strongly-interacting devices, e.g., double dots with strong 

interdot-tunneling. 
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2.1 Microscopic treatment 

The Hamiltonian for two 2D interacting electrons is [see Eq. (2)] 

 2

1 2 12
( ) ( ) ( )H H e rκ= + + / ,r rH  (9) 

where the last term is the Coulomb repulsion, κ  is the dielectric constant, and 
12 1 2

| |r = -r r . ( )H r  is the 

single-particle Hamiltonian for an electron in an external perpendicular magnetic field B and an appro-

priate confinement potential. When position-dependent screening is included, the last term in Eq. (9) is 

modified by a function of 
12
r  (see below). For an elliptic QD, the single-particle Hamiltonian is written as 

 2 2 2 2 B
*1 *( ) ( )

2
x y

g
H T m x y

µ
ω ω= + + + ◊ ,r B s

�
 (10) 

where 
2 *( ) 2T e c m= - / /p A , with 0 5( 0)By Bx= . - , ,A  being the vector potential in the symmetric gauge. 

m* is the effective mass and p is the linear momentum of the electron. The second term is the external 

confining potential; the last term is the Zeeman interaction with *g  being the effective g  factor, 
B

µ  the 

Bohr magneton, and s the spin of an individual electron. 

 The GHL method for solving the Hamiltoninian (9) consists of two steps. In the first step, we solve 

selfconsistently the ensuing unrestricted Hartree–Fock (UHF) equations allowing for lifting of the dou-

ble-occupancy requirement (imposing this requirement gives the restricted HF method, RHF). For the 

0
z

S =  solution, this step produces two single-electron orbitals 
L R

( )u
,

r  that are localized left (L) and right 

(R) of the center of the QD [unlike the RHF method that gives a single doubly-occupied elliptic (and 

symmetric about the origin) orbital]. At this step, the many-body wave function is a single Slater deter-

minant 
UHF L R

(1 2 ) | (1 ) (2 )u uΨ ≠, Ø ∫ ≠ Ø Ò  made out of the two occupied UHF spin–orbitals 

L L 1
(1 ) ( ) (1)u u α≠ ∫ r  and 

R R 2
(2 ) ( ) (2)u u βØ ∫ r , where ( )α β  denotes the up (down) [ ( )≠ Ø ] spin. This 

UHF determinant is an eigenfunction of the projection 
z

S  of the total spin 
1 2

ˆ

ˆ ˆS s s= + , but not of 2
ˆS  (or 

the parity space-reflection operator). 

 In the second step, we restore the broken parity and total-spin symmetries by applying to the UHF 

determinant the projection operator [15, 42] spin 121
s t

ϖ
,

= ∓P , where the operator 
12

ϖ  interchanges the spins 

of the two electrons [this is a special case of the operator given in Eq. (5)]; the upper (minus) sign corre-

sponds to the singlet. The final result is a generalized Heitler-London (GHL) two-electron wave function 

GHL 1 2
( )s t

Ψ
,

,r r  for the ground-state singlet (index s) and first-excited triplet (index t ), which uses the UHF 

localized orbitals, 

 
GHL 1 2 L 1 R 2 L 2 R 1

( ) ( ( ) ( ) ( ) ( ))s t s t

u u u uΨ χ
, ,

, µ ± ,r r r r r r  (11) 

where ( (1) (2) (2) (1))s tχ α β α β∓
,

=  is the spin function for the 2e singlet and triplet states. The general 

formalism of the 2D UHF equations and of the subsequent restoration of broken spin symmetries can be 

found in Refs. [15, 16, 29, 42]. 

 The use of optimized UHF orbitals in the GHL is suitable for treating single elongated QDs. The GHL 

is equally applicable to double QDs with arbitrary interdot-tunneling coupling [15, 42]. In contrast, the 

Heitler–London (HL) treatment [43] (known also as Valence bond), where non-optimized “atomic” 

orbitals of two isolated QDs are used, is appropriate only for the case of a double dot with small interdot-

tunneling coupling [33]. 

 The orbitals 
L R

( )u
,

r  are expanded in a real Cartesian harmonic-oscillator basis, i.e., 

 L R

L R

1

( ) ( )

K

j j

j

u C ϕ
,

,

=

= ,Âr r  (12) 

where the index ( )j m n∫ ,  and ( ) ( ) ( )j m nX x Y yϕ =r , with ( )
m n

X Y  being the eigenfunctions of the one-

dimensional oscillator in the x( y ) direction with frequency 
x

ω (
y

ω ). The parity operator P yields 
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( ) ( 1) ( )m

m m
X x X x= -P , and similarly for ( )

n
Y y . The expansion coefficients L R

jC
,  are real for 0B =  and 

complex for finite B. In the calculations we use 79K = , yielding convergent results. 

 In the EXD method, the many-body wave function is written as a linear superposition over the basis of 

non-interacting two-electron determinants, i.e., 

 

2

EXD 1 2
( ) | (1 ) (2 )

K

s t s t

ij

i j

i jΨ Ω ψ ψ
, ,

<

, = ; ; Ò ,Âr r  (13) 

where (1 ) (1 )
i

iψ ϕ; = ≠  if 1 i K£ £  and (1 ) (1 )
i K

iψ ϕ
-

; = Ø  if 1 2K i K+ £ £  [and similarly for (2 )jψ , ]. 

The total energies 
EXD

s t

E
,  and the coefficients s t

ijΩ
,  are obtained through a “brute force” diagonalization of 

the matrix eigenvalue equation corresponding to the Hamiltonian in Eq. (9). The EXD wave function 

does not immediately reveal any particular form, although, our calculations below show that it can be 

approximated by a GHL wave function in the case of the elliptic dot under consideration. 

 To model the experimental elliptic QD device, we take, following Ref. [34], 1 2
x

ω� = .  meV and 

3 3
y

ω� = .  meV. The effective mass of the electron is taken as 
e

* 0 067m m= .  (GaAs). Since the experi-

ment did not resolve the lifting of the triplet degeneracy caused by the Zeeman term, we take * 0g = . 

Using the two-step method, we calculate the GHL singlet-triplet splitting 
GHL GHL GHL

( ) ( ) ( )s t

J B E B E B= -  

as a function of the magnetic field in the range 0 2 5B£ £ .  T. Screening of the e–e interaction due to the 

metal gates and leads must be considered in order to reproduce the experimental ( )J B  curve [44]. This 

screening can be modeled, to first approximation, by a position-independent adjustment of the dielectric 

constant κ  [45]. Indeed, with 22 0κ = .  (instead of the GaAs dielectric constant, i.e., 12 9κ = . ), good 

agreement with the experimental data is obtained (see Fig. 4). In particular, we note the singlet-triplet 

crossing for 1 3B ª .  T, and the flattening of the ( )J B  curve beyond this crossing. 

 We have also explored, particularly in the context of the EXD treatment, a position-dependent screen-

ing using the functional form, 2 2 2 1 2

12 12
( ) [1 (1 4 ) ]e r d rκ

- /
/ - + / , proposed in Ref. [36], with d as a fitting 

parameter. The 
EXD

( )J B  result for 18 0d = .  nm is depicted in Fig. 4 (dashed line), and it is in very good 

agreement with the experimental measurement. 

 The singlet state electron densities from the GHL and the EXD treatments at 0B =  and 2 5B = .  T are 

displayed in Fig. 5. These densities illustrate the dissociation of the electron dimer with increasing mag- 
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Fig. 4 Singlet-triplet splitting 
s t

J E E= -  as a function of the magnetic field B for an elliptic QD with 

1 2
x

ω� = .  meV and 3 3
y

ω� = .  meV (these values correspond to the device of Ref. [34]). Solid line: GHL 

(broken-symmetry UHF + restoration of symmetries) results with a coordinate-independent screening 

( 22κ = ). Dashed line: EXD results with 12 9κ = .  (GaAs), but including screening with a coordinate de-

pendence according to Ref. [36] and 18 0d = .  nm (see text). The rest of the material parameters used are: 

m* (GaAs) 
e

0 067m= . , and g* = 0 (see text). The experimental measurements [34] are denoted by open 

squares. Our sign convention for J is opposite to that in Ref. [34]. 
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netic field. The asymptotic convergence (beyond the ST point) of the energies of the singlet and triplet 

states, i.e., [ ( ) 0J B Æ  as BÆ•] is a reflection of the dissociation of the 2e molecule, since the ground-

state energy of two fully spatially separated electrons (zero overlap) does not depend on the total spin 

[46]. 

2.2 Measures of entanglement [37] 

To calculate the concurrence C [38, 39], one needs a decomposition of the GHL wave function into a 

linear superposition of orthogonal Slater determinants. Thus one needs to expand the nonorthogonal 
L R ( )u
,

r  orbitals as a superposition of two other orthogonal ones. To this effect, we write 
L R ( ) ( ) ( )u Φ ξΦ, + -

µ ±r r r , where ( )Φ
+

r  and ( )Φ
-

r  are the parity symmetric and antisymmetric (along 

the x-axis) components in their expansion given by Eq. (12). Subsequently, with the use of Eq. (11), the 

GHL singlet can be rearranged as follows: 

 
GHL

| (1 ) (2 ) | (1 ) (2 )s

Ψ Φ Φ η Φ Φ
+ + - -µ ≠ Ø Ò - ≠ Ø Ò ,  (14) 

where the so-called interaction parameter [39], 2η ξ= , is the coefficient in front of the second determi-

nant. Knowing η allows a direct evaluation of the concurrence of the singlet state, since 22 (1 )s

η η= / +C  

[39]. Note that ( )Φ
+

r  and ( )Φ
-

r  are properly normalized. It is straightforward to show that 

LR LR
(1 | |) (1 | |)S Sη = - / + , where 

LR
S  (with 

LR
| | 1S £ ) is the overlap of the original L R ( )u

,

r  orbitals. 

 For the GHL triplet, one obtains an expression independent of the interaction parameter η, i.e., 

 
GHL

| (1 ) (2 ) | (1 ) (2 )t

Ψ Φ Φ Φ Φ
+ - + -µ ≠ Ø Ò + Ø ≠ Ò , (15) 

which is a maximally ( 1
t

=C ) entangled state. Note that underlying the analysis of the experiments in 

Ref. [34] is a conjecture that wave functions of the form given in Eqs. (14) and (15) describe the two 

electrons in the elliptic QD. 

 For the GHL singlet, using the overlaps of the left and right orbitals, we find that starting with 

0 46η = .  ( 0 76)s

= .C  at 0B = , the interaction parameter (singlet-state concurrence) increases monotoni-

cally to 0 65η = .  ( 0 92)s

= .C  at 2 5B = .  T. At the intermediate value corresponding to the ST transition 

( 1 3B = .  T), we find 0 54η = .  ( 0 83)s

= .C  [47]. Our 0B =  theoretical results for η and 
s

C  are in remark-

able agreement with the experimental estimates [34] of 0 5 0 1η = . ± .  and 0 8
s

= .C , which were based 

solely on conductance measurements below the ST transition (i.e., near 0B = ). 

Fig. 5 (online colour at: www.pss-a.com) Total elec-

tron densities (EDs) associated with the singlet state of 

the elliptic dot at 0B =  and 2 5B = .  T. a) The GHL 

densities. b) The EXD densities. The rest of the param-

eters and the screening of the Coulomb inter- 

action are as in Fig. 4. Lengths in nm and densities in 

10–4 nm–2. 
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 To compute the von Neumann entropy, one needs to bring both the EXD and the GHL wave functions 

into a diagonal form (the socalled “canonical form” [40, 48]), i.e., 

 
EXD 1 2

1

( ) | (1 2 1) (2 2 )

M

s t s t

k

k

z k kΨ Φ Φ
, ,

=

, = ; - ; Ò ,Âr r  (16) 

with the ( )’siΦ  being appropriate spin orbitals resulting from a unitary transformation of the basis spin 

orbitals ( )jψ ’s [see Eq. (13)]; only terms with 0
k
z π  contribute. The upper bound M can be smaller (but 

not larger) than K (the dimension of the single-particle basis); M is referred to as the Slater rank. One 

obtains the coefficients of the canonical expansion from the fact that the 2| |
k
z  are eigenvalues of the 

hermitian matrix †
Ω Ω  [Ω , see Eq. (13), is antisymmetric]. The von Neumann entropy is given by 

2 2

2

1

| | log (| | )

M

k k

k

z z

=

= -ÂS  with the normalization 2

1

| | 1

M

k

k

z

=

=Â .  Note that the GHL wave functions in  

Eqs. (14) and (15) are already in canonical form, which shows that they always have a Slater rank of 

2M = . One finds 2 2 2 2

GHL 2 2
log (1 ) log ( ) (1 )s

η η η η= + - / +S , and 
GHL

1
t

=S  for all B. For large B, the over-

lap between the two electrons of the dissociated dimer vanishes, and thus 1ηÆ  and 
GHL

1
s

ÆS . 

 Since the EXD singlet has obviously a Slater rank 2M > , the definition of concurrence is not applica-

ble to it. The von Neumann entropy for the EXD singlet (
EXD

s

S ) is displayed in Fig. 6, along with that 

(
GHL

s

S ) of the GHL singlet. 
EXD

s

S  and 
GHL

s

S  are rather close to each other for the entire B range, and it is 

remarkable that both remain close to unity for large B, although the maximum allowed mathematical 

value is 
2

log ( )K  [as aforementioned we use 79K = , i.e., 
2

log (79) 6 3= . ]; this maximal value applies for 

both the EXD and GHL approaches. The saturation of the entropy for large B to a value close to unity 

reflects the dominant (and roughly equal at large B ) weight of two configurations in the canonical ex-

pansion [see Eq. (16)] of the EXD wave function, which are related to the two terms ( 2M = ) in the ca-

nonical expansion of the GHL singlet [Eq. (14)]. This is illustrated by the histograms of the 2| |s
k
z  coeffi-

cients for 1 3B = .  T in Fig. 6 (left column). These observations support the GHL approximation, which is 

computationally less demanding than the exact diagonalization, and can be used easily for larger N. 

3 Summary 

We discussed symmetry breaking in two-dimensional quantum dots resulting from strong interelectron 

repulsion relative to the zero-point kinetic energy associated with the confining potential. Such symme- 
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Fig. 6 Von Neumann entropy for the singlet state of the elliptic dot as a function of the magnetic field B. 

Solid line: GHL. Dashed line: EXD. The rest of the parameters and the screening of the Coulomb interac-

tion are as in Fig. 4. On the left, we show histograms for the 2| |
k
z  coefficients [see Eq. (16)] of the singlet 

state at 1 3B = .  T, illustrating the dominance of two configurations. Note the small third coefficient 
2

3
| | 0 023z = .  in the EXD case. 
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try breaking leads to the emergence of crystalline arrangements of electrons in the dot. The so-called 

Wigner molecules form already at field-free conditions. The appearance of rotating Wigner molecules in 

circular dots under high magnetic field, and their relation to magic angular momenta and quantum-Hall-

effect fractional fillings was also discussed. 

 Furthermore, we have shown, through exact and approximate microscopic treatments, formation of an 

electron molecular dimer in an elliptic QD (Fig. 5) for screened interelectron repulsion. The formation 

and effective dissociation (in high magnetic fields) of the electron dimer are reflected in the behavior of 

the computed singlet-triplet splitting, ( )J B , that agrees well (see Fig. 4) with the measurements [34]. 

Furthermore, we showed that, from a knowledge of the dot shape and of ( )J B , theoretical analysis along 

the lines introduced here allows probing of the correlated ground-state wave function and determination 

of its degree of entanglement. This presents an alternative to the experimental study where determination 

of the concurrence utilized conductance data [34]. We have employed two measures of entanglement for 

indistinguishable fermions (the concurrence and the von Neumann entropy) and have shown that their 

behavior correlates with the effective dissociation of the electron dimer. Such information is of interest to 

the implementation of spin-based solid-state quantum logic gates. 
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