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Group theoretical analysis of symmetry breaking in two-dimensional quantum dots
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We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron
densities in the case of a two-dimensiomdelectron single quantum ddtith and without an external
magnetic fieldl. The breaking of rotational symmetry results in canonical orbitals(thadre associated with
the eigenvectors of a kel Hamiltonian having sites at the positions determined by the equilibrium molecular
configuration of the classicil-electron problem an¢R) transform according to the irreducible representations
of the point group specified by the discrete symmetries of this classical molecular configuration. Through
restoration of the total-spin and rotational symmetries via post-Hartree-Fock projection techniques, we show
that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appear-
ance of magic angular momeng@miliar from exact-diagonalization studjeis the excitation spectra of the
guantum dot. Furthermore, this two-step symmetry-breaking and symmetry-restoration method accurately de-
scribes the energy spectra associated with the magic angular momenta.

DOI: 10.1103/PhysRevB.68.035325 PACS nuniber73.21.La

I. INTRODUCTION more, it was notetthat the symmetry breaking should be
accompanied by the emergence of a spectrum of collective
rovibrational excitationgfinite-size analogs of the Goldstone
modes. A subsequent investigatibhbased on exact solu-
Two-dimensional(2D) quantum dots(QD’s) created at tions for a helium QD(2e QD confirmed these results and
semiconductor interfaces with refined control of their size,provided a systematic study of the molecular rovibrational
shape, and number of electrons are often reférfeth as  collective spectra and their transition to independent particle
“artificial atoms.” For high magnetic fieldsg), it has been excitations, as the rigidity of the WM was reduced through
known for some time(ever since the pioneering warlof ~ variation of the controlling paramet&y .
Laughlin in 1983 concerning the fractional quantum Hall ~We remark here that the lower-energy BS UHF solutions
effech that 2D few-electron systems exhibit complex already capturé part of the correlation energy, compared to
strongly correlated many-body physics. Nevertheless, fothe restricted HRRHF) ones. Improved numerical accuracy
low magnetic fields, the term artificial atoms was used ini-has been achieved in subsequent stddieéthrough the res-
tially to suggest that the physics of electrons in such mantoration of the broken symmetries via projection techniques.
made nanostructures is exclusively related to that underlyin§onsequently, the methodology of symmetry breaking at the
the traditional descriptidhof natural atomgpertaining par- UHF mean-field level and of subsequent symmetry restora-
ticularly to electronic shells and the Aufbau principlehere  tion via post Hartree-Fock methodsprovides a systematic
the electrons are takémo be moving in a spherically aver- controlled hierarchy of approximations toward the exact so-
aged effective central mean field. This traditional picture wagution, with anticipated advantages for complex many elec-
given support by experimental studiéson vertical QD's,  tron systemsunder field-free conditiors and in the pres-
which were followed by a series of sophisticated theoretical ence of a magnetic fieli'), whose treatment is
investigations yielding results conforming to it. computationally prohibitive with other methods.g., exact
However, in 1999, the circulaffor 2D QD’s) central-  diagonalization
mean-field picture was challenged by the discovery of solu-
tions with brokerspacesymmetry in the context of spin-and-
space unrestricted Hartree-FocksS-UHB mean-field
calculations”'® These broken-symmetr§BS) solutions ap-
pear spontaneouslydue to a phase transitiprwhen the The mean-field approach has been a useful tool in eluci-
strength of the interelectron repulsion relative to the zerodating the physics of small fermionic systems, from natural
point kinetic energy Ry,) exceeds a certain critical value. atoms and atomic nuclei to metallic nanoclusters and, most
They indicate the formation of Wignejor electron mol-  recently, of two-dimensional quantum dots. Of particular in-
ecules(WM'’s or EM’s) with the electrons located at the ver- terest for motivating the present worfdue to spatial-
tices of nested regular polygofsften referred to as concen- symmetry-breaking aspegtsas been the mean-field descrip-
tric rings), familiar from studies of classical point tion of deformed nuclei and metal clustefgxhibiting
charges'? Such molecules were characterized by us awllipsoidal shapes At a first level, deformation effects in
strong or weak Wigner crystallites depending on their rigid-these systems can be investigated via semiempirical mean-
ity or lack thereofii.e., floppiness suggesting the existence field models, like the particle-rotor mod@lof Bohr and
of additional® “phase transitions” as a function of the pa- Mottelson (nucle), the anisotropic-harmonic-oscillator
rameterRy, (see Sec. II B for its precise definitiprFurther-  model of Nilsson(nucle?® and metal clustefd), and the

A. Background of the mean-field breaking of spatial
symmetries in quantum dots

B. Background of the mean-field breaking of symmetries in
other finite-size fermionic systems
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shell-correction method of Strutinskfnucle??> and metal LCAO behavior of the UHF orbitals with the same spin di-
clusteré®?%. At the microscopic level, the mean field is often rection allows for a more precise understanding of the term
describe@?®via the self-consistent single-determinantal HF “electron localization” used by us in previous publications.
theory. At this level, however, the description of deformationAn important conclusion of the present paper is that the BS
effects mentioned above requife$’ consideration of unre- UHF orbitals are not necessarily unique; what matters, in
stricted Hartree-Fock wave functions that break explicitly theanalogy with the LCAO-MO’s of natural molecules, is that
rotational symmetries of the original many-body Hamil- they transform according to the irreducible representations of
tonian, but yield HF determinants with lower energy com-the point group specified by the discrete symmetries of the

pared to the symmetry-adapted restricted Hartree-Fock solfassical equilibrium configuraticft, . .
tions. Our study leads to the following two main results: in

In earlier publication e have shown that. in the analogy with 3D natural molecules, the WM'’s can rotate and

. X - the restoration of the total-spin and rotational symmetries via
strongly correlated regime, UHF solutions violating the rota projection techniques describes their lowest rotational bands

tional (circular) symmetry arise most naturally in the case of (yrast bandd*3% in addition to the ground state artid) the

2D smgle .QDBS an.d for both the cases of Zero and hlghowering of the symmetry, which results in tHeiscrete
magnetic field” Unlike the case of atomic nuclei, however, point-group symmetry of the UHF wave function, underlies
where symmetry breaking is associated with quadrupole dene appearance of the sequences of magic angular momenta
formations, spontaneous symmetry breaking in 2D QD's '”'gamiliar from exact-diagonalization studis*9 in the ex-
duces electron localization associated with the formation ofitation spectra of single QD’s. Since exact-diagonalization
WM's. methods are typically restricted to small sizes whtke 10,

The violation in the mean-field approximation of the sym-the present two-step method of breakage and subsequent res-
metries of the original many-body Hamiltonian appears to beoration of symmetries offers a promising new avenue for
paradoxical at a first glance. However, for the specific caseaccurately describing larger 2D electronic systems. A con-
arising in nuclear physics and quantum chemistry, two theoerete example of the potential of this approach is provided by
retical developments have resolved this paradox. They arBef. 16 and Ref. 17, where our use of the the symmetry-
(1) the theory of restoration of broken symmetries via pro-breaking and symmetry-restoration method yielded analytic
jection techniqués® and (2) the group theoretical analysis expressions for correlated wave functions that offer a better
of symmetry-broken HF orbitals and solutions in chemicaldescription of theN-electron problem in high magnetic fields
reactions initiated by Fukutori&,who used of course the compared to the Jastrow-Laughliexpression. _
symmetry groups associated with the natural 3D molecules. Since the group theoretical aspects of symmetry breaking
Despite the different fields, the general principles establisheg! the mean-field levetand their relation to the properties of
in these earlier theoretical developments have provided '€ €xact solutionsremain a vastly unexplored territory in
wellspring of assistance in our investigations of symmetryt e area of condensed-matter finite-size systems, in the fol-
breaking in QD's. In particular, the restoration of broken OWing we will present an introductory investigation of them
circular symmetry in the case of single QD's has alread)}hrough a series of rather simple, but nontrivial, illustrative

; . a5 1732 examples from the field of 2D parabolic QD’s. The plan of
been demonstrated by us in three recent publicafiorié: the paper is as follows: Section Il reviews briefly the set of

UHF equations employed by us; Secs. Il and IV present the
case of three electrons in the absence and in the presence of
an external magnetic fiel, respectively. The more compli-

In the present paper, we will provide an in-depth groupcated case of six electronsBit=0 is investigated in Sec. V,
theoretical analysis of broken-symmetry UHF orbitals andwhile Sec. VI discusses the companion step of the restoration
electron densitieED’s) in the case of single parabolic Of broken symmetries, which underlies the appearance of
QD’s. We will show that such an analysis provides furthermagic angular momenta in the exact spectra. Finally, Sec.
support for our earlier interpretation concerning the spontaV!l presents a summary. . _
neous formation of collectively rotating electréor Wignej Before leaving the Introduction, we wish to stress that
molecules REM's). Indeed we will demonstrate deep analo- 2halogs of several of the group theoretical concepts and ma-
gies between the electronic structure of the WM and that Ofnpulano_ns employed in th.'s paper can be found in textbooks
the natural 3D molecules. In particular, we will show that thetONCceming standard appllcathns of symmetry groups to the
breaking of rotational symmetry results in canonical UHFﬁlsgmﬂgwsg\r,léftu\sveea\%ngémtsﬁgsgf;Ee?\,%fgéal\,vﬂﬁfﬁgﬁ'
(r)r:gllteacllsjIatrk-]f;/tpearH?ukZTﬁ)acrlr?itlfgni;vr:tua\t/i?r?g ?;gtlga\i/g?;ﬁress e?tf %rqup theoretical aspects to 9qudate the mqlecular interpre-

he . N . . tation of the BS UHF determinantand associated orbitals
positions specified by the equilibrium configuration of the

. . o in the unexpected context of a newly arising area of physics:
classicalN-electron problem; these “atomic” sites are local-

oI ) ) namely, the physics of strong correlations in 2D circular ar-
ization sites for the electrons, and they do not imply theficig atoms(QD’s).

presence of a positive nucleus. Thus, in contrast to the fully

delocalized and symmetry-adapted, independent-particle- Il. UHF EQUATIONS
model-type orbitals of the RHF, the BS UHF orbitals with
the same spin directionesemble closely the molecular orbit-
als (MO’s) formed by linear combinations of atomic orbitals ~ The UHF equations we are using are the Pople-Né&sbet
(LCAO's), which are prevaleftin chemistry(Naturally, the  equations described in detail in Chap. 3.8 of Ref. 26. For

§210’15_17W

C. Content of this paper

A. Pople-Nesbet equations

035325-2



GROUP THEORETICAL ANALYSIS OF SYMMETRY . .. PHYSICAL REVIEW B58, 035325(2003

completeness, we present here a brief description of themyhereH ,, are the elements of the single-electron Hamil-

along with details of their computational implementation bytonian with an external magnetic fieBland an appropriate

us to the 2D case of semiconductor QD’s. potential confinement, and the Coulomb repulsion is ex-
The key point is that electrons af (up) spin are de- pressed via the two-electron integrals

scribed by one set of spatial orbita{gfﬁj =1,2,...K},

while electrons of3 (down) spin are described by a different (polvr)

set of spatial orbitals{zpﬂj =1,2,...K} (of course in the e2 1
RHF = y’= ;). Next, one introduces a set of basis func- Z?f dfldf2¢2(r1)¢§(r2)m%(fl)%(fz),
tions{e,|u=1,2, ... K} (constructed to berthonormalin
our 2D casp and expands the UHF orbitals as 9
K with « being the dielectric constant of the semiconductor
wiaz,gl Cle,, i=12,...K, (1) :‘T:rtr?riatlcln (K)f course, the Greek indicgs v, A, ando run

For a QD, the external confinement is assumed to be para-

s K s . bolic, and the single-particle Hamiltonian in a perpendicular
i :;l Chi¢n, 1=12,... K. (2)  external magnetic fiel® is written as
_ 2 *
. The UHF equations are a system of two coupled matrix H= erEm* wg(xz+y2)+w3.s_ (10)
eigenvalue problems 2m* 2 h
FeCe=CE®, 3) The vector potentiah is given in the symmetric gauge by
1 1
FACP=CPEP, (4) A(r)=5Bxr=>(-By,Bx0), (12)

whereF*(#) are the Fock-operator matrices aBéf?) are the

vectors formed with the coefficients in the expansi¢hs and the last term in Eq10) is the Zeeman interaction with

and(2). The matrice€“® arediagonal and as a result Eqs. 9* Peing the effective factor, ug the Bohr magneton, arsi

(3) and (4) are canonical(standardl Notice that noncanoni- the spin of an |n.d|V|duaI electrorm™ is the effective elec- _
cal forms of HF equations are also possitdee Chap. 3.2.2 {ron mass ana is the frequency parameter of the parabolic
of Ref. 26. Since the self-consistent iterative solution of the Potential confinement. _ ,

HF equations can be computationally implemented only in The system of the two coupled UHF matrix equatié8ps
their canonical form, heretofore canonical orbitals and solu@"d(4) is solved self-consistently through iteration cycies.
tions will always be implied, unless otherwise noted explic-FOr obtaining the numerical solutions, we have used a set of
itly. We note that the coupling between the two UHF equa-K=78 basis stateg;’s that are chosen to be the product
tions (3) and(4) is given explicitly in the expressions for the Wave functions formed out from the eigenstates of the one-

elements of the Fock matrices belggs. (7) and (8)]. dimensional harmonic oscillators along thandy axes. This
Introducing the density matricé(8) for a(B) electrons basis is often referred to as “Real Cartesian harmonic oscil-

lator basis.” Note that the valu€ =78 corresponds to all the

N states of the associated 2D harmonic oscillator up to and
PZV:E Co(Co)* (5) including the 12_th major shell. _ .
a Having obtained the self-consistent solution, the total

UHF energy is calculated as

NAB
P8 =2 Ch.(CE)*, 6 1 « ¢ o
™2 ClalCla) O B S S Py PEH,,+ PLFL 4 PEFL ]
ys v
whereN“+NP=N, the elements of the Fock-operator ma- (12

trices are given by
B. Solutions representing Wigner molecules

FzV:HWJFE > PE (o vN) = (oA v)] As a typical example of a solution that can be extracted
Ao from the above UHF equations, we mention the casél of
=19 electrons foriwg=5 meV,Ry=5 (k=3.8191), and
+2 E Pfg(,ua|v7\), (7) B=0. The Wigner parametdRy=Q/A wy, WhereQ is the
Ao Coulomb interaction strength; Q=e?/«l,, with I,
= (h/m* wy) Y2 being the spatial extent of the lowest single-
FA =H,,+ ps olvN) = (wolh v electron wave function in the parabolic confinement.
pyo ok ; ; Kol (polvh) =(rofAv)] Figure 1 displays the total electron density of the BS UHF
solution for these parameters, which exhibits breaking of the
+ PE (nalvh), 8 rotational symmetry. In accordance with ED’s for smaller dot
; ; Kolpalvh) ® sizes published by us earliet® the ED in Fig. 1 is highly
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FIG. 1. UHF electron density in a parabolic QD fdr=19 and
S,=19/2, exhibiting breaking of the circular symmetry R},=5
and B=0. The choice of the remaining parameters i
=5 meV andm* =0.067m, . Distancegalong the horizontax and
y axes are in nanometers and the electron dengtpng the verti-
cal axi9 in 1074 nm2.

suggestive of the formation of a Wigner molecule, with an
(1,6,12 ring structure in the present case. This polygonal
ring structure agrees with the classical thand is suffi-
ciently complex to instill confidence that the Wigner-
molecule interpretation is valid. The following question,
however, arises naturally at this point: is such a molecular
interpretation limited to the intuition provided by the land-
scapes of the total ED’s, or are there deeper analogies Witge
the electronic structure of natural 3D molecules? The answef ..o, density exhibiting circular symmetis) The spin density

to the_ second part of th'_s question Is In the pQSItlve, and th%xhibiting azimuthal modulatiofnote the 12 humps whose number
remainder of this paper is devoted to discovering such analqg smajier than the number of electranghe choice of the remain-
gies. However, since thé= 19 case represents a rather Com-ing parameters i% w,=5 meV andm* =0.067m, . Distances are
plicated group theoretical structure, for simplicity and trans-in nanometers and the electron and spin densities irf hén 2.
parency, we will study in the following smaller QD sizes.

This, however, will not result in any loss of generality in our spin density wave$SDW’s). The SDW's are unrelated to
conclusions. electron localization and thus are quite distinct from the
In previous publication$;° we found thatspacesymme-  WM's; in single QD's, they were obtain&dearlier within

try breaking in the UHF equations appears spontaneously fafhe framework of spin density functional thedfyTo empha-
Rw>1. Below we choose to work with larger valuesRyj,  size the different nature of SDW’s and WM'’s, we present in
(e.g., 10 or higher for which the effects of strong correla- Fig. 2 an example of a SDW obtained with the UHF ap-
tions are fully developed. The group theoretical investigatiorproach [the corresponding parameters a¥e=14, S,=0,
of the intermediate regime near the phase transition is left for,,=0.8 (x=23.8693), andB=0]. Unlike the case of
a future publication. In all calculated cases, we usegdy  WM's, the SDW exhibits a circular Epsee Fig. 2a)], and
=5 meV, m*=0.06M, (GaAs, andg* = —0.44 (GaAs. thus does not break the rotational symmetry. Naturally, in
We note that the Pople-Nesbet UHF equations are primakeeping with its name, the SDW breaks the total-spin sym-
rily employed in quantum chemistry for studying the groundmetry and exhibits azimuthal modulations in the spin
states of open-shell molecules and atoms. Unlike our studiegensity® (SD) [see Fig. 2b); however, the number of humps
of QD's, however, such chemical UHF studies considelis smaller than the number of electr6fis The SDW's in
mainly the breaking of the total spin symmetry, and not thakingle QD's appear forRy<1 and are of lesser
of the space symmetries. As a result, for purposes of emphamportancé’; thus in the following we will exclusively study
sis and clarity, we have often usésee, e.g., our previous the case of WM’s.
papers prefixes to indicate the specific unrestrictions in-

volved in our UHF solutions, i.e., the prefix s for the total ||| THREE ELECTRONS WITHOUT MAGNETIC FIELD
spin and the prefix S for the space unrestriction.

FIG. 2. UHF solution in a parabolic QD exhibiting a pure spin
nsity wave foN=14, S,=0, Ry=0.8, andB=0. (a) The total

A. S,=3/2 fully spin polarized case

C. Solutions representing pure spin density waves We begin with the case di=3 fully spin polarized &,
Before leaving this section, we mention another class of=3/2) electrons in the absence of a magnetic field and for
BS solutions which can appear in single QD's; namely, theRy=10 (x=1.9095). Fully spin polarized UHF determi-

035325-4



GROUP THEORETICAL ANALYSIS OF SYMMETRY . .. PHYSICAL REVIEW B58, 035325 (2003

FIG. 3. The RHF case foN=3 andS,=3/2
atRy,=10. (a)—(c) Real orbitals aB=0. (e)—(g)
The modulus square of the complex orbitals for a
vanishingly small valueB=0.0001 T. (d) The
corresponding circular electron density for both
cases. The choice of the remaining parameters is:
fiwg=5 meV andm* =0.067m,. Distances are
in nanometers. The real orbitals are in
102 nm ! and the orbital densities and total ED
in 10~* nm™2. The arrows indicate the spin di-
rection.
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nants preserve the total spin, but for this valueRygf the  conforms indeed to the prediction of the independent particle
lowest in energy UHF solution is one with broken circular model, and subsequently we will contrast the UHF solution
symmetry. As will be seen below, broken rotational symme-o it.

try does not imply no space symmetry, but a lower point- The RHF solution folR,,= 10 andB=0 has an energy of
group symmetry. Before proceeding with the study of the B22.217 meV, the corresponding orbitals are real and are dis-
solution, however, it will be helpful to review the symmetry- played in the left column of Fig. 3. They are like the [Fig.
adapted RHF solution first. This RHF solution can be ob-3(a)], 1p [Fig. 3(b)], and Ip, [Fig. 3(c)] orbitals of the
tained from the UHF equation(®) and(4) by using a circu- independent particle model. The nodelessdtbital has a

lar electron density guess as the input of the first iteration. Irmaximum atr>0 due to the large Coulomb repulsion; its
the independent particle model, the=3, S,=3/2, andB  energy is 44.526 meV. The energy of the two degenegrate
=0 2D case corresponds to a closed electronic shell witlandp, orbitals is 50.489 meV. Notice that neither thgnor
configuration Elp,1p_ or 1slp,lp, (p-*ps*ipy p, orbital is rotationally symmetric; however, the total ED
«re*'’), and thus the independent-particle-model ED is[Fig. 3d)] has the expected circular symmetry. It is of inter-
necessarily circular. We will confirm that the RHF solution est to obtain the RHF solution for a very small external mag-
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FIG. 4. The S-UHF case exhibiting breaking of the circular

symmetry forN=3 andS,=3/2 atRy,=10 andB=0. (a)—(c) Real

orbitals. (d) The corresponding electron density. The choice of the

remaining parameters i8wy=5 meV and m*=0.067n,. Dis-
tances are in nanometers. The real orbitals are ir* ¥0n~* and
the total ED in 104 nm™2. The arrows indicate the spin direction.

netic field (i.e., in the limitB—0). In this case, the calcu-
lated total and orbital energies, as well as the total[E[Q.
3(d)], remain unchanged. However, the two degenegpaie
bitals are now complekp-- ; see Fig. &) and Fig. 3g)] and
have good angular momenita = 1, and thus their modulus
square is circularly symmetric.

We focus now on the sS-UHF solution fof=3 andS,

PHYSICAL REVIEW B 68, 035325(2003

in taking all §;=0, and aIIFhJ:O unless theth andjth
atoms (site9 are adjacent. For our example this latter ap-
proximation is applicable, since the val&g,= 10 is rather

high. When using the notatioa=H ;= H,,=Hs; and — 8
=H,,=H,;3=H,3<0, the Hickel eigenvalue equation for
the case oN=3 electrons on the vertices of an equilateral
triangle is written as

€ -8B —p fq fy
_ﬁ € _E f2 :E f2 , (13)
-B —B € f3 f3

and the associated LCAO-MO’s are’/i=fi1¢1+fi2¢2
+f5¢3, havingE; eigenvalues withi =1,2,3. Theg;'s are
the original Gaussian-type atomisite) orbitals.

From the eigenvalues and eigenvectors of Bd@), one
finds the following three LCAO-MO'’s:

Y1=(p1+ do+ d3)/\3 (14)
with energyE,=e— 2,
Yo= (21— po— )16 (15)
with energyE,= e+ 3, and
Ya= (b~ 3)/2 (16)

with energyE;=E,. It is apparent that the structure of these
three LCAO-MO'’s and the level diagram of their energies
agree very well with the corresponding symmetry-broken
UHF orbitals[displayed in Figs. @)—4(c)] and their ener-
gies. (Using the HF values folE; and E,, one findse
~45.961 meV andB~0.585 meV) We notice here that
such LCAO orbitals are familiar in organic chemistry and are

=3/2, and for the same choice of parameters as with thessociated with the theoretical description of carbocyclic sys-

RHF case. The UHF total energy is 89.691 meV, and thus items and, in particular, the moleculgHg; (cyclopropenyl,
is lower than the corresponding RHF one. In Fig. 4 we dissee, e.g., Ref. 33

play the UHF symmetry-violating orbitals)—(c) whose en-
ergies are(a) 44.801 meV andb) and (c) 46.546 meV;
namely, the two orbitalgéb) and(c) with the higher energies

Naturally, since the orbital&) and (c) are degenerate in
energy, they are not uniquely defined: any linear combination
associated with a unitary>22 transformation will produce a

are again degenerate in energy. An inspection of Fig. 4 impair of different, but equivalent (b and (¢) orbitals. The
mediately reveals that these orbitals have retained som@ct that the UHF orbitals in Fig. 4 have the specific highly

properties of the delocalizeds1 1p,, and Ip, orbitals, fa-

symmetrizedsee belowform given above is the result of an

miliar from the independent particle model and the RHF; thataccidental choice of the initial electron density input in the

is, orbital (@) is nodeless, while each one of the orbitéhs

HF iteration. We have checked that any such pair ¢ @nd

and (c) has a single nodal line. However, overall the BS(c’) orbitals leaves the 2D total UHF electron density un-

orbitals (a)—(c) drastically differ from the orbitals of the in-

changed. This suggests that there is an underlying group the-

dependent particle model. In particular, they are associategetical structure that governs the BS UHF orbitals. The im-

with specific sites(within the QD forming an equilateral

portant point is not the uniqueness or not of the 2D sS-UHF

triangle, and thus they can be described as having the strugrpitals, but the fact that they transform according to the

ture of a linear combination of “atomic{site) orbitals. Such

irreducible representations of specific point groups, leaving

LCAO MOr's are familiar in natural molecules, and this anal- hoth the sS-UHF determinant and the associated electron

ogy supports the term “electrofor Wignen molecules” for
characterizing the BS UHF solutions.

densities invariant. Given the importance of this observation,

we proceed in the rest of this section with a group theoretical

In the LCAO-MO approximation, one needs to solve agpalysis of the BS sS-UHF orbitals for tié=3 and S,

matrix eigenvalue equation determined by the overlgps
(i#]) and the Hamiltonian matrix elemerits; andH;; be-
tween the atomic orbitals. A further simplified
approximatiorf® the Hickel approximation(HUA), consists

=3/2 case.

The ED portrayed in Fig. @) remains invariant under
certain geometrical symmetry operations—namely, those of
an unmarked, plane and equilateral triangle. They(ar¢he
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TABLE I. Character table for the cyclic grout; [¢  TheA SALC in Eq.(18) has precisely the same form as the
=exp(2ri/3)]. 1 MO in Eq. (14), which was determined via a solution of
the Hickel Eq.(13). The twoE SALC's [Eq. (19) and Eq.

Cs E Cs C3 (20)], however, are complex functions and do not coincide
A 1 1 1 with the realy, and 5 found abovd Eq. (15) and Eq.(16)].

= 1 e &* As we will see in Sec. IV, these complex SALC's agree with

£ 1 e s the BS UHF orbitals obtained in the case of an applied mag-

netic field B—0. On the other hand, a set of two real and
orthogonal SALC's that spans tHe representation can be
identity E, (2) the two rotationsC; (rotation by 27/3) and  derived fron Eq.(19) and Eq.(20) by simply adding and

C% (rotation by 4r/3), and(3) the three reflectionel}, crlvl , substracting the two complex ones. This procedure recovers
and o' through the three vertical planes, one passingmmediately the reals, and 3 discussed earlier.

through each vertex of the triangle. These symmetry opera- We stress here that the UHF orbitals of Fig. 4 eaeoni-
tions for the unmarked equilateral triangle constitute the elcal (see Sec. IIA As is well known from quantum
ements of the groug,, .%4° chemistry?® in general the canonical spin orbitals will be

One of the main applications of group theory in chemistryspread out over the different sitéstoms of a natural mol-
is the determination of the eigenfunctions of the Sdimger  ecule and will form a basis for the irreducible representations
equation without actually solving the matrix equatit8).  of the symmetry group of the molecule. Once the canonical
This is achieved by constructing the so-callsgmmetry-  orbitals are available, there is an infinite numbemofca-
adapted linear combinationsSALC’s) of AO's. A widely  nonjcal spin orbitals that spareduciblerepresentions of the
used tool for constructing SALC's is the projection operatorsymmetry group of the molecule and can be obtained via a
unitary transformation of the canonical set. We remind the
reader that noncanonical spin orbitals are solutions of a gen-
eralized HF equation involving off-diagonal elemefs in
the matrix formed out of the HF orbital energiesee Sec.
where R stands for any one of the symmetry operations ofll A). Naturally, the unitary transformation leaves the UHF
the molecule, ange“(R) are the characters of theth irre-  determinant and total energy invariant. In particular there is a
ducible representation of the set®%. (The y*'s are tabu-  Unitary matrix that transforms the canonical spin orbitals to
lated in the socalled character tabféé) |G| denotes the the fully localized AC's; i.e., for thé\=3 andS,=3/2 case,
order of the group and,, the dimension of the representa- SUCh & unitary matrix transforms the canoniagls (i
tion. =1,2,3) to the noncanonical AO&;’s.

The task of finding the SALC'’s for a set of thres-fype Note that such noncanonical orbitals fdi=3 were re-
AO’s exhibiting theC,, symmetry of an equilateral triangle cently used to formulate a non-self-consistent variant to the
can be simplified, since pure rotational symmetry by itselfPople-Nesbet HF equations listed in section Il.A. This vari-
(the rotationsC; and C3, and not the reflectionsr,’s  ant relied on the manifestation of spontaneous symmetry
through the vertical plangss sufficient for their determina- breaking that was discovered earlier via our self-consistent

tion. Thus one needs to consider the simpler characterfableUHF results. Notice, however, that Ref. 51 obtained an in-
of the cyclic groupCs (see Table)l complete wave function, since the companion step of resto-

From Table |, one sees that the set of the threedD’s  ation of the rotational symmetry was not considefede
situated at the vertices of an equilateral triangle spans theec. VI below.
two irreducible representations and E, the latter one con-
sisting of two associted one-dimensional representations. To B. S,=1/2 partially spin polarized case
construct the SALC’s, one simply applies the three projec-
tion operators™®, P&, andP*" to one of the original AO’s,
let us say thep,,

P:|%| S X“RR (17)

In Fig. 5, we display the sS-UHF symmetry-violating or-
bitals (a)—(c) for the case of a partially polarized QD at
Rw= 10 andB=0 with two spin-up and one spin-down elec-
~ ~ ~ R trons (N=3 andS,=1/2). The UHF orbital energies of these
PAp1~(1)Ep+(1)Cay+(1)C501 electrons aréa) 45.350 andb) 46.515 meV for the spin-up
orbitals and(c) 45.926 meV for the spin-down orbital. An
=(1) 1+ (1) ot (1) ps= 1+ pot 3, (18 inspection of Fig. 5 reveals that these orbitals have retained
the nodal structure of the corresponding independent-

P 1~(1Ey+(s)Cadpr+(s*)Cihy particle-model orbitals in the familiarst1p, configuration;
namely,(a) and(c) are nodeless, whil&) exhibits a single
=¢1tedyte* ¢s, (19 nodal line. Apart from this property, however, and in conso-
nance with theS,= 3/2 case studied in a previous subsection,
PE i~ (1)E g+ (£%)Cypy + () Clhy the BS UHF orbitals again differ drastically from the ones
associated with the independent particle model; again they
=pi1t+e* P teds. (20 are associated with three sites within the QD arranged in an
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In the same spirit with the treatment of the fully polarized
case in Sec. lll A, and taking into consideration the decou-
pling of the two different spin directions in the sS-UHF, one
can write a corresponding ldkel matrix equation for the
N=3 andS,=1/2 case as follows:

€ _ﬁ 0 fl fl
-B € 0 fol=E[ f2 ). (21
0 0 € f3 f3

From the eigenvalues and eigenvectors of &), one
finds the following three LCAO-MO's: (@) q1=(¢1
+ o)/ 2 with energyE,=e—B, (b) ¢,=(d1—$5)/\2
with energy E,=e+ 8, and (c) #3=¢3 with energy Ej
=e. The structure of these three LCAO-MOQ’s agrees very
well with the corresponding symmetry-violating UHF orbit-
als for theN=3 andS,=1/2 case displayed in Figs(&—
5(c). This agreement extends also to the level diagrams of
the corresponding orbital energigélsing the UHF values
for E; and E,, one finds 8=0.582 meV and e
=45.932 me\WwE;.)

Concerning the underlying symmetry-group structure of
the UHF orbitals in Fig. 5, we observe thainlike the fully
polarized casgethe two rotations—i.e C5 (rotation by 27/3)
and C§ (rotation by 4m/3)—are not part of the symmetry
operations of the relevant point grofgue to the dissimilar-
ity between spin-up and spin-down orbitals; this can be seen
clearly through inspection of the spin density in Fige)3.
Because of the 2D character of the dot, the only symmetry

FIG. 5. The sS-UHF solution exhibiting breaking of the circular

symmetry forN=3 andS,=1/2 atR,,=10 andB=0. (a)—(b) Real ; _ _ ; .
orbitals for the two spin-up electron&) Real orbital for the single operations for theN=3 andS,=1/2 case are the identiy

spin-down electron(d) Total electron densitye) Spin density(dif- ~ and a single reflection, , through the vertical plane pass-
ference of the spin-up minus the spin-down partial electron densilnd through the spin-down electron. Such a gré&p oy} is
ties). The choice of the remaining parametergiis,=5 meV and @ subgroup of the familia€,, group associated with the 3D
m* =0.067m, . Distances are in nanometers. The real orbitals are irH ,O molecule(observe that the O atom corresponds to the
10 3 nm ! and the densitie$ED and SD in 10 % nm 2. The  spin-down electron and the two H atoms correspond to the
arrows indicate the spin direction. two spin-up electronsAccording to Ref. 33see p. 18], the
representatiod” formed by the three original AO’s can be
equilateral triangle. In contrast to the fully polarized casereduced to irreduciblé\, and B; representations a=A,
however, there are no linear combinations of atomic orbitals; 2B,. By applying projection operatofsee Eq17)] to the

involving all three vertices of the triangle. Indeed the single s, AO and using the character Table I, one finds the fol-
spin-down electron remains by itself as an unmodified AO jowing two normalized SALC's:

while only the two spin-up electrons combine to form LCAO

MO'’s. This behavior here is a special case of a general prop- = —

erty of the sS-UHF; i.e., only AO’s associated with the same Vr, (1 4)2)/\/5 (22
spin direction can in principle combine to form LCAO and

MOQO's. This property, however, does not extend to the gener-

alized Hartree-Fock methdd;>? which incorporates the ad- s, = (h1+ do)I\2. (23
ditional unresctriction that the projection S,) of the total !

spin is not preserved and it is not a good quantum numbeNaturally the second SALC d8; symmetry is

(Notice that unlike the practice in this paper, Ref. 31 uses the

term UHF for the generalized HF. g, = ¢s3. (24
TABLE Il. Character table for the groufE, o}. Once more, we stress the fact that the SAL[Egs.(22)—

E | (24)] derived above via symmetry-group theory have the

T same structure as the canonical UHF orbitals displayed in
A, 1 -1 Fig. 5. Observe further that in the generalized (4B also in
B, 1 1 the case of the §O molecule and the allyl anigrthe two

SALC's of B; symmetry are allowed to couple, producing
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Because of this position-dependent phase in the AO’s, the
hopping matrix elementﬁij (see Sec. Il A are now com-
plex, and the Hokel equation(13) for three electrons is
modified as follows:

€ _Beiﬂ _Be—iﬂ fl fl
~-Be™'? € —Be'? f2 | =E| f2],
_Beiﬂ _ﬂeiiﬂ € f3 f3
(26)

where Q=Q;;=(e/Aic)A(R;—R))-R;, (i,J)=(1,2),(2,3),
(3,1), withR,, k=1,2,3 being the positions of the vertices
of the equilateral triangle. Notice th& = (27®)/(3d),
where ® is the total magnetic flux through the equilateral
triangle and®y=hc/e is the unit flux.

From the eigenvectors of E(R6), one finds the following

LCAO-MQ's:
FIG. 6. The S-UHF solution exhibiting breaking of the circular
symmetry forN=3 andS,=3/2 atR,=10 andB=2 T. (a)—(c) ¢1“&1+’<}52+E)3, 27
Orbitals (modulus squapefor the three spin-up electron@) Total
electron density. The choice of the remaining parametersadig zpzocezw”%ﬁ-e_2””3'<2>2+71>3, (29)

=5 meV, m*=0.067n,, and g*=—0.44. Distances are in na-
nometers and the densitigerbital and ED in 10"* nm 2. The i i~
arrows indicate the spin direction. Yz>xe p1+e T hrt 3, (29

with corresponding orbital energies
more complicated orbitals and energy level diagrdses p.
1037 of Ref. 31 and p. 183 in Ref. B3 E,=€e—2Bcos(), (30

E,=e—2Bcog (27/3+Q)], (31

IV. THREE ELECTRONS IN A FINITE MAGNETIC FIELD
A. S,=3/2 fully polarized case Es=e—2pcod(2m/3-Q)]. (32

In this section, we study the case of three fully polarized Substituting the specific value fé given above, one can
electrons under a magnetic fieRl Since forB+0 the BS  write the eigenvalue$30)—(32) in a more symmetric com-
UHF orbitals are necessarily complex functions, Fig. 6 disfpact form
plays the modulus square of these orbitals. The UHF total
ED displayed in Fig. @) and the modulus square of the
orbitals exhibit an apparef@;, symmetry as was the case at
B=0 (Sec. lll A). However,the phases of the complex orbit-
als at B#0 contribute to a modification of the symmetry ~ Since the original AO’s do not practically overlap for
group. This modification has been studied earlier for the casBw= 10, the phases in front of thg’s in Eqgs.(27)—(29) do
of infinite crystalline systems with periodic space latticesnot contribute substantially to the modulus square of the or-
where the electrons occupy Bloch orbitals, and such studigitals. As a result, for all values &, all three orbitals exhibit
have led to the consideration of two physically equivalentsimilar orbital densities that are approximately equakpfo
group structures: namely, tlray groups® and themagnetic ~ + ¢§+ ¢§. Observe that this agrees very well with the be-
translation groups* In our case of a finite periodic crystal- havior of the canonical UHF orbitalsnodulus squaneat B
lite, the corresponding magnetic rotation groups would be=2 T displayed in Fig. 6. At zero magnetic fieR=0, the
straightforward to consider. However, in order to appreciatd. CAO-MQ's in Egs. (27)—(29) reduce to the specific form
the modifications introduced by the magnetic field, it will be given earlier in Eqs(18)—(20) of Sec. lll A. We stress here
simpler to modify the Hakel (tight-binding Hamiltonian  that in Sec. 1l A these LCAO-MO’s were derived from ar-
according to the Harper-Peierls prescripttéri® which ac- guments based exclusively on the group theoretical structure
counts for the magnetic gauge transformation when movingf the C5, symmetry group.

]+

E—e 2800827 =123 (33
j—e—ﬁco? ao’]_"' (33

from one crystalline site to another. Naturally, whenQ=0, the orbital energies in Eq33)
Thus according to Peierls and Harper, the proper atomigeduce to the corresponding@=0 result derived in Sec.

orbitals ¢;’s for B#0 (centered aR;) are the reatp;’s mul- Il Az namely, E; = e—2p8 andE,=E;= e+ . Notice, how-

tiplied by an appropriate phase as follows, ever, that for arbitrary values @&, the degeneracy between

E, andEj is lifted. In addition, the three energi&s, E,,
3 _ andEj; in Eq. (33) exhibit prominent Aharonov-BohrtAB)
&i(r;R)) = ¢;(r;R;)eleOAR)) T, (25)  oscillations. It is interesting to compare this behavior to the
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FIG. 7. The S-UHF orbital energien meV) for N=3, S,
=3/2, andR,=10 as a function of the magnetic fieRi(in tesla,
exhibiting a prominent Aharonov-Bohm oscillation. The choice of
the remaining parameters #wy=5 meV, m*=0.06"n,, and
g*=—0.44.

behavior of the calculated canonical UHF orbital energies for FIG. 8. The sS-UHF solution exhibiting breaking of the circular
Rw=10. These UHF orbital energies as a functiorBohre symme'try' forN=3, S,=1/2 atRy=10 andB=2 T. (a)—(b) Or-
displayed in Fig. 7. An inspection of Fig. 7 reveals that they;.c (modulus squajefor the two spin-up electronsc) Orbital

UHF orbital energies do exhibiis expectedan Aharonov- (moqulus squanefor the spin-down electrorid) Total electron den-
Bohm oscillation as a function @. However, these oscilla- ity The choice of the remaining parametersiis,=5 meV, m*

tions are more complicated from what can be simply antici-—0.067n,, andg* = —0.44. Distances are in nanometers and the
pated from the analytic formulas in E33). Namely, the  densities(orbital and ED in 10 4 nm~2. The arrows indicate the
amplitude of the UHF AB oscillations decreases Basn- spin direction.

creases. This behavior is due to a decrease in the hopping

parametep, which results from the spatial shrinkage of the \ors: (a) ¢, = (6129, + $,)//2 with energyE, = e— 8, (b)

Gaussian-type UHF orbitals as a function B&f Eventually, PRI . _
for B—, all three energies are degenerate. We notice tha 2=(e" s $2)/\2 with energyE,=e+ 4, and (0) s

complete degeneracy of all UHF orbitals for aNyappears = ¢4 with Ez= €. The total electron density cc;nstrgctecé out
also in theB=0, Ry— limit. of these LCAO-MO's is again of the formpi+ ¢5+ @3
The electronic structure of the UHF fully polarized three- (compare with Sec. IV A The corresponding UHF orbitals
electron molecule in a magnetic field, which was discussedmodulus squadeand ED displayed in Fig. 8 are obviously
above and which exhibits Aharonov-Bohm oscillations, doegonforming to these forms.
not have an analog in the realm of natural molecules. How- Concerning the Hekel orbital energie;, j=1,2,3, we
ever, apart from th® dependence of, it agrees in a re- note that they do not depend on the magnetic fiettirough
markable way with the “noninteracting spectra” of the arti- {2. As a result, unlike the previous case of the fully polarized
ficial molecules that can be formed out of 1D ring arrays ofélectrons, AB oscillations should not develop in the UHF
single QD's®’ orbital energies. To check this prediction, we dispaly in Fig.
9 the UHF orbital energies as a function®fIn contrast to
Fig. 7, AB oscillations are absent in Fig. 9, a behavior which
) ] ) apparently relates to the fact that no UHF orbital covers the
Figure 8 displays the BS UHF orbitalodulus squale  area of the equilateral triangléhe single spin-down orbital
and the total ED for the partially polarized=3, S,=1/2  does not couple to the two spin-up ones, which lie on a
case in a magnetic fieB=2 T. As with theB=0 case(Sec.  straight line.
[1B), the spin-down orbital is decoupled from the two
spin-up ones. As a result the correspondingck&l matrix
equation is of the form

B. S,=1/2 partially polarized case

V. SIX ELECTRONS AT ZERO MAGNETIC FIELD

0 We discuss now the case of six fully polarized electrons in
€ —pe 0 f1 fy zero magnetic field. The corresponding total S-UHF electron
—pBe ¢ € 0| fo|=E| fo|, (34 density forRy=15 (x=1.2730) is displayed in Fig. 18
0 0 ¢ fo fy (bottom frame. Unlike the case of smaller numbers of par-
ticles with N=<5, a system of six electrons is the smallest
where in generaé’ # € due to the energy difference between that forms a Wigner molecule with a two-ring arrangement.
the two spin directions introduced by the Zeeman term. Fronsuch a ring arrangement is denoted by (1,5) to distinguish it
the solutions of Eq(34), one finds the following LCAO- from a single-ring arrangement (0.
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FIG. 9. The sS-UHF orbital energigs: meV) for N=3, S,
=1/2, andR,= 10 as a function of the magnetic fieRl(in tesla.
No AB oscillations are present. The choice of the remaining param-
eters ishiwg=5 meV, m* =0.06M,, andg* = —0.44. The arrows
indicate the spin direction.

Naturally, single-ring molecular arrangementsNp,are
familiar from the quantum chemistry of carbocyclic systems
(Ref. 33; see also Secs. Ill and)lVThe more complicated
(1,5 arrangement, however, is a molecular structure un-
known to traditional chemistry. Nevertheless, contact to or-
ganic chemistry can be retained by observing that(thg)
outer ring has a group symmetry similar to the cyclic hydro-
carbon GHs. As a result, and in direct analogy with the

CsHs molecule(see p. 152 in Ref. 33the SALC's of the FIG. 10. The canonical S-UHF real orbitals fd.=6 and'S,
(0,5 arrangement are as follows: =3 and forRy,=15 andB=0. (a) The total electron densityb),
(c) Middle row: the two orbitals oA symmetry.(d), (e) Top row:

1 the two degenerate orbitals &, symmetry. The choice of the
P(A)= E(¢1+ 2t b3t st Ps), (35  remaining parameters iBwy=5 meV andm* =0.067m,. Dis-

tances are in nanometers. The real orbitals are irf 1On ! and
the electron density in I nm 2. The arrows indicate the spin
2 direction.
Y(Eja)= \[5( ¢1+ Pp,C0S0+ p3c0S 20+ p,C0S 20
Returning back to the case of tli&,5) ring arrangement,
+ ¢5C0s0), (36)  we notice that the sixth AOgg, at the center is oA sym-
metry, and thus it can only couple to a MO of tf@&5) ring
2 with the same symmetry; namely, the orbita{A) in Eq.
W(Eib)= \/%(d)zsm 0+ ¢3Sin 20— ¢4Sin 20— ¢ssinb), (35). As a result, both{0,5) and the(1,5) ring arrangements
(37) share the same four MO’s &; andE, symmetry.
The coupling matrix element between tig and (A)
orbitals is given by

W(Era)= \@( ¢1+ P,C0S 20+ ¢p3c0sH+ p,C0SH .
~ 1 ~
+ ¢5c0S 26), (39) f deH (A)dr :E kgl f deH pdr=—/55. (40)

2 ) ) ] ] To find the MO'’s of the(1,5) ring with A symmetry, we
P(Egb) =\ (2SI 26— ¢3sin 6+ ¢,sin - ¢ssin 26), need to solve the 2 2 matrix equation

(39
. . . e=28 —\55 01 01
where §=2x/5. The corresponding orbital energies are - =E . (41)
— 2 for the single orbital ofA symmetry,e— (2 cos6)g for —\55 € 92 92

the two degenerate orbitals oE; symmetry, and e ) o )
— (2 cos @) for the remaining two degenerate orbitals of ~We note that, due to tDe different coordination and dis-
E, symmetry. tances, the quantitie® and e associated with the central AO
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are different from the corresponding quantiti@sand e as-  collective degrees of freedom, an assumption that might be

sociated with the AO’s of the outer ring. justifiable in limiting cases only.
Using the notation As we demonstrated earli&t;*"in the framework of the
BS UHF solutions this companion step can be performed by
Q= V2082 + (e—e+2B)?, (42)  using the post-Hartree-Fock methodrestoration of broken

) ) ) ) symmetrie%,5 (RBS) via projection techniquesPT’s). Ex-

the two solutions of the matrix equatiddl) have energies amples demonstrating the RBS method have been presented
(e+€e—2B+Q)/2 and eigenvectorgunnormalizedl {e—e by us in two cases(l) the ground statgwith angular mo-
+28+ Q,\/X)ﬁ}, respectively. Accordingly, one MO of the mentum|=0) of two interacting electrons in a parabolic
(1,5 ring is constructed by adding and the other by subtractquantum dot in the absence of a magnetic tedhd (1) the
ing a fraction of theys(A) orbital from the central AO. This yrast rotational bandsee Sec. | C and precise definition in
behavior agrees very well with the two S-UHF orbitals dis-Ref. 58 of a system oN interacting electrons in high mag-
played in the middle row of Fig. 10(b) and(c)]. netic field$®!" (fractional-quantum-Hall regime In both

Concerning the S-UHF orbitals displayed in the top rowcases, we showed that the RBS metliad adapted to the
of Fig. 10[(d) and(e)], we notice that they are degenerate in case of 2D BS UHF solutiongields correlatedmultideter-
energy and that they agree very well with the two MO’s of minanta) many-body wave functions that approximate very
E, symmetry. Indeed the S-UHF orbital in Fig. (@ exhib-  well the corresponding exact solutiotfsn particular, in the
its five total humps, three of them positive and the other twdatter case, our us&'’ of the RBS method yielded analytic
negative, in remarkable agreemefapart from an overall expressions for the correlated wave functions that offer a
sign) with the MO in Eq.(38) (note that co®=0.3090>0  better description of th&l-electron problem in higlB com-
and cos 2=-0.8090<0). In particular, counterclockwise, pared to the Jastrow-Laughtiexpression.
the polarities of the humps in Fig. @ are (—,+,—,—, In this section, we will not proceed any further with ex-
+), differing only by an overall sign from the corresponding plicit numerical or analytic derivations of additional RBS
polarities of the MO in Eq(38). Even more impressive is the wave functions. Instead, we will use the RBS approach to
fact that there is quantitative agreement regarding the absdtustrate through a couple of concrete examples how certain
lute heights of the humps in these two orbit@ee the values universal properties of the exact solutions—i.e., the appear-
of cos# and cos 2 listed abové The other S-UHF orbital in ance of magic angular momenta in the exact rotational
Fig. 10(e) exhibits a total of four humps, two of them posi- spectrd>~“%relate to the symmetry broken UHF solutions.
tive and the other two negative, and having an alternatinglndeedwe will demonstrate that the magic angular momenta
(+,—,+,—) arrangement. This is again in remarkableare a direct consequence of the symmetry breaking at the
agreement with the second MO Bf, symmetry in Eq(39),  UHF level and that they are determined fully by the molecu-
since sing>0 and sin 2>0. Additionally, we note that the lar symmetries of the UHF determinatit.

agreement between the UHF orbital in Fig(é)Gand the MO As an illustrative example, we have chosen the relatively
in Eg. (39 extends further to the absolute heights of thesimple, but nontrivial, case d=3 electrons. FoB=0,
humps, since siAi=0.9511>0.5878=sin 26. both theS,=1/2 andS,=3/2 polarizations can be consid-

Finally, there are two other degenerate UHF orbitals thatered. We start with th&,=1/2 polarization, whose BS UHF
are not displayed in Fig. 10. They are not identical to thesolution (let us denote it by| 1)) was presented in Sec.
¥(E,a) and ¢(E;b) SALC'’s in Egs.(36) and(37), but we 1l B and which exhibits a breaking of the total spin symme-
have checked that they span the irreducible representa- try in addition to the rotational symmetry. We first proceed

tion. with the restoration of the total spin by noticing tHat 1)
has a point-group symmetry lowésee Sec. Il B than the
VI. RESTORATION OF CIRCULAR SYMMETRY C3, symmetry of an equnateral triangle. TI@%U symmet_ry, _
AND EXACT SPECTRA however, can be readily restored by applying the projection

operator(17) to || 1 1) and by using the character table of the

A. Group structure and sequences of magic angular momenta cyclic C3 group (see Table)l Then for the intrinsic part of

In the previous sections, we demonstrated that the B&e many-body wave function, one finds two different three-
UHF determinants and orbitals describe indeed 2D electroniéeterminantal combinations: namely,
molecular stucturegWigner molecules in close analogy
with the case of natural 3D molecules. However, the study of
the WM’s at the UHF level restricts their description to the DE (vo)=|LTTY+e2 BT 1) +e 27R11]) (43
intrinsic (nonrotating frame of reference. Motivated by the
case of natural atoms, one can take a subsequent step
address the properties abllectively rotating WM’s in the
laboratory frame of reference. As is well known, for natural
atoms, this step is achieved by writing the total wave func- " o .
tion of the mole‘t):ule as the prodyuct of t%e electronic and ionic Di(yo)=[111T)+e 2™ 1 1)+ 11]), (44)
partial wave functions. In the case of the purely electronic
WM’s, however, such a product wave function requires thewherey,=0 denotes the azimuthal angle of the vertex asso-
assumption of complete decoupling between intrinsic andiated with the original spin-down orbital if 1 1). We note
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that the intrinsic wave function®f, and ®£, are eigen- In the fully polarized case, the UHF determinant was de-
states of the square of the total spin operafr (3 scribed in Sec. Il A. This UHF determinant, which we de-

53 Ay i _ . e note as|111), is already an eigenstate 8F with quantum
2i-1§) with quantum numbes=1/2. This can be verified numbers=3/2. Thus only the rotational symmetry needs to

. . 2, 60
directly by applr?/lngsz tlo them. _— . be restored; that is, the intrinsic wave function is simply
To restore the circular symmetry in the case of a\0, B2 (7o) =|111). SinceR(2m/3)dA —bA the condition

fing arrangement, one applies the projection opefafor for the allowed angular momenta is ¢xf®2l1i/3]=1, which
o yields the following magic angular momenta:

27P = dyexgd —iy(L—1)], (45

0 =3k, k=0,£1,+2,£3,.... (51

whereL==_ 1} is the operator for the total angular mo- e note that in high magnetic fields only the fully polar-
mentum. Notice that the operatfy is a direct generalization jzed case is relevant and that only angular momenta hith
of the projection operatofl?) to the case of the continuous =~ enter in Eq(51) (see Ref. 1B In this case, in the ther-
cyclic groupC., [the phases expyl) are the characters of modynamic limit, the partial sequence with=2q+1, q
C.l. =0,1,2,3..., isdirectly related to the odd filling factors
The RBS-projected wave functioWrgs (having both ,=1/(2q+1) of the fractional quantum Hall effegtia the
good total spin and angular momentum quantum numbers  relation »=N(N—1)/(21)]. This suggests that the observed
of the form hierarchy of fractional filling factors in the quantum Hall
) effect may be viewed as a signature originating from the
_ [ E iyl point group symmetries of the intrinsic wave functidn,,,
2V res™ fo dyPin V)€, (46 and thus it is a manifestation of symmetry breakingtat the

UHF mean-field level.
where now the intrinsic wave functidigiven by Eq.(43) or

Eq. (44)] has an arbitrary azimuthal orientatign We note
that, unlike the phenomenological Eckardt-frame motféi
where only a single product term is involved, the RBS wave The usefulness of the RBS wave functidii). (46)] is
function in Eq.(46) is an average over all azimuthal direc- not limited to deriving universal properties of the exact spec-
tions of an infinite set of product terms. These terms ardra, like the sequences of magic angular mom¢sée Sec.
formed by mu|t|p|y|ng the UHF intrinsic papt)lEmr(‘y) by the VlA] As we demonstrated in earlier publications,. in the
external rotational wave function exp{) (the latter is prop- 'egime of strong correlations, the RBS wave functions ap-
erly characterized as “external,” since it is an eigenfunctionProximate very well the corresponding exact many-body

of the total angular momentufnand depends exclusively on V&€ functipns. .
the azimuthalgcoordinate) P y Indeed, in Ref. 15 we offereas a function ofRy) a

A N systematic comparison between the RBS and exact ground-
The operatoR(2#/3)=exp(—i27L/3) can be applied to y P g

X X ) oY Y state (=0) energies aB=0 for N=2 electrons in a para-
Wres in two different ways: namely, either to the intrinsic bolic QD. ForRy=19.09, we found that the relative error

partd o, or the external part expf). Using Eq.(43) and the 55 approximately 0.7%. Furthermore, in Ref. 16, for the

B. Quantitative description of the yrast band

propertyR(27/3)®E, = exp(—2mi/3)dE,, one finds case of highB, we derivedanalytic RBS wave functions,
named “REM wave functions.” As we show&lexplicitly
ﬁ(zw/g)quBS: exp(—27i/3) ¥ grgs, (47 for the case oN=6 electrons, the radial electron densities
associated with the REM functions accurately reproduce the
from the first alternative, and ones extracted from exact-diagonalization calculations.
In this subsection, we offer additional examples pertain-
ﬁ(zw/:g)prBS: exp(— 2mli13) ¥ ggs, (48 ing to the ability of the RBS wave functions to reproduce the

exact yrast spectra of parabolic QD’s. In particular, Table 11l
from the second alternative. Now¥gs#0, the only way lists the REM and exact yrast energies in the range of magic
that Egs.(47) and (48) can be simultaneously true is if the angular momenta 791 <130 forN=6 electrons in higtB.
condition exp2w7(1—1)i/3]=1 is fulfilled. This leads to a Details concerning the REM wave functions and the exact-
first sequence of magic angular momenta associated with teliagonalization method in the lowest Landau level are given

tal spins=1/2: i.e., in Ref. 17, and they will not be repeated here.
The RBS and exact yrast spectra{0D<6) for the case
I=3k+1,k=0+1,+2*3,.... (490  of N=2 electrons aB=0 andR=19.09 are given in Table

IV. Details concerning their calculation are given in Ref. 15
Using Eq.(44) for the intrinsic wave function and follow- and in the Appendixwhere we present the final formula for
ing similar steps, one can derive a second sequence of magtalculating RBS energies for both even and odd angular mo-
angular momenta associated with good total spirl/2: i.e., menta.
We note that the relative errors in both Table Il and Table
|=3k—1,k=0,+1,+2,+3, .... (50 IV are small(smaller than 1% in the majority of cages
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TABLE lIl. Case of N=6 electrons in high magnetic fiel:  sentations of the point group specified by the discrete sym-
total interaction energies in the lowest Landau level of REM andmetries of this classical molecular configuratidtl) The
exact-diagonalization wave functions for various magic angulanyM’s formed out of the broken-symmetry UHF solutions
momental of the yrast band. The REM functions are analytically can rotate, and the restoration of the total-spin and rotational
within parentheses indicate relative errors. Energies in units OHefining the lowest rotational bandise., yrast bandsof the
e?/klg, wherex is the dielectric constant arig=v4c/eBis the  \w\ps. (1v) The breaking of the circular symmetry results in
magnetic length. For details concerning the exact-d|agonal|za‘[|or|'bwering of the symmetry. This is expressed by the discrete
method and the REM wave functions, see Ref. 17. For additionaboint—group symmetry of the UHF wave function, and it un-
values ofl, see Ref. 17. derlies the appearance of sequences of magic angular mo-
menta (familiar from exact-diagonalization studjes the

I REM Exact o . .
excitation spectra of single QD’s.
70 2.3019(0.85% 2.2824 Since exact-diagonalization methods are typically re-
80 2.1455(0.71% 2.1304 stricted to small sizes wittN<10, the two-step method of
90 2.0174(0.60% 2.0053 breakage and subsequent restoration of symmetries offers a
100 1.90980.51% 1.9001 promising new venue for accurately describing larger 2D
110 1.81790.45% 1.8098 electronic systems. A concrete example of the potential of
120 1.7382(0.40% 1.7312 this approach is provided by Ref. 16, where our use of the
130 1.6681(0.36% 1.6621 the symmetry_—breaklng _and symmetry-restoration mthod
yielded analytic expressions for correlated wave functions
that offer a better description of tHé¢-electron problem in
VII. SUMMARY high magnetic fields compared to the Jastrow-Laugrei:

pression.

In this paper, we have introduced a group theoretical Furthermore, the group theoretical analysis strongly sug-
analysis of broken-symmetry UHF orbitals and total electrorgests an interesting simplified variant approach for carrying
densities in the case of single 2D semiconductor QD’s. Thigut the first step of symmetry breaking. This variant rests on
analysis provided further support for our earlierthe observation that, in all cases of WM's, the broken-
interpretatiod®****concerning the spontaneous formation symmetry UHF orbitals are generic linear combinations of
of collectively rotating electrorfor Wignen molecules. In- Gaussian-type functiorfsvith a proper phase faB+0; see
deed the group theoretical analysis enabled us to unveil fulgq, (25)] specified simply by their widthr and positions
ther deeper analogies between the electronic structure of thej 's from the center of the QD. The linear combinations can
Wigner molecules and that of the natural 3D molecules. Irpe fully specified from the group theoretical analysis of the
particular these deeper analogies are the followihgThe  appropriate classical equilibrium configuratidhsand a de-
breaking of rotational symmetry results in canonical UHFterminant of the corresponding LCAO-MO's can readily be
orbitals that are associated with the eigenvectors of &yritten down. Then a simple variational calculation of the
molecular-type Hokel Hamiltonian with sites at positions minimum total energy of this determinant will yield the pa-
specified by the equilibrium configuration of the classicalygmeterss and R;’s without the need to carry out the self-
N-electron problem.(Il) The broken-symmetry canonical consistent UHF iterations. This simplified approach could
UHF orbitals transform according to the irreducible repre-treat even larger sizes without major loss of accuracy. Added

accuracy can then be obtained through the subsequent step of

TABLE IV. Case of N=2 electrons in a parabolic QD & restoration of the broken symmetries.
=0: total energies of RBS and exact wave functions for various
magic angular momentiaof the yrast band. The percentages within
parentheses indicate relative errors. The choice of remaining param- ACKNOWLEDGMENTS
eters ishwyg=5 meV, k=1 (Ry=19.09), andn* =0.067n, . En-
ergies in units of meV. For details concerning the method for find-  This research was supported by a grant from the U.S.
ing exact solutions to the two-electron problem, see Ref. 14. FoPepartment of EnergyGrant No. FG05-86ER-45234
details concerning the calculation of the RBS yrast spectrum, see
Ref. 15 and the Appendix.

APPENDIX

| RBS Exact . )

For the case oN=2 electrons in a parabolic QD &
0 52.224(0.75% 51.831 =0, we reported in Ref. 15 the RBS formulas for calculating
1 52.696(0.77% 52.292 energies of yrast-band states welhienangular momenta.
2 54.086(0.88% 53.615 These formulagsee Eqs(11)—(13) in Ref. 15 were gener-
3 56.240(1.04% 55.654 ated via a projection of the “singlet” UHF determinant. The
4 59.065(1.39% 58.255 corresponding RBS formulas fadd values ofl are gener-
5 62.065(1.27% 61.285 ated via a projection of the triplet UHF state.
6 63.911(1.13% 64.642 In this appendix, we present the formulas covering both

even and odd angular momenta. They are
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N(Y)=SusSyt* SutSys» (A3)

where the upper signs apply in the case of eWerand the

27 . 2w .
ERBS(I):JO h(v)e'y'dv/ jo n(y)e”'dy, (A1)

with lower signs in the case of odé. Heres(r) andt(r) are the
initial u(r) andv(r) broken-symmetry UHF orbitals rotated
h(y) =HusSut = HuSost HutSus® HusSutt Vuwst = Vuoes by an angley, respectivelyV,,s; and Vs are two-body
(A2) " matrix elements of the Coulomb repulsion, &Bd, etc., are
and the overlap intergrals.
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