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Magnetocohesion of nanowires

E. N. Bogachek, A. G. Scherbakov, and Uzi Landman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 1 May 2000!

The cohesive force and electronic conductance in nanowires modeled by soft- and hard-wall confining
potentials, under the influence of a magnetic field~magnetocohesion! and in the linear and nonlinear~finite
applied voltage! regimes, are studied. The appearance of force oscillations as a function of the magnetic field
and their correlation with the corresponding characteristics of the electronic conductance are demonstrated. For
materials with a strong Fermi-surface anisotropy~e.g., bismuth!, it is predicted that when the crystallographic
axis associated with the largest diagonal element of the effective-mass tensor is aligned along the direction of
the wire, the cohesive force increases dramatically~by an order of magnitude! compared to the case when that
axis is perpendicular to the wire direction.
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I. INTRODUCTION

Formation of interfacial wires of atomic dimension
~nanowires! via elongation of contacts had been predict
through early molecular dynamics~MD! simulations1 and
observed experimentally1–13 using tip-based microscopy
pin-disk, and mechanical break junction techniques. Furth
more, it had also been found that the elongation mechan
of the wire involves an oscillatory variation of the pullin
force1 and that such oscillations are correlated4 with stepwise
variations of the conductance through the wire.3~b!,14 The en-
ergetics and mechanical response in nanowires as well a
electrical transport through them have been analyzed u
MD simulations and electronic structure calculations1,9,15–18

as well as through the use of a jellium model19–21 and free-
electron treatments,22–25including semiclassical analysis.20,26

In addition, the nature of the oscillatory behavior of the elo
gation force and the conductance, originating from structu
rearrangements in the wire in conjunction with modificatio
of the electronic structure, have also been analyzed with
same techniques.

Because of the nature of the preparation methods
rently used to generate such three-dimensional~3D! nanow-
ires, it is often difficult to obtain reproducibly the same we
defined structures of the wires from one experiment
another, unlike the case of lithographically fabricated tw
dimensional wires controlled via voltage gates. Con
quently, it is particularly desirable in investigations of su
wires to explore the dependence of the wire’s properties~me-
chanical and/or electrical! on external fields, including mag
netic fields,27–30 finite bias voltage,31,32 electromagnetic
radiation,33 and thermal gradients,34,35 which may be varied
in a controllable manner.

To this end, we study in this paper the cohesive force
metallic nanowires under the influence of a magnetic fi
~magnetocohesion! in the linear and nonlinear applied vol
age regimes. Using a free-electron model for a wire
scribed either by a hard-wall or by a soft-wall confining p
tential, we demonstrate the effect of a magnetic field on
oscillatory cohesion force and its correlation with t
magnetic-field-induced variations of the electric conducta
through the wire. Furthermore, for the soft-wall potent
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model we investigate effects of the anisotropy of the Fe
surface of metals on the cohesive force of the nanowire.
show that for a bismuth wire the force oscillations are hig
est when the crystallographic axis corresponding to the la
est diagonal element of the electron-mass tensor is parall
the axis of the wire.

The paper is organized as follows. The theoretical mo
for calculation of the cohesive force in nanowires is d
scribed in Sec. II, and the results are discussed in Sec
~hard-wall potential! and Sec. IV~soft-wall potential, with
an application to bismuth wires!. We offer a summary in
Sec. V.

II. NANOWIRE COHESION: FORMALISM

The mechanical properties of nanowires may be cha
terized by the cohesive forceF, that is, the force required to
elongate the wire whose volume remains constant.1 Such a
force can be measured with atomic force microscopy~AFM!
during stretching~or compression! of a contact between a tip
and a surface,1,4,10 and it is given by

F52S ]V

]L D
V

, ~1!

where L is the length of the wire of volumeV, and the
grand-canonical potentialV is given by

V52kBT(
i

lnF11expS m2Ei

kBT D G , ~2!

wherekB is the Boltzmann constant,T is the temperature,m
is the chemical potential, and theEi are the electronic energ
levels with the indexi denoting a set of quantum numbe
including spin.

In a cylindrical wire the energy levels of the electro
may be expressed as a sum of transverse,en , and longitudi-
nal, pz

2/2mi , parts:

Enpz
5en1

pz
2

2mi
, ~3!
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wheren denotes a discrete set of quantum numbers, andmi

is the electronic mass corresponding to the motion along
axis of the cylindrical wire. Introducing the density of stat
and integrating Eq.~2! twice by parts we get for a cylindrica
wire

Vcyl52
2L

3pT S 2mi

\2 D 1/2

3(
n
E dE~E2en!3/2

e~E2m!/kBT

~e~E2m!/kBT11!2 . ~4!

In a wire with a slowly~adiabatically!14 varying shape the
cross-sectional radii depend onz ~see below!, and due to the
z dependence of the transverse energy levels@en in Eq. ~4!#
we may define the thermodynamic potential of such a wire

Vwire5
1

L E
2L/2

L/2

Vcyldz. ~5!

In the following we use this formalism for calculation of th
cohesive force for nanowires modeled by different forms
the confining potential, and for field-free conditions as w
as under the influence of a magnetic field.

III. HARD-WALL POTENTIAL MODEL

In the hard-wall potential model we consider nanowir
with circular symmetry about the axis of the wires~z axis!. A
wire of lengthL may be modeled as a constriction of a un
form cylindrical shape, i.e., with a constant cross-sectio
radiusR0 along thez axis @Fig. 1~a!#, or as a constriction of
variable shape@Fig. 1~b!#; in the latter case we assume th
the cross-sectional radiusR(z) varies along the axis as~para-
bolic shape!

R~z!5R01~Rmax2R0!
~2z!2

L2 , 2
L

2
<z<

L

2
~6!

with the radius at the ends of the constricted section~that is,
at the region connected to the leads!, Rmax[R(6L/2), kept
constant. We assume also that the volume of the constri

FIG. 1. Models of nanowires.~a! A nanowire of a uniform cy-
lindrical shape.~b! A nanowire with a circular cross section but
variable axial shape described by thez dependence of the radiu
R(z)5R01bz2 with Rmax5const; see Eq.~6!.
e
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region,V, remains constant during elongation of the wire
accordance with the results of molecular dynam
simulations.1 In this model all the geometrical paramete
depend only on the lengthL of the wire. In the case of an
adiabatically slow variation ofR(z) we can divide the wire
into thin cylindrical slices with radiiR(z) and then use Eq
~5! for the calculation of the thermodynamic potential.

In the absence of a magnetic field, and for a hard-w
confinement on the surface of the circularly symmetric wi
the transverse energy levelsemn

(0) in a cylindrical slice with
the radiusR(z) described by Eq.~6! are given by~in this
section we consider nanowires made from metals with a q
dratic and isotropic dispersion law!

emn
~0!5

\2gmn
2

2m'R2~z!
. ~7!

Here,m50,61,... andn51,2,... are the azimuthal and radi
quantum numbers, respectively, andm' is the effective mass
of the electrons corresponding to the motion in the pla
perpendicular to the axis of the wire. The zeros of the Bes
function gmn determine the positions of single or doub
steps~depending on them degeneracy of the energy level!
of the conductance14 and the oscillations of the cohesiv
force.19–25In a longitudinal magnetic field~H! the electronic
energy levels are computed29 from the zeros of the confluen
hypergeometric function

F_X2S kmn
2 R2~z!

4a~z!
2

umu1m11

2 D ,umu11,a~z!C50, ~8!

wherekmn
2 52m'emn@R(z)#/\2 anda5pR2(z)H/f0 is the

z-dependent magnetic flux in the wire expressed in units
the flux quantumf05hc/e.

From Eqs.~5!–~8! the magnetic field dependence of th
cohesive force@Eq. ~1!#, arising from an elongation of the
nanowire, can be calculated~in this section we neglec
magnetic-field-induced spin effects!. Such dependence o
the wire’s lengthL along with that of the conductance of th
wire36 is displayed in Figs. 2 and 3 for several values of t
applied magnetic field~expressed in units of the dimension
less fluxf/f0!; in these figures we show results for nan
constrictions withkFRmax56 andkFRmax54, corresponding,
respectively, to five and one conducting channels at z
field @see solid lines in Figs. 2~a! and 3~a!#. The main effect
of the magnetic field on the force is to modify the oscillato
pattern@which exists already in zero field; see solid lines
Figs. 2~b! and 3~b!#, including the appearance of new peak
This effect, which is correlated with variations in the wire
conductance@compare panels~a! and ~b! in Figs. 2 and 3#,
originates from magnetic-field-induced removal of degene
cies and shifts of the electronic transverse energy level
the nanowire. Since the force can be influenced both by
applied magnetic field and/or by changes in the wire’s len
we show in Figs. 2~c! and 3~c! the force as a function of both
f/f0 andL. For wires made from normal metals the amp
tude of the force oscillations is of the order of nanonewto
nN. For nanowires made of such metals with only a fe
conducting channels~i.e., narrow wires!, very high magnetic
fields are required in order to achieve a magnetic flux of
order off0 in the cross section of the nanowire. On the oth
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PRB 62 10 469MAGNETOCOHESION OF NANOWIRES
hand, for semimetallic~bismuth-type! wires a magnetic flux
of severalf0 is readily achievable, while the amplitude o
the force oscillations for such wires is smaller~see the next
section!.

The highest sensitivity of the cohesive force to the appl
magnetic field occurs in the vicinity of changes in the wire
conductance~close to a step rise; see Figs. 2 and 3!, that is,
for conditions where the highest transverse energy~conduc-
tance channel! in the wire is located near the Fermi energ
Such conditions can be achieved through mechan
manipulation29 of the wire or via application of a finite
voltage;32 the latter, being an independent external para
eter, may allow measurements of the mechanical and tr
port characteristics in a reproducible way. To demonstr
the combined effect of a finite bias voltageU and an applied
magnetic field on the cohesion force we consider the cy
drical wire shown in Fig. 1~a!. The thermodynamics of the
wire may be described in terms of different effective elect
chemical potentials for opposite-moving electrons.32 With
the assumption that the wire is symmetric and that the
tential drop takes place in the vicinity of the wire’s ends~that
is, near the contacts to the reservoirs!, the thermodynamic
potential may be written as

Vcyl5
1
2 @V~m12Ei !1V~m22Ei !#, ~9!

FIG. 2. ~a! Conductance~G, in units of 2e2/h! and~b! cohesive
force ~F, in units of 32\2mi

1/2/pm'
3/2Rmax

3 ! of a 3D wire, modeled
via a hard-wall confining potential with a variable shape@Fig. 1~b!#,
plotted vs its dimensionless lengthL/Rmax with kFRmax56. The
different curves correspond to the marked values of the dimens
less magnetic fluxf/f05HpR2/(hc/e). ~c! The cohesion force
plotted vsL/Rmax andf/f0 .
d
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wherem65m6eU. By taking the derivative ofVcyl with
respect to wire lengthL, the magnetocohesion of the nanow
ire in the nonlinear~finite applied voltage! regime can be
calculated.

In Fig. 4~a! we show the magnetic field dependence of t
force at different values of an applied voltage~expressed in
units of eU/eF! for a wire with kFR055, corresponding to
three conducting channels atH50 andU→0. Indeed, these
results illustrate that the oscillatory dependence of the fo
on the magnetic field may be significantly influenced by
applied voltage; see also Fig. 4~b! where the simultaneou
dependence of the force on the magnetic field and the
plied voltage is displayed. We remark also that, as seen f
Fig. 4, with the use of a finite applied voltage, magnetoc
hesion effects may be observed at lower magnetic field
ues than otherwise.

IV. SOFT-WALL CONFINING POTENTIAL „FOCUSING
ON BISMUTH WIRES …

In the previous section we discussed the cohesive fo
and conductance in nanowires modeled by a hard-wall c
fining potential. In this section we turn to nanowires mode
by a soft-wall harmonic potential of the form33

Uz~x,y!5
m

R2~z!
~x21y2!, ~10!

where the effective radius of the wire,R(z), is given by Eq.
~6!. This model allows an analytic solution of the Schr¨-
dinger equation in a magnetic field. In addition, it is partic

n-

FIG. 3. Same as Fig. 2, but for a 3 D wire with kFRmax54.
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10 470 PRB 62E. N. BOGACHEK, A. G. SCHERBAKOV, AND UZI LANDMAN
larly convenient for investigations of the effects of anis
ropy of the electronic Fermi surface and may be applied
study of bismuth nanowires. Consider the case of an e
soidal Fermi surface when one of the crystallographic a
~the z axis! is taken to be parallel to the axis of the wire.
a longitudinal magnetic field with the symmetric gauge
the vector potential, i.e.,

A5 1
2 ~2Hy,Hx,0!, ~11!

the Schro¨dinger equation corresponding to the transve
electronic motion in a cylindrical slice of radiusR(z) reads

2
\2

2m1
S ]

]x
2

ieH

\c
yD 2

c2
\2

2m2
S ]

]y
1

ieH

\c
xD 2

c

1
m

R2~z!
~x21y2!c5ec, ~12!

and the electronic energy is given by

E5e1
pz

2

2m3
6 1

2 g* bH. ~13!

Here mi ( i 51,2,3) are diagonal elements of the effectiv
mass tensor,g* is the effectiveg factor,b5e\/2m0c is the
Bohr magneton, andm0 is the free-electron mass. The la
term in Eq. ~13! is the Zeeman interaction energy, whic

FIG. 4. ~a! Cohesive force~F, in units of 32\2mi
1/2/pm'

3/2Rmax
3 !

of a 3D wire, modeled via a hard-wall confining potential with
uniform cylindrical shape@Fig. 1~a!#, plotted vs the dimensionles
magnetic fluxf/f0 , with kFR055. Different curves correspond t
the marked values of the applied voltage~U in units of eF /e!. ~b!
The cohesion force plotted vsf/f0 andeU/eF .
-
a
-
s

r

e

-

takes into account spin effects in a magnetic field and may
of importance for bismuth wires because of possible la
values of the effectiveg factor ~see, for example, Ref. 37!.
Changing variables in Eq.~12! as x5x1(m2 /m1)1/4 and y
5y1(m1 /m2)1/4, we obtain the Schro¨dinger equation for an
electron with an effective~cyclotron! massm'5(m1m2)1/2

and an anisotropic potential

Uz~x,y!5 1
2 m'~v1

2x1
21v2

2y1
2!, ~14!

with the confining frequenciesv1,2 given by

v1,2
2 5

2m

m1,2R
2~z!

. ~15!

The transverse energy levels of the electron are expresse
terms of the frequenciesv1,2 ~or diagonal mass elementsm1,2
corresponding to the axes perpendicular to the axis of
wire!, and they are given by38

en1n2
5\v1~n11 1

2 !1\v2~n21 1
2 !, ~16!

with

v65 1
2 $@vc

21~v11v2!2#1/26@vc
21~v12v2!2#1/2%.

~17!

Here, n1 and n2 are non-negative integers andvc
5eH/cm' is the cyclotron frequency. The energy leve
en1n2

given by Eqs.~16! and ~17! transform to the Fock-

Darwin levels39 in the symmetric casev15v25v0 ~i.e., iso-
tropic Fermi surface! with

v6
s 5 1

2 ~vc
214v0

2!1/26vc . ~18!

In the following we discuss the results of our calculatio
for bismuth nanowires with different orientations of the cry
tallographic axes with respect to the axis of the wire. In o
calculations we use the following values for the diagon
elements of the mass tensor:40 m0 , 0.02m0 , and 0.006m0 .
We use 0.012 eV for the Fermi energy andg* 550 for theg
factor @the effectiveg factor for bismuth is of the order o
m0 /m' ~Ref. 37!#.

In Fig. 5 we show~a! the conductance and~b! the cohe-
sion force as a function of the length of a bismuth nanow
for different values of an applied magnetic field. The co
ductance of the wire decreases with the length as the ra
of the narrowest part of the wires decreases, thus redu
the number of the conducting electronic channels in
bottleneck of the constriction. The cohesive force oscilla
as a function of the length of the wire in correspondence w
the changes in the conductance. Note that for stronger
plied magnetic fields the values for the conductance, as w
as the amplitude of the cohesive force, are smaller sinc
smaller number of conducting channels exists~below EF! in
the narrowest part of the constriction. The main effect of
magnetic field on the force is to modify the oscillatory pa
tern @which exists already in zero field; see the solid line
Figs. 5~a! and 5~b!#, including the appearance of new peak
This effect, which is correlated with variations in the wire
conductance@compare panels~a! and ~b!#, originates from
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PRB 62 10 471MAGNETOCOHESION OF NANOWIRES
magnetic-field-induced removal of both orbital and spin d
generacies and shifts of the electronic transverse energy
els in the nanowire.

In Fig. 6 we show as a function of the strength of t
applied magnetic field,~a! the conductance and~b! the cohe-
sion force for wires of different lengths, oriented such th
their largest (m0) diagonal element of the mass tensor c
responds to the axis of the wire. All wires in Fig. 6 have t
same volume and the radius,Rmax, at the end of the constric
tion. The behavior of the conductance as a function of
magnetic field demonstrates a ‘‘magnetic switch’’ effect d
cussed by us previously.29 The pattern of variation of the
cohesion force correlates with the step pattern of the cond
tance. From comparison of the different curves in Fig. 6
observe that wires with a larger number of conducta
channels exhibit a higher sensitivity to the magnetic fie
Note the appearance of conductance steps with a magn

FIG. 5. ~a! Conductance~G, in units of 2e2/h! and~b! cohesive
force ~F, in pN! of a bismuth wire, modeled via a soft-wall confin
ing potential with a variable shape, plotted vs the length of the w
L ~in units of 1025 cm!. The different curves correspond to th
marked values of the applied longitudinal~i.e., directed along the
axis of the wire! magnetic field~in units of tesla, T!. The Fermi
energy for bismuth was taken to be 0.012 eV. The diagonal elem
of the mass tensor corresponding to the direction along the ax
the wire ismi5m0 , and the effectiveg factor used in our calcula
tions is 50. As the wire elongated its profile was readjusted@see Eq.
~6!# such that its volume (V52.13310214 cm3) and the radius of
its maximal cross section (Rmax51.0231025 cm) remained con-
stant. The geometry of the wire is shown in Fig. 1~b!.
-
v-

t
-

e
-

c-
e
e
.
de

of e2/h rather than 2e2/h due to removal of the degenerac
of the electron energy levels by the Zeeman spin splittin

The calculations of the cohesion force and of the cond
tance presented above pertain to bismuth wires oriented
that the largest diagonal element of the electron-mass te
coincides with the axis of the wire (mi5m0). In this case the
amplitude of the cohesion force is maximal. Indeed, it m
be shown easily that the cohesion force behaves as

F;mi
1/2/~m'

3/2R0
3!. ~19!

Since for a wire with a fixed number of conducting channe
R0;1/m'

3/2, one obtainsF;Ami. This estimate demon
strates enhancement~order of magnitude! of the amplitude of
the cohesion force oscillations in the wires wheremi is maxi-
mal (m0) compared to the wires wheremi is minimal
(0.006m0). For bismuth nanowires with a fixed transver
dimension the influence of the crystallographic axis orien
tion will have an even more profound effect on the electro
transport and cohesion force. Indeed, for a fixed value ofR0
we find that the amplitude of the force oscillations will be
orders of magnitude larger for wires with their crystall
graphic axis corresponding to the largest diagonal elemen
the mass tensor oriented along the axis of the wire, compa
to wires where such a crystallographic axis is perpendicu
to the axis of the wire. The crystallographic axis orientati

,

nt
of

FIG. 6. ~a! Conductance~G, in units of 2e2/h! and~b! cohesive
force ~F in pN! of the bismuth wire described in Fig. 5 plotted v
the magnitude of the applied longitudinal magnetic field~in units of
tesla, T!. The different curves correspond to the marked values
the length of the wire~in units of 1025 cm!.
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10 472 PRB 62E. N. BOGACHEK, A. G. SCHERBAKOV, AND UZI LANDMAN
will also affect the electronic transport through the nanow
sincem' , as well as the strong anisotropy, will define t
number of conducting channels in the narrowest part of
nanowire. We also note that wires with smallerm' are more
sensitive to the magnetic field and are much better candid
for the demonstration of the influence of an applied magn
field on the electronic quantum transport; wires with suc
crystallographic axis orientation may exhibit ‘‘magnet
blockade’’ of the quantum electronic transport29 at rather
modest magnetic field values.

V. SUMMARY

The model analysis that we performed demonstrates
the elongation process in nanowires may be influenced
external parameters such as a magnetic field and/or an
plied bias voltage. We studied magnetomechanical prope
in nanowires modeled via hard- and soft-wall confining p
tentials. In both cases oscillations of the cohesive force oc
when the quantized conductance of the wire changes f
one conductance plateau to another. The soft-wall poten
model allows an analytical analysis of the magnetocohes
and is applicable to metals with a strong anisotropy of
Fermi surface. We have shown that the amplitude of
cohesive force oscillations depends on the orientation of
crystallographic axes with respect to the axis of the nan
ire. For special orientations of the crystallographic axis
force oscillations might be substantially enhanced. For b
n
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muth nanowires with approximately the same number
conducting channels the amplitude of the cohesion forc
about an order of magnitude larger if the largest diago
element of the mass tensor lies along the axis of the wire
compared to wires where that crystallographic axis is perp
dicular to the symmetry axis of the wire. Additionally, th
soft-wall potential model for nanowire may be generaliz
for calculations with arbitrary orientation of the magne
field; for a similar analysis of the magnetoconductance w
an arbitrary orientation of the applied magnetic field s
Refs. 28, 30, and 41.

Experimental investigations of cohesive force fluctuatio
are of importance because they allow probing of aspects
taining to electronic contributions to the cohesive force a
ing during an elongation process of the nanowires. Such
fects may be observed more easily in semimetallic nanow
with the use of magnetic fields with fluxes of the order of t
flux quantum; e.g., for a bismuth nanowire with a few tran
verse electronic modes~that is, Bi wires with radii of
;20–50 nm! this corresponds to readily available magne
fields of several teslas.
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