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The crystalline or liquid character of the downward cusp states inN-electron parabolic quantum dots at high
magnetic fields is investigated using conditional probability distributions obtained from exact diagonalization.
These states are of crystalline character for fractional fillings covering both low and high values, unlike the
liquid Jastrow-Laughlin wave functions, but in remarkable agreement with the rotating-Wigner-molecule ones
[Phys. Rev. B66, 115315(2002)]. The crystalline arrangement consists of concentric polygonal rings that
rotate independently of each other, with the electrons on each ring rotating coherently. We show that the
rotation stabilizes the Wigner molecule relative to thestaticone defined by the broken-symmetry unrestricted-
Hartree-Fock solution. We discuss the nonrigid behavior of the rotating Wigner molecule and pertinent features
of the excitation spectrum, including the occurrence of a gap between the ground and first-excited states that
underlies the incompressibility of the system. This leads us to conjecture that the rotating crystal(and not the
static one) remains the relevant ground state for low fractional fillings even at the thermodynamic limit.
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I. INTRODUCTION

The excitation energy spectrum of a two-dimensional
N-electron semiconductor quantum dot(QD), plotted as a
function of angular momentum for a given high magnetic
field sBd, exhibits downward cusps1–5 at certain magic angu-
lar momentasLmd, corresponding to states with enhanced sta-
bility. For a given value ofB, one of theseLm’s corresponds
to the global minimum of the energy, that is to the ground
state(the ground-state value ofLm is denoted asLgs). Varying
the magnetic field causes the ground state and its angular
momentumLgs to change. We note that due to their enhanced
stability, only cusp states can become ground states. Under-
lying these properties is the inherent incompressibility of the
cusp states in response to an external magnetic field. As a
result, the cusp states have been long recognized1,3–7 as the
finite-N precursors of the fractional quantum Hall states in
extended systems. In particular, the fractional fillingsn (de-
fined in the thermodynamic limit) are related to the magic
angular momenta of the finite-N system as follows:8

n =
NsN − 1d

2Lm
. s1d

(Henceforth, we will drop the subscriptm, unless necessary.)
In the literature of the fractional quantum Hall effect

(FQHE), ever since the celebrated paper9 by Laughlin in
1983, the cusp states have been considered to be the antith-
esis of the Wigner crystal and to be described accurately by
liquidlike wave functions, such as the Jastrow-Laughlin9,10

(JL) and composite-fermion11,12 (CF) ones. This view, how-
ever, has been recently challenged4,5 by the explicit deriva-
tion of trial wave functions for the cusp states that are asso-
ciated with a rotating Wigner(or electron) molecule, RWM.
As we discussed4,5 earlier, the parameter-free RWM wave
functions,13 which are by constructioncrystalline in charac-
ter, promise to provide a simpler, but yet improved and more
consistent description of the properties of the cusp states, in

particular for high angular momenta(corresponding to low
fractional fillings).

Issues pertaining to the liquid or crystalline character of
the cusp states are significant in both the fields of QD’s and
the FQHE. Since the many-body wave functions in the low-
est Landau level(high B) obtained from exact diagonaliza-
tion (EXD), the RWM wave functions, and the CF/JL ones
have good angular momenta7 L.L0=NsN−1d /2, their elec-
tron densities arecircularly symmetric. Therefore investiga-
tion of the crystalline or liquid character of these states
requires examination of the conditional probability distribu-
tions (CPD’s, i.e., the fully anisotropic pair correlation func-
tions). These calculations were performed here under high
magnetic field conditions for QD’s(in a disk geometry14)
with N=6–9electrons, and for an extensive range of angular
momenta. This allowed us to conclude that in all instances
examined here(corrresponding to 0.467.n.0.111) the
cusp states exhibit an unmistakably crystalline character, in
contrast to the long held perception in the FQHE literature,
with the RWM yielding superior agreement with the exact-
diagonalization results.15 Furthermore, the RWM states are
found to be energetically stabilized(i.e., exhibit gain in cor-
relation energy) with respect to the correspondingstatic
(symmetry-broken) Wigner molecules, from which the mul-
tideterminantal RWM wave functions are obtained through
an angular-momentum projection.16 We will present argu-
ments that allow us to conjecture that the stabilization energy
of the cusp states in highB remains nonvanishing even in the
thermodynamic limit.

In the beginning of Sec. II, we display the Hamiltonian of
the system under consideration and define the conditional
probability distributions. Subsequently, in the same section,
we present our main results pertaining to the structural prop-
erties of the CPD’s. Possible improvementes of the RWM
wave functions are discussed in Sec. II C. In Sec. III, we
recapitulate the essential aspects of the two-step method of
symmetry breaking and symmetry restoration, calculate sta-
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bilization energies for the RWM, and discuss pertinent fea-
tures of its excitation spectrum(in particular, the occurrence
of a gap between the ground state and the first excited state
that is not a mere consequence of finite size; the appearance
of this gap underlies the incompressibility of the system). A
discussion pertaining to implications for the thermodynamic
limit is presented in Sec. IV. Finally, a summary is given in
Sec. V.

II. CONDITIONAL PROBABILITY DISTRIBUTIONS

We are interested in wave functions which are exact so-
lutions (or good approximations to them) of the two-
dimensional many-body problem defined by the Hamiltonian

H = o
i=1

N
1

2m*
Spi −

e

c
A iD2

+ o
i=1

N
m*

2
v0

2r i
2 + o

i=1

N

o
j.i

N
e2

kr ij
,

s2d

which describesN electrons(interacting via a Coulomb re-
pulsion) confined in a parabolic potential of frequencyv0
and subjected to a perpendicular magnetic fieldB, whose
vector potential is given in the symmetric gauge by

Asr d = 1
2B 3 r = 1

2s− By,Bx,0d; s3d

m* is the effective electron mass,k is the dielectric constant
of the semiconductor material, andr ij = ur i −r ju. For suffi-
ciently high magnetic field values(i.e., in the FQHE regime),
the electrons are fully spin polarized and the Zeeman term
(not shown here) does not need to be considered.

In the B→` limit, the external confinementv0 can be
neglected, andH can be restricted to operate in the lowest
Landau level(LLL ), reducing to the form

HLLL = N
"vc

2
+ o

i=1

N

o
j.i

N
e2

kr ij
, s4d

wherevc=eB/ sm* cd is the cyclotron frequency.
For finite N, the solutions to the Schrödinger equations

corresponding to the Hamiltonians(2) and (4) must have a
good angular momentumL. As described by us in detail in
Refs. 4, 5, 16, and 17(see also Sec. III below), these solu-
tions can be well approximated by a two-step method of
symmetry breaking at the unrestricted Hartree-Fock(UHF)
level and of subsequent symmetry restoration via post-
Hartree-Fock projection techniques. As elaborated in our ear-
lier work,4,5,16,17the two-step method describes the formation
and properties of rotating Wigner molecules in QD’s.

As indicated in the Introduction, probing of structural
characteristics in many-body wave functions with good an-
gular momentumL requires the use of the conditional prob-
ability distributions defined by

Psr ,r 0d = kFLuo
i=1

N

o
jÞi

N

dsr i − r ddsr j − r 0duFLl/kFLuFLl.

s5d

Here FLsr 1,r 2, . . . ,r Nd denotes the many-body wave func-
tion under consideration. In this paper, we calculate the

CPD’s for three types of many-body wave functions defined
in the lowest Landau level:(i) the analytic rotating Wigner
molecule wave function,FL

RWM (see also Sec. III); (ii ) the
wave functionFL

EXD obtained through exact diagonalization
in the lowest Landau level; and(iii ) the Jastrow-Laughlin
functionsFL

JL.
Psr ,r 0d is proportional to the conditional probability of

finding an electron atr under the condition that a second
electron is located atr 0. This quantity positions the observer
on the moving(intrinsic) frame of reference specified by the
collective (coherent) rotations that are associated with the
good angular momenta of the cusp states.

A. Crystallinity in lower fractions 1
9ÏnÏ 1

5

The CPD’s for cusp states corresponding to a lower filling
factor thann= 1

5, calculated forN=6 electrons withL=135
(n= 1

9, left column) and for N=6 with L=105 (n= 1
7, right

column), are displayed in Fig. 1. Figure 2 displays the CPD’s
for the cusp states withN=6 electrons andL=75 (n= 1

5, left
column) andN=7 andL=105 (n= 1

5, right column). In both
figures, the top row depicts the RWM case. The EXD case is
given by the middle row, while the CF cases(which reduce
to the JL wave functions for these fractions) are given by the
bottom row.

FIG. 1. (Color online) Conditional probability distributions at
high B for N=6 electrons withL=135 (n= 1

9, left column) and L
=105 (n= 1

7, right column). Top row: RWM case. Middle row: The
case of exact diagonalization. Bottom row: The Jastrow-Laughlin
case. It is apparent that the exact diagonalization and RWM wave
functions have a pronouned crystalline character, corresponding to
the (1,5) polygonal configuration of the rotating Wigner molecule.
In contrast, the Jastrow-Laughlin wave functions fail to capture this
crystalline character, exhibiting a rather “liquid” character. The ob-
servation point(identified by a solid dot) was placed at the maxi-
mum of the outer ring of the radial electron density(Ref. 4 and 5)
of the EXD wave function, namely atr0=7.318lB for L=135 and
r0=6.442lB for L=105. Here,lB=s"c/eBd1/2. The EXD Coulomb
interaction energies(in the lowest Landau level) are 1.6305 and
1.8533e2/klB for L=135 andL=105, respectively. The errors rela-
tive to the corresponding EXD energies and the overlaps of the trial
functions with the EXD ones are(i) for L=135, RWM: 0.34%,
0.860; JL: 0.50%, 0.665 and(ii ) for L=105, RWM: 0.48%, 0.850;
JL: 0.46%, 0.710.
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There are three principal conclusions that can be drawn
from an inspection of Figs. 1 and 2.

(i) The character of the EXD states is unmistakably crys-
talline with the EXD CPD’s exhibiting a well developed mo-
lecular polygonal configuration[(1,5) for N=6 and(1,6) for
N=7, with one electron at the center], in agreement with the
explicitly crystalline RWM case.

(ii ) For all the examined instances(covering the frac-
tional fillings 1

9, 1
7, and 1

5), the JL wave functions fail to
capture the intrinsic crystallinity of the EXD states. In con-
trast, they represent “liquid” states in agreement with an
analysis that goes back to the original papers9,10 by Laughlin.
In particular, Ref. 10 investigated the character of the JL
states through the use of a pair correlation function[usually
denoted bygsRd] that determines the probability of finding
another electron at the absolute relative distanceR= ur −r 0u
from the observation pointr 0. Our anisotropic CPD of Eq.
(5) is of course more general(and more difficult to calculate)
than thegsRd function of Ref. 10. However, both ourPsr ,r 0d
(for N=6 and N=7 electrons) and thegsRd (for N=1000
electrons, and forn= 1

3 andn= 1
5) in Ref. 10 reveal a similar

characteristic liquid like and short-range-order behavior for
the JL states, eloquently described in Ref. 10(see pp. 249
and 251). Indeed, we remark that only the first-neighbor
electrons on the outer rings can be distinguished as separate
localized electrons in our CPD plots of the JL functions(see
Figs. 1 and 2).

(iii ) For a finite number of electrons, pronounced crystal-
linity of the EXD states occurs already at the rather highn
= 1

5 value(see Fig. 2). This finding is particularly interesting
in light of expectations18 (based on comparisons9,10,19 be-
tween the JL states and the static bulk Wigner crystal) that a
liquid-to-crystal phase transition may take place only at
lower fillings with nø

1
7.

B. Crystallinity in higher fractions 1
5 ,n,1

Following the conclusion that the crystalline character of
the cusp states in QDs is already well developed for frac-
tional fillings with the unexpected high value ofn= 1

5, a natu-
ral question arises concerning the presence or absence of
crystallinity in cusp states corresponding to higher fractional
fillings, i.e., states with1

5 ,n,
1
3, and even with1

3 ,n,1.
To answer this question, we show in Fig. 3 the CPD’s for the
RWM (left column) and EXD(right column) wave functions
for the case ofN=7 electrons and forL=69 s 1

5 ,n= 7
23,

1
3

d,
L=57 s 1

3 ,n= 7
19,1d, and L=45 s 1

3 ,n= 7
15,1d. Unlike the

long held perceptions in the FQHE literature(which were
reasserted in two recent publications18) the CPD’s in Fig. 3
demonstrate that the character of the cusp states with high
fractional fillings is not necessarily “liquidlike.” Indeed,
these high-n cusp states exhibit a well developed crystallinity
associated with the(1,6) polygonal configuration of the
RWM, appropriate forN=7 electrons.

Of interest also is the case ofn= 1
3. Indeed, for this frac-

tional filling, the liquid JL function is expected to provide the
best approximation, due to very high overlaps(better than
0.99) with the exact wave function.20,21 In Fig. 4, we display
the CPD’s forN=7 andL=63 sn= 1

3
d, and for the three cases

FIG. 2. (Color online) Conditional probability distributions at
high B for N=6 electrons andL=75 (n= 1

5, left column) and for
N=7 electrons andL=105 (again n= 1

5, right column). Top row:
RWM case. Middle row: The case of exact diagonalization. Bottom
row: The Jastrow-Laughlin case. The exact diagonalization and
RWM wave functions have a pronouned crystalline character, cor-
responding to the(1,5) polygonal configuration of the RWM for
N=6, and to the(1,6) polygonal configuration forN=7. In contrast,
the Jastrow-Laughlin wave functions exhibit a characteristic liquid
profile that depends smoothly on the numberN of electrons. The
observation point(identified by a solid dot) is located at r0

=5.431lB for N=6 and L=75 and r0=5.883lB for N=7 and L
=105. The EXD Coulomb interaction energies(lowest Landau
level) are 2.2018 and 2.9144e2/klB for N=6, L=75 andN=7, L
=105, respectively. The errors relative to the corresponding EXD
energies and the overlaps of the trial functions with the EXD ones
are(i) for N=6, L=75, RWM: 0.85%, 0.817; JL: 0.32%, 0.837 and
(ii ) for N=7, L=105, RWM: 0.59%, 0.842; JL: 0.55%, 0.754.

FIG. 3. (Color online) Conditional probability distributions at
high B for N=7 electrons andL=69 (n= 7

23=0.304. 1
5, top row),

L=57 (1.n= 7
19=0.368. 1

3, middle row), and L=45 (1.n= 7
15

=0.467. 1
3, bottom row). RWM case: Left column. The case of

exact diagonalization is depicted in the right column. Even for these
low magic angular momenta(high fractional fillings), both the
exact-diagonalization and RWM wave functions have a pronouned
crystalline character[corresponding to the(1,6) polygonal configu-
ration of the RWM forN=7 electrons]. The observation point(iden-
tified by a solid dot) is located at r0=4.752lB for L=69, r0

=4.278lB for L=57, andr0=3.776lB for L=45.
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of RWM, EXD, and JL wave functions. Again, even in this
most favorable case, the CPD of the JL function disagrees
with the EXD one, which exhibits clearly a(1,6) crystalline
configuration in agreement with the RWM CPD.

Similar crystalline correlations at higher fractions were
also found for QDs of a different size, e.g., withN=6, N
=8, andN=9 electrons. As illustrative examples for these
additional sizes, we display in Fig. 5 the CPD’s forN=8 and
L=91 s 1

5 ,n= 4
13,

1
3

d and for N=9 and L=101 s 1
3 ,n= 36

101
,1d. Again, the CPD’s(both for the RWM and the EXD
wave functions) exhibit a well developed crystalline charac-
ter in accordance with the(1,7) and(2,7) polygonal configu-
rations of the RWM, appropriate forN=8 and N=9 elec-
trons, respectively.

The case ofN=9 is of particuler significance. Indeed it
represents the smallest number of electrons with a nontrivial
concentric-ring arrangement, i.e., the inner ring has more
than one electrons. As the two CPD’s(reflecting the choice
of taking the observation point[r 0 in Eq. (5)] on the outer or
the inner ring) for N=9 reveal, the polygonal electron rings
rotateindependentlyof each other. Thus, e.g., to an observer
located on the inner ring, the outer ring will appear as uni-
form, and vice versa. The fact that both the RWM and exact
wave functions share this property of independently rotating
rings is a testament to the ability of the RWM theory to
capture the essential physics of QD’s in highB.

C. Improvements of the RWM wave functions

It is of importance to note here that the favorable com-
parison between the crystalline structure of the RWM and
that of the exact wave functions, in contrast to the liquidlike
character of the JL functions, persists even for cases where
the latter is found to have the advantage(over the RWM)
concerning total energies and wave function overlaps. As
examples, we refer to the case ofn= 1

5 discussed in the cap-

tion of Fig. 2 (see in particular the errors in the energies for
the RWM and JL functions relative to the exact energies
given at the end of the caption).

Close inspection of the humps in the CPD’s obtained from
the RWM and through exact diagonalization reveals that the
RWM tends to somewhat overestimate the degree of crystal-
linity, i.e., the RWM humps are narrower and higher(this
tendency diminishes for larger values ofL). Nevertheless,
the degree of overall agreement between the exact results
and those obtained through theparameter-freeRWM wave
functions is rather remarkable. Moreover, the high level of
agreement between the RWM and exact results extends to
other properties. This includes the zeroes(often called vorti-
ces) of the many-body wave functions. Indeed, as recently
shown in Ref. 22, the exact wave functions(in contrast to the
JL ones) havesimple zeroeswhose topology is in agreement
with that of the simple zeroes of the RWM functions.

The above suggest that the RWM wave functions can
form the nucleus for constructing a whole class of rotating
crystalline functions with added variational freedom, which
will yield further quantitative energetic and structural im-
provements. For example, the RWM functions could be used
as the basis for constructing variational wave functions in
diffusion23 and variational24 quantum Monte Carlo studies.
For a most recent investigation along these lines, see Ref. 25,
where our RWM function is augmented by a Jastrow prefac-
tor with an exponent that is treated variationally. We remark,
however, that the variational wave function employed in Ref.
25 has multiple zeroes due to the Jastrow factor, in disagree-
ment with the exact diagonalization results.

FIG. 4. (Color online) CPD’s at highB for N=7 andL=63 sn
= 1

3
d. Top: RWM case. Middle: EXD case. Bottom: JL case. Unlike

the JL CPD (which is liquid), the CPD’s for the exact-
diagonalization and RWM wave functions exhibit a well developed
crystalline character[corresponding to the(1,6) polygonal configu-
ration of the RWM forN=7 electrons]. The observation point(iden-
tified by a solid dot) is located atr0=4.568lB.

FIG. 5. (Color online) Additional CPD’s at highB. RWM re-
sults: Left column. Results from exact diagonalization are depicted
on the right column. Top row:N=8 electrons andL=91 s 1

5 ,n

= 4
13=0.308, 1

3
d. Two bottom rows:N=9 electrons andL=101 s 1

3
,n= 36

101=0.356,1, see text for explanation). Even for these low
magic angular momenta(high fractional fillings), both the exact-
diagonalization and RWM wave functions have a pronouned crys-
talline character[corresponding to the(1,7) and (2,7) polygonal
configurations of the RWM forN=8 and 9 electrons]. The observa-
tion point (identified by a solid dot) is located atr0=5.105lB for
N=8, L=91, andr0=5.218lB (outer) and r0=1.662lB (inner) for N
=9, L=101.

C. YANNOULEAS AND U. LANDMAN PHYSICAL REVIEW B 70, 235319(2004)

235319-4



III. RESTORATION OF CIRCULAR SYMMETRY

A. Correlated many-body wave functions

Our two-step method for deriving the RWM wave func-
tion is anchored in the distinction17 between astatic and a
rotating Wigner molecule, with the rotation stabilizing the
latter relative to the former. Further elaboration on this point
requires generation of global ground states out of the cusp
states, achieved through inclusion6,17 of an external parabolic
confinement(of frequencyv0). In the two-step method, the
static WM is first described by an unrestricted Hartree-Fock
(UHF) determinant that violates the circular symmetry.26

Subsequently, the rotation of the WM is described by a post-
Hartree-Fock step of restoration of the broken circular sym-
metry via projection techniques.16 We note that, in the limit
N→`, the static WM of the UHF develops to the extended
two-dimensional Wigner crystal27 and its more sophisticated
variants.19

In general, the localized broken symmetry orbitals of the
HF determinant are determined numerically via a self-
consistent solution of the UHF equations. Since we focus
here on the case of highB, we can approximate the UHF
orbitals(first step of our procedure) by (parameter free) dis-
placed Gaussian functions; namely, for an electron localized
at R j sZjd, we use the orbital

usz,Zjd =
1

Îpl
expS−

uz− Zju2

2l2 − iwsz,Zj ;BdD , s6d

with l=Î" /m* V, V=Îv0
2+vc

2/4, wherevc=eB/ sm* cd is
the cyclotron frequency. We have used complex numbers to
represent the position variables, so thatz=x+ iy, Zj =Xj + iYj.
The phase guarantees gauge invariance in the presence of a
perpendicular magnetic field and is given in the symmetric
gauge bywsz,Zj ;Bd=sxYj −yXjd /2lB

2, with lB=Î"c/eB. We
only consider the case of fully polarized electrons, which is
appropriate at highB.

We take theZj’s to coincide with the equilibrium positions
[forming a structure ofr concentric regular polygons denoted
assn1,n2, . . . ,nrd] of N=oq=1

r nq classical point charges inside
an external parabolic confinement of frequencyv0. Then we
proceed to construct the UHF determinantCUHFfzg out of the
orbitals uszi ,Zid’s, i =1, . . . ,N. Correlated many-body states
with good total angular momentaL can be extracted5,16 from
the UHF determinant using projection operators, i.e.,

FL
RWM =E

0

2p

. . .E
0

2p

dg1 ¯ dgr

3 CUHFsg1, . . . ,grdexpSio
q=1

r

gqLqD , s7d

whereL=oq=1
r Lq andCUHFfgg is the original UHF determi-

nant withall the orbitals of the qth ringrotated(collectively,
i.e., coherently) by the sameazimuthal anglegq, and each
ring is rotated independently of each other. Note that Eq.(7)
can be written as a product of projection operators acting on
the original UHF determinant[i.e., CUHFsg1=0, . . . ,gr =0d,
see Eqs.(6) and (7) in Ref. 5]. Settingl= lBÎ2 restricts the

orbital in Eq. (6) to lie entirely in the lowest Landau level,
and allows for the derivation of the analytic RWM
functions.5 We stress that while the initial trial wave function
of the UHF equations consists of a single determinant, the
projected wave function is a linear superposition of many
determinants, as can be explicitly seen from the analytic
forms of the RWM functions in Ref. 5.

B. Stabilization energy

In the case of finiteB (requiring the inclusion of confine-
ment, i.e.,v0Þ0), the projected energy corresponding to a
symmetry-restored RWM state with angular momentumL is
given [in the case of a singles0,Nd or a s1,N−1d ring]
by16,17

EPRJsLd =E
0

2p

hsgdeigLdgYE
0

2p

nsgdeigLdg, s8d

with hsgd=kCUHFs0duHuCUHFsgdl and nsgd
=kCUHFs0d uCUHFsgdl, whereCUHFsgd is the original UHF
determinant withall the orbitalsrotated(collectively) by the
sameazimuthal angleg. H is the many-body Hamiltonian in
Eq. (2). The UHF energies are simply given byEUHF
=hs0d /ns0d.

We note that, unlike the UHF ground state(describing a
static Wigner molecule) which does not have good angular
momentum, the ground states of the RWM exhibit good an-
gular momenta(labeled asLgs, as aforementioned) that coin-
cide with magic ones[we denote the ground-state energy of
the RWM as EPRJ

gs ;EPRJsLgsd]. Note that in Fig. 6 the
ground-state magic angular momenta obey

Lgs= NsN − 1d/2 + ksN − 1d, s9d

with k=0,1,2, . . .,.Such sequences, having as a period the
number of eletrons on the crystalline polygonal ring[5 and 6

FIG. 6. Stabilization energiesDEgs
gain for N=6 (dashed curve)

andN=7 (solid curve) fully polarized electrons in a parabolic QD
as a function ofB. The troughs associated with the major fractional
fillings (1

3, 1
5, and 1

7) and the corresponding ground-state angular
momenta[see Eq.(1)] are indicated with arrows. We have extended
the calculations up toB=120 T (not shown), and verified that
DEgs

gain remains negative while its absolute value vanishes asB
→`. The choice of parameters is"v0=3 meV (parabolic confine-
ment), m* =0.067me (electron effective mass), andk=12.9(dielec-
tric constant).
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for the (1,5) and (1,6) RWMs corresponding toN=6 andN
=7], reflect directly the collective rotation and incompress-
ibilty of the RWM (see Sec. III C).

The stabilization energy,DEgs
gain=EPRJ

gs −EUHF, of therotat-
ing WM relative to the static one (namely the fact that
EPRJ

gs ,EUHF, see Fig. 6) is a purely quantum effect. This
energy gain,DEgs

gain, demonstrated here forN=6 and 7 elec-
trons, is in fact a general property of states projected out of
trial functions with broken symmetry. This is due to an “en-
ergy gain” theorem28 stating that at least one of the projected
states(i.e., the ground state) has an energy lower than that of
the original broken-symmetry trial function(e.g., the UHF
determinant considered above).

C. Excitation gap

The oscillations of the stabilization energy(Fig. 6) reflect
the oscillatory behavior of the energy of the projected RWM
states, as well as of the exact ones, since the mean-field
energyEUHF varies smoothly withB (see Ref. 17). Underly-
ing the oscillatory behavior of the ground-state energies is a
fundamental property of the spectrum of the system, namely,
the appearance of special gaps due to the enhanced stability
of the cusp states. Indeed, for a given magnetic field, both
the ground state(specified byLgs), as well as the first excited
state(specified byL1), are magic[with29 L1=Lgs± sN−1d for
N=6–8]. As an example of this behavior, we display in Fig.
7 the low part of the EXD excitation spectrum for a QD with
N=7, B=18.8 T, "v0=3 meV, andk=12.9. The statesL
=99,L=105(the ground state), andL=111 are demonstrated
indeed to be cusp states of enhanced stability(all three states
are well separated from the rest of the excited states).

For the given magnetic fieldB=18.8 T, the first excited
state corresponds toL=99. However, asB increases, we
found that the state withL=111 diminishes in energy relative
to that withL=99, becoming itself the first excited state, and
eventually(asB is increased further) replacingL=105 as the
ground state. This sequence of changes occurs for all ground
states(with magic angular momenta) accessed through varia-
tion of the magnetic field. This results in the behavior of the
excitation gap,D=E1−Egs, shown in Fig. 8[the calculations
here were performed with the RWM projected energies of
Eq. (8)]. The gap in Fig. 8 separates states with similar in-
ternal structure, i.e., they exhibit the same polygonal con-
figuration as revealed through the CPD analysis forN=7
electrons(see Figs. 2–4). The internal structures of higher
excited states differ from that of the ground state, with the
disparity increasing with the excitation energy.

The incompressibility of the cusp states(which, as dis-
cussed above, correspond to magic angular momenta) is con-
nected directly to the appearance of the gap(as discussed in
the context of the FQHE in Ref. 9). The discussion presented
here about the nature of the excitation spectrum(and in par-
ticular the existence of a gapD) allows us to comment on the
influence of impurities and disorder on the properties of the
quantum dot. Naturally, we focus on the regime of small or
moderate disorder, since a high degree of disorder(or strong
impurities) will destroy both the gaps in the spectrum, as
well as the coherent(collective) nature of the rotating

Wigner molecule. The effect of disorder(or impurities) de-
pends on the size of the gap. For sufficiently weak disorder,
both the excitation gapD and the coherence of the magic
angular momentum states maintain, namely, the states sepa-
rated by the gap experience onlylocal disorder-induced per-
turbations(i.e., they broaden) and they remain conducting
(see Sec. IV below). Obviously, for cases of a vanishing gap
(i.e., between the fractional fillings, see arrows in Fig. 8),
even weak disorder can induce aglobal change in the char-
acter of the(perturbed) wave functions by strongly mixing
the degenerateLgs and L1 cusp states(and often additional
nearby cusp states depending on the magnitude ofB), and
this can lead to a state with a broken-symmetry electron den-
sity having characteristics of a pinned Wigner crystallite.30

IV. DISCUSSION: IMPLICATIONS FOR THE
THERMODYNAMIC LIMIT

While our focus here is on the behavior of trial and exact
wave functions in(finite) QDs in high magnetic fields, it is
natural to inquire about possible implications of our findings
to FQHE systems in the thermodynamic limit.

We recall that appropriate trial wave functions for clean
FQHE systems possess a good angular momentumLùL0, a

FIG. 7. Low-energy part of the spectrum of the parabolic QD
whose parameters are the same as those in Fig. 6, calculated as a
function of the angular momentumL through exact diagonalization
for N=7 electrons with a magnetic fieldB=18.8 T. We show here
the spectrum in the interval 95øLø115 (in the neighborhood of
n= 1

5). The magic angular momentum values corresponding to cusp
states are marked(99, 105, and 111), and they are seen to be sepa-
rated from the rest of the spectrum. For the given value ofB, the
global energy minimum(ground state) occurs forLgs=105, and the
gap D to the first excited statesL=99d is indicated. The lowest
energies for the differentL’s in the plotted range are connected by a
dashed line, as a guide to the eye. The zero of energy corresponds to
7"V, whereV=sv0

2+vc
2/4d1/2 and vc=eB/ sm* cd. The horizontal

arrow denotes the energy of the Laughlin quasihole atL=112. It is
seen that the Laughlin quasihole is not the lowest excited state.
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property shared by both the CF/JL and RWM functions.5,9–11

We also recall the previous finding31 that for large fractional
fillings n.n0, the liquidlike (and circularly uniform) CF/JL
function is in the thermodynamic limit energetically favored
compared9,10,12,19to the broken-symmetry static Wigner crys-
tal (which has no good angular momentum); for n,n0, the
static Wigner crystal becomes lower in energy. This finding
was enabled by the form of the JL functions, which facili-
tated computations of total energies as a function of size for
sufficiently largeN (e.g.,N=1000).

A main finding of this paper is that theexact-numerical-
diagonalization wave functions of small systemssNø10d are
crystalline in character for both low and high fractional fill-
ings.This finding contradicts earlier suggestions3,9,10,18that,
for high n’s, small systems are accurately described by the
liquidlike JL wave functions and their descendants, e.g., the
composite-fermion ones. Of course, for the same highn’s,
our small-size results cannot exclude the possibility that the

CPDs of the exact solution may exhibit with increasingN a
transition from crystalline to liquid character, in agreement
with the JL function. However, at the moment, the existence
of such a transition remains an open theoretical subject.

For thelow fractions, the RWM theory raises still another
line of inquiry. Due to the specific form of the RWM wave
functions, computational limitations32 prevent us at present
from making extrapolations of total energies at a givenn as
N→`. Nevertheless, from the general theory of projection
operators, one can conclude that the RWM energies exhibit a
different trend compared to the JL ones, whose energies were
found9,10,12,19to be higher than the static Wigner crystal. In-
deed the rotating-Wigner-molecule wave functions remain
lower in energy than the correspondingstaticcrystalline state
for all valuesof N andn, even in the thermodynamic limit.
This is due to the fact that the aforementioned energy-gain
theorem28 (see Sec. III) applies for any number of electrons
N and for all values of the magnetic fieldB. Naturally, the
RWM wave functions will be physically relevant compared
to those of the broken-symmetry crystal at the thermody-
namic limit if the energy gain does not vanish whenN→`;
otherwise, one needs to consider the posssibility that the
static crystal is the relevant physical picture.

The discussion in the above paragraph may be recapitu-
lated by the following question: which state is the relevant
one in the thermodynamic limitsN→`d—the broken-
symmetry one(i.e., the static Wigner crystal) or the symme-
try restored(i.e., rotating crystal) state? This question, in the
context of bulk broken-symmetry systems, has been ad-
dressed in the early work of Anderson,33 who concluded that
the broken-symmetry state(here the UHF static crystalline
solution) can be safely taken as the effective ground state. In
arriving at this conclusion Anderson invoked the concept of
(generalized) rigidity. As a concrete example, one would ex-
pect a crystal to behave like amacroscopicbody, whose
Hamiltonian is that of aheavy rigid rotorwith a low-energy
excitation spectrumL2/2J, the moment of inertiaJ being of
order N (macroscopically large whenN→`). The low-
energy excitation spectrum of this heavy rigid rotor above
the ground-statesL=0d is essentially gapless(i.e., continu-
ous). Thus although the formal ground state posseses con-
tinuous rotational symmetry(i.e., L=0), “there is a manifold
of other states, degenerate in theN→` limit, which can be
recombined to give a very stable wave packet with essen-
tially the nature”34 of the broken-symmetry state(i.e., the
static Wigner crystal in our case). As a consequence of the
“macroscopic heaviness” asN→`, one has the following:(i)
The energy gain due to symmetry restoration(i.e., the stabi-
lization energyDEgs

gain) vanishes asN→` and (ii ) the relax-
ation of the system from the wave packet state(i.e., the static
Wigner crystal) to the symmetrized one(i.e., the rotating
crystal) becomes exceedingly long. This picture underlies the
aforementioned conclusion that in the thermodynamic limit
the broken-symmetry state may be used as the effective
ground state.

Consequently, in the following we will focus on issues
pertaining to the “rigidity” of the rotating Wigner molecule
in high magnetic fields. In particular, using our projection
method and exact diagonalization, we demonstrated explic-
itly in previous publications17,35 that the rigid-rotor picture

FIG. 8. Top: RWM projected energies[see Eq.(8)] calculated as
a function of the magnetic fieldB for N=7 electrons in a parabolic
QD with the same parameters as those used in Figs. 6 and 7. Each
of the parabolalike curves(made partly of a solid and partly of a
dashed line) corresponds to the marked value of the angular
momentum—i.e., for the range of magnetic fields shown here,Lgs

=57 s 7
19

d, 63 s 1
3

d, 69 s 7
23

d, 75 s 7
25

d, and 81s 7
27

d, with the correspond-
ing value of the fractional fillingn=NsN−1d / s2Lgsd given in paren-
theses. The solid lines denote the ground-state energies, and the
dashed lines give the values of the first-excited-state energies. Note
that the gap between the ground and the first excited state,D=E1

−Egs, oscillates as a function ofB. The arrows denote the values of
B for which the gap vanishes, occuring between the fractional fill-
ings. The zero of energy corresponds to 7"V+Ecl

st, whereV=sv0
2

+vc
2/4d1/2 [with vc=eB/ sm* cd] and Ecl

st is the classical energy of
the static Wigner molecule(see Ref. 17). Bottom: The gapD plotted
versusB.
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applies to anN-electron QD only whenB=0. In contrast, in
the presence of a high magnetic field, we found17 that the
electrons in the QD do not exhibit global rigidity and there-
fore cannot be modeled as a macroscopic rotating crystal.
Instead, a more appropriate model is that of ahighly nonrigid
rotor whose moment of inertia depends strongly on the value
of the angular momentumL.

The nonrigid rotor at highB has several unique proper-
ties: (i) The ground state has angular momentumLgs.0. (ii )
While the rotating electron molecule does not exhibitglobal
rigidity, it possessesazimuthalrigidity (i.e., all electrons on a
given ring rotate coherently), with the rings, however, rotat-
ing independently of each other. Furthermore, the radii of the
rings vary for different values ofL, unlike the case of a rigid
rotor (see, for example, the locations ofr 0 in Fig. 1 and Fig.
3 for different L values). (iii ) The excitation spectra do not
vary asL2; instead they consist of terms that vary asaL
+b/ÎL [for the precise values of the constantsa andb in the
case ofs0,Nd or s1,N−1d electron molecules, see Ref. 17].
(iv) The angular momentum values are given by the magic
values(see Ref. 5) L=L0+oq=1

r kqnq, wheresn1,n2, . . . ,nrd is
the polygonal ring arrangement of the static Wigner molecule
(with nq the number of electrons on theqth ring) and k1
,k2, ¯ ,kr are non-negative integers. These magicL’s
are associated with the cusp states which exhibit a relative
energy gain with respect to neighboring excitations. Thus the
low-energy excitation spectrum of the nonrigid rotor is not
dense and exhibits gaps due to the occurrence of the magic
(cusp) states(see Sec. III C). Furthermore, these gaps are
reflected in the oscillatory behavior ofDEgs

gain (see, e.g., Fig.
6) as a function ofB (or n).

As N increases, more polygonal rings are successively
added, and since the polygonal rings rotate independently of
each other(see, e.g., the case ofN=9 in Fig. 5), we expect
that the non-rigid-rotor picture remains valid even asN
→`. As a result, it is plausible to conjecture the following
properties at highB in the thermodynamic limit:(i) the os-
cillatory character ofDEgs

gain will maintain, yielding nonvan-
ishing stabilization energies at the fractional fillingsn [see
Eq. (1)], and (ii ) the low-energy excitation spectra of the
system will still exhibit gaps in the neighborhood of the
magic angular momenta(see Fig. 8). Of course, these con-
jectures need to be further supported through numerical cal-
culations for largeN. Nevertheless, the above discussion in-
dicates that the question of which state is physically relevant
for low fractions in the thermodynamic limit at highB, i.e.,
the broken-symmetry static crystal or the symmetrized rotat-
ing crystal, remains open, and cannot be answered solely
following the path of Ref. 33.

The rotating Wigner crystal has properties characteristic
of FQHE states, i.e., it is incompressible(connected to the
presence of an excitation gap) and carries a current36 (while
the broken-symmetry static crystal is insulating). Thus, we

may conjecture that a transition at lower fractional fillings
from a conducting state with good circular symmetry to an
insulating Wigner crystal cannot occurspontaneouslyfor
clean systems. Therefore, it should be possible to observe
FQHE-type behavior at low fractional fillings in a clean
system—a prediction that could explain the observations of
Ref. 37, where FQHE behavior has been observed for low
fractional fillings typically associated with the formation of a
static Wigner crystal. In practice, however, impurities and
defects may influence the properties of the rotating crystal
(and its excitations), depending on the magnitude of the ex-
citation gap discussed in the previous section. Thus one of
the main challenges for FQHE observation at such low fill-
ings relates to fabrication of high mobility(nearly impurity-
free) samples.38,39

V. SUMMARY

In summary, we have carried out the first systematic in-
vestigations(for 6øNø9) of structural properties of cusp
states in parabolic quantum dots at high magnetic fields. Our
anisotropic conditional probability distributions from exact
diagonalization show that these states are crystalline in char-
acter for both low and high fractional fillings, unlike the
liquidlike Jastrow-Laughlin9,10 wave functions, but in re-
markable agreement with the recently proposed
rotating-Wigner-molecule4,5 ones. The cusp states of
N-electron parabolic QDs are precursors to the extended
fractional quantum Hall states(and not to the static Wigner
crystal) due to stabilization of therotating Wigner molecule
(having a good angular momentum) relative to thestaticone
(that exhibits broken symmetry). The rotating Wigner mol-
ecule in highB does not exhibit global rigidity; instead, it
possessesazimuthal rigidity (i.e., all electrons on a given
ring rotate coherently), with the rings, however, rotating in-
dependently of each other.

Furthermore, we demonstrated pertinent features of the
spectrum of quantum dots in highB, showing that both the
ground state and the first excited state correspond to magic
angular momenta(cusp states). For a givenB, this leads to
the appearance of a special gap that is not a mere conse-
quence of the finite size of the system(and thus it is expected
to maintain in the thermodynamic limit, underlying the in-
compressibility of the electron system). Finally, we discussed
in detail issues pertaining to the implications of the rotating-
Wigner-molecule theory for FQHE systems at the thermody-
namic limit (see Sec. IV).
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