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Two-dimensional quantum dots in high magnetic fields:
Rotating-electron-molecule versus composite-fermion approach
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Exact diagonalization results are reported for the lowest rotational band ofN56 electrons in strong mag-
netic fields in the range of high angular momenta, 70<L<140 ~covering the corresponding range of fractional
filling factors, 1/5>n>1/9). A detailed comparison of energetic, spectral, and transport properties~specifically,
magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies,
and exponents of current-voltage power law! shows that the recently discovered rotating-electron-molecule
wave functions@Phys. Rev. B66, 115315~2002!# provide a superior description compared to the composite-
fermion–Jastrow-Laughlin ones.
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I. INTRODUCTION

Two-dimensional~2D! N-electron systems~with a small
finite N) in strong magnetic fields~B! have been the focus o
extensive theoretical investigations in the last 20 years.1–17

The principal motivations for these research activities are~I!
the early realization1,2 that certain special states of few
electron systems are relevant18 through appropriate analogie
to the physics of the fractional quantum Hall effect~FQHE!,
observed in the infinite 2D electron gas;~II ! the unavoidable
necessity, due to computer limitations, to test propo
model wave functions for the FQHE through numerical c
culations for finite-size systems; and~III ! the recent progres
in nanofabrication techniques at semiconductor interfa
that has allowed experiments on 2D quantum dots~QD’s!,
with refined control of their size, shape, and number
electrons19–21 ~down to a few electrons!.

The physics of such systems~i.e., QD’s in high B) is
most often described with the use of compo
ite-fermion4–Jastrow-Laughlin1 ~CF-JL! analytic trial wave
functions in the complex plane. However, it is well know
that the thematic framework of the CF-JL approach is b
on the so-called Jastrow correlations associated with a
ticular short-range interparticle repulsion.22 In a recent
paper,15 using as a thematic basis the picture of collectiv
rotating electron~or Wigner! molecules~REM’s!, we have
derived a different class of analytic and parameter-free t
wave functions. The promising property of these REM wa
functions is that, unlike the CF-JL ones, they capture
all-important correlations arising from the long-range ch
acter of the Coulomb force.

In this paper, we present an in-depth assessment of
CF-JL and REM trial wave functions regarding their abili
to approximate the exact wave functions in the case of Q
~this case is often referred to as the ‘‘disk geometry’’ in t
FQHE literature!. First systematic exact diagonalizatio
~EXD! results are reported here for the lowest rotatio
band ofN56 electrons in strong magnetic fields in the ran
of high angular momenta 70<L<140 ~covering the corre-
sponding range of fractional filling factors,23 1/5>n>1/9).
A detailed comparison~addressing five properties: i.e., th
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prediction of magic angular momenta, radial electron den
ties, occupation number distributions, overlaps and total
ergies, and exponents of current-voltage power law! shows
that the REM wave functions yield a superior description
that obtained through the composite-fermion–Jastro
Laughlin ones.

The plan of this paper is as follows: Section II presents
outline of the REM theory, while Sec. III focuses on a bri
review of the composite-fermion approach. Exact diagon
ization results and comparisons with the CF-JL and RE
wave functions are presented in Sec. IV. Finally, our resu
are summarized in Sec. V.

II. OUTLINE OF REM THEORY

In the last eight years and, in particular, since 1999@when
it was demonstrated24 that Wigner crystallization is related t
symmetry breaking at theunrestrictedHartree-Fock~UHF!
mean-field level#, the number of publications8–17,24–40ad-
dressing the formation and properties of Wigner~or electron!
molecules in 2D QD’s and quantum dot molecules has gro
steadily. A consensus has been reached that rotating ele
molecules are formed both in zero12,24–40and high8–17 mag-
netic fields.

At B50, the formation of REM’s in QD’s is analogous t
Wigner crystallization in infinite 2D media; i.e., when th
strength of the interelectron repulsion relative to the ze
point kinetic energy (RW) exceeds a certain critical value
electrons spontaneously crystallize around particular si
forming geometric molecular structures. At high magne
fields, the formation of Wigner molecules may be thought
as involving a two-step crystallization process:~I! the local-
ization of electrons results from the shrinkage of the orbit
due to the increasing strength of the magnetic field and~II !
then even a weak interelectron Coulomb repulsion is able
arrange the localized electrons according to geometric
lecular structures~thus this process is independent of t
value of RW). It has been found8,10,12 that the molecular
structures at highB coincide with the equilibrium configura
tions atB50 of N classical point charges.41,42

Due to the finite numberN of electrons, however, ther
are two crucial differences between the REM and b
©2003 The American Physical Society26-1
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035326 ~2003!
Wigner crystal. Namely,~I! the crystalline structure is that o
the equilibrium 2D configuration ofN classical point charge
and, thus, consists of nested polygonal rings43 and ~II ! the
Wigner molecules rotate as a whole~collective rotations! in
analogy with the case of 3D natural molecules.

A most striking observation concerning the REM’s is th
their formation and properties have been established with
help of traditional ab initio many-body methods
i.e., exact diagonalization,9–11,16,25,27,38 quantum Monte
Carlo26,29,33,39 ~QMC!, and the systematic controlle
hierarchy8,12,15,17,24,34,35,40of approximations involving the
UHF and subsequent post-Hartree-Fock methods. This
trasts with the case of the CF-JL wave functions, which w
inspired through ‘‘intuition-based guesswork.’’

In spite of its firm foundation in many-body theory, how
ever, the REM picture has not, until recently, successfu
competed with the CF-JL picture; indeed many resea
papers44–51and books18 describe the physics of QD’s in hig
magnetic fields following exclusively notions based
CF-JL functions, as expounded in 1983~see Ref. 1! and de-
veloped in detail in 1995 in Ref. 6 and Ref. 7. We belie
that one of the main obstacles for more frequent use of
REM picture has been the lack of analytic correlated wa
functions associated with this picture. This situation, ho
ever, has changed with the recent explicit derivation of s
REM wave functions.15

The approach used in Ref. 15 for constructing the RE
functions in highB consists of two steps: First the breakin
of the rotational symmetry at the level of the singl
determinantal unrestricted Hartree-Fock approximat
yields states representing electron molecules~or finite crys-
tallites, also referred to as Wigner molecules; see Ref. 24
Ref. 12!. Subsequently the rotation of the electron molec
is described through restoration of the circular symmetry
post Hartree-Fock methods and, in particular, project
techniques.52 Naturally, the restoration of symmetry goes b
yond the single-determinantal mean-field description a
yields multideterminantal wave functions. For QD’s, w
have shown that the method of symmetry restoration is
plicable to both the zero-34,40 and high-15 magnetic-field
cases.

In the zero- and low-field cases, the broken-symme
UHF orbitals need to be determined numerically, and, in
dition, the restoration of the total-spin symmetry needs to
considered for unpolarized and partially polarized cases.
formalism and mathematical details of this procedure aB
50 have been elaborated in Ref. 34~see also Ref. 53 and
Ref. 54! for the restoration of the total spin in the case
quantum dot molecules!.

In the case of high magnetic fields, one can specifica
consider the limit when the confining potential can be n
glected compared to the confinement induced by the m
netic field. Then, assuming a symmetric gauge, the UHF
bitals can be represented15,55 by displaced Gaussian analyt
functions, centered at different positionsZj[Xj1ıYj ac-
cording to the equilibrium configuration ofN classical point
charges41,42 arranged at the vertices of nested regular po
gons~each Gaussian representing a localized electron!. Such
03532
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displaced Gaussians are written as~here and in the following
ı[A21)

u~z,Zj !5~1/Ap!exp@2uz2Zj u2/2#exp@2ı~xYj2yXj !#,
~1!

where the phase factor is due to the gauge invariance.z[x
1ıy ~see Ref. 56!, and all lengths are in dimensionless un
of l BA2 with the magnetic length beingl B5A\c/eB.

In Ref. 15, we used these analytic orbitals to first co
struct the broken-symmetry UHF determinantCN

UHF and then
proceeded to derive analytic expressions for the many-b
REM wave functions by applying ontoCN

UHF an appropriate
projection operator15 OL that restores the circular symmetr
and generatescorrelated57 wave functions with good tota
angular momentumL. These REM wave functions can b
easily written down15 in second-quantized form for any clas
sical polygonal ring arrangement (n1 ,n2 , . . . ) by following
certain simple rules for determining the coefficients of t
determinants, D( l 1 ,l 2 , . . . ,l N)[det@z1

l 1 ,z2
l 2 , . . . ,zN

l N#,
where thel j ’s denote the angular momenta of the individu
electrons. Since we will focus here on the case ofN56 and
N53 electrons, we list for completeness the REM functio
associated with the (0,N) and (1,N21) ring arrangements
respectively@here (0,N) denotes a regular polygon withN
vertices, such as an equilateral triangle or a regular hexa
and (1,N21) is a regular polygon withN21 vertices and
one occupied site in its center#,

FL~0,N!5 (
0< l 1, l 2,•••, l N

l 11•••1 l N5L S )
i 51

N

l i ! D 21

3S )
1< i , j <N

sinFpN ~ l i2 l j !G D
3D~ l 1 ,l 2 , . . . ,l N!expS 2(

i 51

N

zizi* /2D , ~2!

with

L5L01Nm, m50,1,2,3, . . . , ~3!

and

FL~1,N21!5 (
1< l 2, l 3,•••, l N

l 21•••1 l N5L S )
i 52

N

l i ! D 21

3S )
2< i , j <N

sinF p

N21
~ l i2 l j !G D

3D~0,l 2 , . . . ,l N!expS 2(
i 51

N

zizi* /2D ,

~4!

with

L5L01~N21!m, m50,1,2,3, . . . , ~5!
6-2
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TWO-DIMENSIONAL QUANTUM DOTS IN HIGH . . . PHYSICAL REVIEW B68, 035326 ~2003!
whereL05N(N21)/2 is the minimum allowed total angula
momentum forN ~polarized! electrons in high magnetic
fields.

Notice that the REM wave functions@Eq. ~2! and Eq.~4!#
vanish identically for values of the total angular momen
outside the specific values given by Eq.~3! and Eq. ~5!,
respectively.

III. OUTLINE OF COMPOSITE-FERMION THEORY

According to the CF picture,6 the many-body wave func
tions in high magnetic fields that describeN electrons in the
disk geometry~case of 2D QD’s! are given by the expressio

FL
CF~N!5PLLL )

1< i , j <N
~zi2zj !

2mCL*
IPM , ~6!

where z5x1ıy and CL*
IPM is the Slater determinant ofN

noninteractingelectrons of total angular momentumL* ; it is
constructed according to the independent particle mo
~IPM! from the Darwin-Fock58 orbitalscp,l(z), wherep and
l are the number of nodes and the angular momentum
spectively@for the values ofp and l in the nth Landau level
in high B, see the paragraph following Eq.~7! below#.

The Jastrow factor in front ofCL*
IPM is introduced to rep-

resent the effect of the interelectron Coulombic interacti
In the CF literature, this assumption is often described
saying that ‘‘the Jastrow factor binds 2m vortices to each
electron ofCL*

IPM to convert it into a composite fermion.’’
The single-particle electronic orbitals in the Slater det

minant CL*
IPM are not restricted to the lowest Landau lev

~LLL !. As a result, it is necessary to apply a projection o
eratorPLLL to guarantee that the CF wave function lies in t
LLL, as appropriate forB→`.

Since the CF wave function is an homogeneous poly
mial in the electronic positionszj ’s, its angular momentumL
is related to the noninteracting total angular momentumL*
as follows:

L5L* 1mN~N21!5L* 12mL0 . ~7!

There is no reason toa priori restrict the Slater determi
nantsCL*

IPM to a certain form, but according to Ref. 6, such
restriction is absolutely necessary in order to derive syst
atic results. Thus following Ref. 6, henceforth, we will r
strict the noninteractingL* to the range2L0<L* <L0, and
we will assume that the Slater determinantsCL*

IPM are the
so-called compact ones. LetNn denote the number of elec
trons in thenth Landau level~LL ! with (n50

t Nn5N; t is the
index of the highest occupied LL and all the lower LL’s wi
n<t are assumed to be occupied. The compact determin
are defined as those in which theNn electrons occupy con
tiguously the single-particle orbitals~of eachnth LL! with
the lowest angular momenta,l 52n,2n11, . . . ,2n1Nn
21 @p1(u l u2 l )/25n#. The compact Slater determinan
are usually denoted as@N0 ,N1 , . . . ,Nt#, and the corre-
sponding total angular momenta are given byL*
5(1/2)(s50

t Ns(Ns22s21).
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Most important for our present study is the fact that t
Jastrow-Laughlin wave functions with angular momentu
L5(2m11)L0 @corresponding to fractional filling factor
n5L0 /L51/(2m11)],

FL
JL~N!5 )

1< i , j <N
~zi2zj !

2m11expS 2 (
k51

N

zkzk* /2D ,

~8!

are a special case of the CF functions forL* 5L0, i.e.,

FL
JL~N!5FL

CF~N;L* 5L0!, L5~2m11!L0 . ~9!

Note that forL* 5L0, all the noninteracting electrons oc
cupy contiguous states in the LLL (n50) with l
50,1, . . . ,N21.

The CF-JL wave functions@Eqs. ~6! and ~8!# are repre-
sented by compact, one-line mathematical expressi
which, however, are not the most convenient for carrying
numerical calculations. Numerical studies of the CF-JL fun
tions usually employ sophisticated Monte Carlo compu
tional techniques. The REM wave functions, on the oth
hand, are by construction expressed in second-quantized~su-
perposition of Slater determinants! form, precisely like the
wave functions from exact diagonalization, a fact that grea
simplifies the numerical work. In the numerical calculatio
involving JL wave functions in this paper, we have circum
vented the need to use Monte Carlo techniques, since
were able to determine the Slater decomposition59 of the JL
states with the help of the symbolic langua
MATHEMATICA .60

We stress again that, unlike the REM functions, the CF
wave functions have not been derived microscopically—i
from the many-body Schro¨dinger equation with interelectron
Coulombic repulsions. Attempts have been made to jus
them a posteriori by pointing out that their overlaps with
exact wave functions are close to unity or that their energ
are close to the exact energies. However, we will show be
that this agreement is limited to rather narrow ranges of
ing factors at 1>n>1/3 or to small electron numbersN; as
soon as one extends the comparisons to a broader rang
n ’s for N>6, as well as to other quantities like electro
densitiess and occupation number distributions, this ag
ment markedly deteriorates.

IV. EXACT DIAGONALIZATION RESULTS
AND COMPARISONS

In the case of high magnetic fields, the Hilbert space
exact diagonalization calculations can be restricted to
LLL and many such calculations have bee
reported2,3,5,9,10,18,44,46,61–64in the past 20 years. However, fo
N>5, such EXD studies have been restricted to angular m
menta corresponding to a rather narrow range of fillings f
tors, 1>n>1/3.

In this paper, we have performed systematic EXD cal
lations in the LLL for N56 electrons covering the muc
broader range of fillings factors 1>n>1/9; such a range
corresponds to angular momenta 15<L<140 ~note that for
n51/3 one hasL545). Of crucial importance for extendin
6-3
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035326 ~2003!
the calculations to such largeL ’s has been our use o
Tsiper’s65 analytic formula for calculating the two-body ma
trix elements of the Coulomb interelectron repulsion; t
formula expresses the matrix elements as finite sums of p
tive terms. Earlier analytic formulas3 suffered from large
cancellation errors due to summations over alternating p
tive and negative terms. At the same time, Tsiper’s formul
computationally faster compared to the slowly converg
series of Ref. 61.

For the solution of the large scale, but sparse, Coulo
eigenvalue problem, we have used theARPACK computer
code.66 For a givenL, the Hilbert space is built out of Slate
determinants,

D~ l 1 ,l 2 , . . . ,l N!expS 2(
i 51

N

zizi* /2D , ~10!

with

l 1, l 2,•••, l N , (
k51

N

l k5L, ~11!

and its dimensions are controlled by the maximum allow
single-particle angular momentuml max, such thatl k< l max,
1<k<N. We have usedl max5lmax

JL 15510(m11) ~see Ref.
59 for the definition ofl max

JL ) for each group of angular mo
mentaL corresponding to the range 1/(2m11)<n,1/(2m
21), m51,2,3,4. For example, forL5105, l max540 and
the dimension of the Hilbert space is 56 115; forL5135,
l max550 and the size of the Hilbert space is 187 597.
varying l max, we have checked that this choice produces w
converged numerical results.

FIG. 1. Total interaction energy from exact diagonalization c
culations as a function of the total angular momentum (10<L
<50) for N56 electrons in high magnetic field. The upwar
pointing arrows indicate the magic angular momenta correspon
to the classically most stable~1,5! polygonal ring arrangement o
the Wigner molecule. The short downwards pointing arrows in
cate successful predictions of the composite-fermion model.
long downward arrow indicates a magic angular momentum
predicted by the CF model. Energies in unitse2/k l B , wherek is the
dielectric constant.
03532
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A. Predictions of magic angular momenta

For N56, Figs. 1–4 display~in four installments! the
total interaction energy from EXD as a function of the to
angular momentumL in the range 19<L<140. ~The total
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FIG. 2. Total interaction energy from exact diagonalization c
culations as a function of the total angular momentum (40<L
<80) for N56 electrons in high magnetic field. The upward
pointing arrows indicate the magic angular momenta correspon
to the classically most stable~1,5! polygonal ring arrangement o
the Wigner molecule. The short downwards pointing arrows in
cate successful predictions of the composite-fermion model.
medium-size downwards pointing arrow indicates a prediction
the CF model that fails to materialize as a magic angular mom
tum. The long downward arrows indicate magic angular mome
not predicted by the CF model. Energies in units ofe2/k l B , where
k is the dielectric constant.

FIG. 3. Total interaction energy from exact diagonalization c
culations as a function of the total angular momentum (70<L
<110) for N56 electrons in high magnetic field. The upward
pointing arrows indicate the magic angular momenta correspon
to the classically most stable~1,5! polygonal ring arrangement o
the Wigner molecule. The short downwards pointing arrows in
cate successful predictions of the composite-fermion model.
medium-size downwards pointing arrows indicate predictions of
CF model that fail to materialize as magic angular momenta. T
long downward arrows indicate magic angular momenta not p
dicted by the CF model. Energies in units ofe2/k l B , wherek is the
dielectric constant.
6-4
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TWO-DIMENSIONAL QUANTUM DOTS IN HIGH . . . PHYSICAL REVIEW B68, 035326 ~2003!
kinetic energy, being a constant, can be disregarded.! One
can immediately observe the appearance of downward cu
implying states of enhanced stability, at certain ‘‘magic a
gular momenta.’’

For the CF theory, the magic angular momenta can
determined by Eq.~7!, if one knows the noninteractingL* ’s;
the CF magicL ’s in any interval 1/(2m21)>n>1/(2m
11) @15(2m21)<L<15(2m11)#, m51,2,3,4, . . . , can
be found by adding 2mL0530m units of angular momentum
to each of theL* ’s. To obtain the noninteractingL* ’s, one
needs first to construct6,9 the compact Slater determinant
The compact determinants and the corresponding nonin
actingL* ’s are listed in Table I.

There are nine different values ofL* ’s, and thus the CF
theory for N56 predicts that there are always nine mag
numbers in any interval 15(2m21)<L<15(2m11) be-
tween two consecutive JL angular momenta 15(2m21) and
15(2m11), m51,2,3, . . . ~henceforth we will denote this
interval asIm). For example, using Table I and Eq.~7!, the
CF magic numbers in the interval 15<L<45 (m51) are
found to be the following nine:67

15, 21, 25, 27, 30, 33, 35, 39, 45. ~12!

On the other hand, in the interval 105<L<135 (m54), the
CF theory predicts the following set of nine magic numbe

105, 111, 115, 117, 120, 123, 125, 129, 135.~13!

An inspection of the total-energy–vs–L plots in Figs. 1–4
reveals that the CF prediction badly misses the actual m
angular momenta specified by the EXD calculations as th
associated with the downward cusps. Indeed it is imme

FIG. 4. Total interaction energy from exact diagonalization c
culations as a function of the total angular momentum (100<L
<140) for N56 electrons in high magnetic field. The upwar
pointing arrows indicate the magic angular momenta correspon
to the classically most stable~1,5! polygonal ring arrangement o
the Wigner molecule. The short downwards pointing arrows in
cate successful predictions of the composite-fermion model.
medium-size downwards pointing arrows indicate predictions of
CF model that fail to materialize as magic angular momenta.
long downward arrows indicate magic angular momenta not p
dicted by the CF model. Energies in units ofe2/k l B , wherek is the
dielectric constant.
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ately apparent that the number of downward cusps in
interval Im is always different from 9. Indeed, there are 1
cusps inI1 ~including that atL515, not shown in Fig. 1!, 10
in I2 ~see Fig. 2!, 7 in I3 ~see Fig. 3!, and 7 inI4 ~see Fig.
4!. In detail, the CF theory fails in the following two aspect
~I! There are exact magic numbers that are consistently m
ing from the CF prediction in every interval; with the exce
tion of the lowest L520, these exact magic numbers
~marked by a long downward arrow in the figures! are given
by L510(3m21) and L510(3m11), m51,2,3,4, . . . ;
~II ! there are CF magic numbers that do not correspond
downward cusps in the EXD calculations~marked by
medium-size downward arrows in the figures!. This happens
because cusps associated withL ’s whose difference fromL0
is divisible by 6~but not simultaneously by 5! progressively
weaken and completely disappear in the intervalsIm with
m>3; only cusps with the differenceL2L0 divisible by 5
survive. On the other hand, the CF model predicts the
pearance of four magic numbers withL2L0 divisible solely
by 6 in every intervalIm , at L530m79 and 30m73, m
51,2,3, . . . . Theoverall extent of the inadequacy of the C
model can be appreciated better by the fact that there are
false predictions~long and medium-size downward arrow!
in every intervalIm with m>3, compared to only five cor-
rect ones~small downward arrows; see Fig. 3 and Fig. 4!.

In contrast to the CF model, the magic angular mome
in the REM theory are associated with the polygonal ri
configurations ofN classical point charges. This is due to th
fact that the enhanced stability of the downward cusps res
from the coherent collective rotation of the regular-polyg
REM structures. Due to symmetry requirements, such col
tive rotation can take place only at magic-angular-mome
values. The in-between angular momenta require the exc
tion of additional degrees of freedom~like the center of mass
and/or vibrational modes!, which raises the total energy wit
respect to the values associated with the magic ang
momenta.

For N56, the lowest in energy ring configuration is th
~1,5!, while there exists a~0,6! isomer41,42 with higher en-

-

g

-
e
e
e
-

TABLE I. Compact noninteracting Slater determinants and
sociated angular momentaL* for N56 electrons according to the
CF presciption. BothL* 523 andL* 53 are associated with two
compact states each, the one with lowest energy being the prefe
one.

Compact state L*

@1,1,1,1,1,1# 215
@2,1,1,1,1# 29
@2,2,1,1# 25
@3,1,1,1# 23
@2,2,2# 23
@3,2,1# 0
@4,1,1# 3
@3,3# 3
@4,2# 5
@5,1# 9
@6# 15
6-5
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035326 ~2003!
ergy. As a result, our EXD calculations~as well as earlier
ones9,11,13 for lower angular momentaL<70) have found
that there exist two sequences of magic angular momen
primary one (Sp) with L51515m @see Eq.~5!#, associated
with the most stable~1,5! classical molecular configuration
and asecondaryone (Ss) with L51516m @see Eq.~3!#,
associated with the metastable (0,6) ring arrangement.
thermore, our calculations~see also Refs. 11 and 13! show
that the secondary sequenceSs contributes only in a narrow
range of the lowest angular momenta; in the region of hig
angular momenta, the primary sequenceSp is the only one
that survives and the magic numbers exhibit a period of
units of angular momentum. It is interesting to note that
initial competition between the primary and secondary
quences, and the subsequent prevalence of the primary
has been seen in other sizes as well:11 i.e., N55,7,8. Fur-
thermore, this competition is reflected in the field-induc
molecular phase transitions associated with brok
symmetry UHF solutions in a parabolic QD. Indeed, Ref.
demonstrated recently that, as a function of increasingB, the
UHF solutions forN56 first depict the transformation of th
maximum-density droplet68 into the~0,6! molecular configu-
ration; then~at higherB) the ~1,5! configuration replaces th
~0,6! structure as the one having the lower HF energy.69

The extensive comparisons in this subsection lead in
tably to the conclusion that the CF model cannot explain
systematic trends exhibited by the magic angular moment
2D QD’s in high magnetic fields. These trends, howev
were shown to be a natural consequence of the formatio
REM’s and their metastable isomers.

B. Radial electron densities

We turn now our attention to a comparison of the rad
electron densities~ED’s!. Figure 5 displays the correspond
ing ED’s from EXD, REM, and CF-JL wave functions a
three representative total angular momenta: i.e.,L575 (n
51/5), 105 (1/7), and 135 (1/9).

An inspection of Fig. 5 immediately reveals that~I! the
EXD radial ED’s~solid lines! exhibit a prominent oscillation
corresponding to the (1,5) molecular structure~averaged
over the azimuthal angles! ~indeed the integral of the exac
ED’s from the origin to the minimum point between the tw
humps is practically equal to unity!; ~II ! there is very good
agreement between the REM~dashed lines! and exact ED’s;
this agreement improves with higher angular momentu
and~III ! the JL ED’s~dotted lines! miss the oscillation of the
exact ED in all three cases in a substantial way.

The inability of the radial ED’s calculated with the J
functions to capture the oscillations exhibited by the ex
ones was also seen recently for then51/3 case and for al
electron numbersN56,7,8,9,10,11,12 in Ref. 62~see in par-
ticular Fig. 1 therein!. We further note that the oscillations o
the exact ED’s in that figure correspond fully to the classi
molecular ring arrangements listed in Ref. 41—e.g., to~1,7!
for N58 and to ~3,9! for N512—in agreement with ou
rotating-electron-molecule interpretation.
03532
: a

r-

r

e
e
-
ne,

d
-

7

i-
e
in
r,
of

l

;

t

l

C. Distribution of occupation numbers

In this subsection, we address the behavior of
occupation-number distributionn( l )5^Fual

†al uF& as a
function of the single-particle angular momentuml, where
the creation and annihilation operators refer to the sing
electron statesc0,l(z) in the LLL. For N56, Fig. 6 displays
the n( l )’s from all three families of wave functions—i.e
EXD ~solid circles!, REM ~open circles!, and JL~crosses!—
and for the three representative angular momentaL575 (n
51/5), 105 (1/7), and 135 (1/9).

Again, an inspection of Fig. 6 immediately reveals that~I!
the EXD occupation numbers exhibit a prominent oscillati
corresponding to the (1,5) molecular structure~indeed the
sum of the exactn( l )’s from l 50 to the minimum point
between the two humps is practically equal to unity!; ~II !
there is very good agreement between the REM and e
occupation numbers; this agreement improves with hig
angular momentum; and~III ! for all three cases, the JL oc
cupation numbers exhibit a systematically different trend a
they are not able to capture the oscillatory behavior of
EXD occupation numbers.

We further note that a substantial discrepancy between
and EXD occupation numbers was also noted in Ref. 64
the case ofN57 electrons andn51/3 (L563).

FIG. 5. Radial electron densities forN56 electrons in high
magnetic field. Solid line: densities from exact diagonalizatio
Dashed line: densities from REM wave functions. Dotted line: d
sities from Jastrow-Laughlin wave functions.
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The systematic deviations between the JL and EXD E
and occupation numbers inevitably point to the conclus
that these two families of wave functions represent very
ferent many-body physical problems. Indeed, the JL fu
tions have been found22 to be exact solutions for a speci
class ofshort-rangetwo-body forces, while the EXD func
tions faithfully reflect thelong-range character of the Cou
lombic interelectron repulsion. On the other hand, as d
cussed in Ref. 15, the REM wave functions, derived throu
a traditional many-body approach, are able to capture
correlations arising from the long-range character of
Coulomb force; the oscillatory behavior of the EXD an
REM ED’s and occupation numbers~associated with forma
tion of Wigner molecules! constitutes a prominent and un
mistaken signature of such Coulombic correlations.

D. Comparison of overlaps and total energies

We turn now our attention to the overlaps of the REM a
JL wave functions with those obtained through exact dia
nalization. We start by listing in Table II the overlaps for th
simpler case ofN53 electrons in high magnetic fields. On
sees immediately that these overlaps are all very clos

FIG. 6. Distribution of occupation numbers as a function
single-particle angular momentuml for N56 electrons in high
magnetic field. Solid circles: occupation numbers from exact dia
nalization. Open circles: occupation numbers from REM wa
functions. Crosses: occupation numbers from Jastrow-Laug
wave functions.
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unity (>0.99) for both the REM and JL cases and for ev
rather high angular momenta@e.g.,L539 (n51/13)].

Ever since they were calculated by Laughlin in his orig
nal paper,1 the JL overlaps forN53 electrons have exercise
a great influence in the literature of the fractional quant
Hall effect. Indeed, in a rather sweeping generalization
any N andL ~note that Ref. 62 has indeed found that the
overlaps forn51/3 remain very close to unity for all case
with 5<N<12), the close-to-unity values of the JL overla
have been presumed to provide ‘‘proof’’ that the CF-JL fun
tions approximate very well the corresponding exact ma
body wave functions; as we have already shown earlier,
presumption is highly questionable.

We have calculated the overlaps forN56 electrons and
for the three representative higher-angular-momentum va
L575 (n51/5), 105 (1/7), and 135 (1/9); the results a
listed in Table III for both the REM and JL wave function
A most remarkable feature of the results in Table III is th
the extraordinary, higher than 0.99 values~familiar from
Laughlin’ s paper1! are totally absent. Instead, the JL ove
laps rapidly deteriorate for higherL ’s ~lower n ’s!, and for
n51/9 they have attained values below 0.67. In contrast,
REM overlaps remain above 0.80 and slowly approach un
asL increases.

From our results forn<1/5 and the results of Ref. 62 fo
n51/3, it is apparent that the overlaps alone are not a r
able index for assessing the agreement or disagreemen
tween trial and exact wave functions. For example, forN
56 and L575 (n51/5), Table III shows that the JL an
REM overlaps are close to each other~0.837 vs 0.817!. How-
ever, as earlier analyses based on the electron densities

f

-
e
in

TABLE II. Case of N53 electrons in high magnetic fileds
Overlaps, ^FLuFL

EX&/(^FLuFL&^FL
EXuFL

EX&)1/2, of REM’s (F ’s!
and JL functions (F ’s! with the corresponding exact eigenstat
(FEX’s! for various values of the angular momentaL (n are the
corresponding fractional filling factors!. Recall that the angular mo
menta for the JL functions areLJL5N(N21)(2m11)/2, with m
50,1,2,3, . . . . The JLoverlaps are from Ref. 1.

L(n) JL REM

9~1/3! 0.999 46 0.983 47
15~1/5! 0.994 68 0.994 73
21~1/7! 0.994 76 0.996 74
27~1/9! 0.995 73 0.997 58
33~1/11! 0.996 52 0.998 07
39~1/13! 0.997 08 0.998 39

TABLE III. Overlaps of JL and REM wave functions with th
exact ones forN56 electrons and various angular momentaL (n
are the corresponding fractional filling factors!.

L(n) JL REM

75~1/5! 0.837 0.817
105~1/7! 0.710 0.850
135~1/9! 0.665 0.860
6-7
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occupation numbers show, the JL wave function is no
good approximation to the exact one; in contrast, the R
wave function offers a much better description.

In addition to the overlaps, earlier studies~see, e.g., Ref.
44! have also relied on the total energies for assessing
agreement, or not, between CF and exact wave functions
thus list in Table IV the total energies forN56 and for the
three representative higher-angular-momentum valuesL
575 (n51/5), 105 (1/7), and 135 (1/9). It is seen that bo
the JL and REM total energies exhibit very small relati
errors compared to the corresponding EXD ones in all th
instances, a fact that indicates that, by themselves, the
energies70 are an even less reliable index compared to
overlaps. In particular, note that forN56 andL5135, the
JL and exact total energies differ only in the third decim
point, while at the same time the JL overlap is only 0.6
~see Table III!.

E. Exponents of the current-voltage power law

Another quantity of theoretical and experimental inter
is the ratio

a5
n~ l max

JL 21!

n~ l max
JL !

~14!

of the corresponding occupation numbers atl max
JL 21 and

l max
JL . The interest in this ratio is due to the following tw

facts:~I! the value ofa for the JL function at different frac-
tional fillings has a particular analytic value;71–73 i.e., it is
given byaJL(n)51/n52m11, m51,2,3,4, . . . ; and~II ! a
happens to enter as the exponent72,73 of the voltage in the
current-voltage lawI}Va for external electron tunneling into
an edge of a fractional quantum Hall system. Recent inv
tigations have found that both the experimental74 and
computed73 EXD value ofa at n51/3 deviates from the JL
prediction of 3, being in all instances somewhat smaller~i.e.,
;2.7).

Table V displays the values ofa for N56 and for the JL,
REM, and EXD wave functions at various values of the to
angular momentumL. We have checked that our numeric

TABLE IV. Total interaction energies of JL, REM, and exa
diagonalization wave functions forN56 electrons and various an
gular momentaL (n are the corresponding fractional filling factors!.
The percentages within parentheses indicate relative errors. R
that the angular momenta for the JL functions areLJL5N(N21)
(2m11)/2, m50,1,2,3, . . . . Energies in units ofe2/k l B , wherek
is the dielectric constant.

L(n) JL REM Exact

75~1/5! 2.2093~0.32%! 2.2207~0.85%! 2.2018
85~3/17! 2.0785~0.65%! 2.0651
95~3/19! 1.9614~0.55%! 1.9506
105~1/7! 1.8618~0.46%! 1.8622~0.48%! 1.8533
115~3/23! 1.7767~0.45%! 1.7692
125~3/25! 1.7020~0.38%! 1.6956
135~1/9! 1.6387~0.50%! 1.6361~0.34%! 1.6305
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values foraJL ~derived by dividing the propernJL’s; see Fig.
6! are equal to 2m11 within numerical accuracy. As see
from Table V, a most striking weakness of the JL functions
that the correspondingaJL’s diverge asL→`, a behavior
which contrasts sharply with the EXD values that remain
all times finite and somewhat smaller than 3. Such a dram
difference in behavior should be possible to be chec
experimentally. Furthermore, we note that the REM valu
although somewhat smaller, are close to the EXD ones
remain bounded asL→`.

We conclude that this dramatic qualitative and quant
tive weakness of the JL functions is due to their being ex
solutions of a family of short-range interparticle forces.22 On
the other hand, as we have stressed earlier in this paper
in Ref. 15, the REM functions are able to capture the ess
tial effects of the correlations associated with the long-ran
Coulomb force; thus, in agreement with the EXD results,
REM a values remain finite asL→`.

V. SUMMARY

Exact diagonalization results for the lowest rotation
band of a circular QD withN56 electrons in strong mag
netic fields were reported75 in the range of high angular mo
menta, 70<L<140 ~covering the corresponding range
fractional filling factors, 1/5>n>1/9). These EXD results
were used in a thorough assessment of the ab
of the composite-fermion4–Jastrow-Laughlin1 and rotating-
electron-molecule15 trial wave functions to approximate th
exact wave functions in the case of 2D QD’s.

A detailed comparison~addressing five properties: i.e
prediction of magic angular momenta, radial electron den
ties, occupation number distributions, overlaps and total
ergies, and exponents of current-voltage power law! shows
that the REM many-body wave functions provide a descr
tion that is superior to that obtained through the CF-JL on
An important finding is that ‘‘global’’ quantities~like over-
laps and total energies! are not particularly reliable indice
for comparing exact and trial wave functions; a reliable d
cision on the agreement, or lack of it, between exact and
wave functions should include detailed comparisons of qu
tities like radial electron densities and/or occupation num
distributions.

We finally note that the CF-JL wave functions have be
most useful for the modeling of the bulk fractional quantu
Hall effect. However, theoretical investigations concerni

all

TABLE V. Values of the ratioa @Eq. ~14!# for JL, REM, and
exact diagonalization wave functions forN56 electrons and vari-
ous angular momentaL; n ~given in parentheses! are the corre-
sponding fractional filling factors. Recall that the angular mome
for the JL functions are LJL5N(N21)(2m11)/2, m
50,1,2,3, . . . .

L(n) JL REM Exact

75~1/5! 5.000 1.964 2.877
105~1/7! 7.000 1.972 2.708
135~1/9! 9.000 1.978 2.726
6-8



n

r
-J
th

a
i

lk
pe
e

al-
nge
ra-

e
ce

ing

.e

ev

s.

y

s.

L.

R

E

he
w

thi

ys.

tt.

r,

s
n-
ns

ys.

TWO-DIMENSIONAL QUANTUM DOTS IN HIGH . . . PHYSICAL REVIEW B68, 035326 ~2003!
the bulk system have unavoidably, due to computatio
limitations, relied on finite-size systems to assess thevalidity
of the CF-JL wave functions. Thus it is natural to conjectu
that the unexpected finding of this paper—i.e., that the CF
functions exhibit remarkable weaknesses in reproducing
exact wave functions of QD’s in highB—may have ramifi-
cations for our present understanding of the fractional qu
tum Hall effect itself. Investigations of such probable ram
fications and related questions concerning the domain
validity of the REM and CF-JL wave functions in the bu
will be addressed in future publications. In the present pa
we focused on the case of QD’s, which constitute a theor
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lying cause for the disagreement between the exact and C
wave functions. As we have pointed out in this paper previou
~see Sec. IV E and also Ref. 15!, this disagreement arises from
the fact that the CF-JL functions do not capture the long-ra
character of the Coulomb interelectron repulsion. On the c
trary the REM wave functions are able to capture the long-ra
Coulombic correlations and thus are in better agreement with
wave functions from exact diagonalization.
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