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Nonlinear Peltier effect and thermoconductance in nanowires
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A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of
applied magnetic fields, is presented. It is shown that in the nonlinear regime~finite applied voltage! new peaks
in the Peltier coefficient appear leading to violation of Onsager’s relation between the Peltier and thermopower
coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance
has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the
Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads
to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting
channels. Possible control of thermal transport in nanowires through external parameters, that is applied
through finite voltages and magnetic fields, is discussed.@S0163-1829~99!04140-5#
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I. INTRODUCTION

Electric and heat transport processes between bulk re
voirs connected via a system of reduced size~microconstric-
tion! have been the subject of numerous studies for a ra
long time.1~a!–1~c! In recent years research pertaining to su
phenomena focused particularly on ballistic transp
through two-1~b! and three1~c!-dimensional~2D and 3D, re-
spectively! constrictions~referred to also as point contacts
wires! with a transverse size~cross-sectional radius,ao , in
the case of a 3D wire! comparable to the Fermi waveleng
(lF) of the electrons. In such cases the transport is of qu
tum nature, unlike the case of classical point contacts w
kFao@1 ~that is, in the Sharvin limit2!, portraying the dis-
crete character of the electronic transport modes~transverse
subbands, or conducting channels! which develop in the wire
due to its reduced size. The quantum nature of transport
nomena in such wires is exhibited by a step-wise quant
tion of the electric conductance1~b!,1~c! ~varying as a function
of a gate voltage, or equivalently the width of the constr
tion, in steps of the conductance quantum, 2e2/h, or mul-
tiples thereof!, as well as by quantization of the thermal co
ductance and a consequent peaklike~oscillatory! variation of
the thermopower and Peltier coefficient~the later related to
the generation of a heat current driven by an applied volt
between the connected reservoirs under isother
conditions!.1~d!,3,4 These phenomena, as well as magn
totransport processes in such 3D quantum1~d! wires, have
been investigated mostly in the linear-response regime;
theoretical studies of finite-voltage~i.e., nonlinear! effects on
electric and/or magnetoconductance in 2D and 3D quan
constrictions, see Ref. 5 and Refs. 6 and 7, respectively,
7, respectively, and for a most recent discussion of non
earities in thermal transport through 2D quantum point c
tacts see Ref. 8.

In this paper, we focus on thermal transport properties
3D quantum nanowires through comparative theoret
analysis of the thermal conductance and Peltier coefficie
in the linear and nonlinear regimes. One of our findings p
tains to significant finite-voltage effects on the behavior
the Peltier coefficient as a function ofkFao ; that is, we find
marked variations in the peak structure of the Peltier coe
cient ~including the development of new peaks! from it’s
PRB 600163-1829/99/60~16!/11678~5!/$15.00
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linear response dependence on the Fermi energy and/o
quantum wire’s lateral sizes, implying violation of Onsage
symmetry relations between the kinetic coefficients. Ad
tionally, we find that as in the case of 2D quantum po
contacts3,4 the Wiedemann-Franz~WF! law, relating the ther-
mal and electric conductances, which holds in classical p
contacts,9 is violated in 3D quantum wires due to the stron
energy dependence of the transmission probabilities of
conducting electrons through the wire; in this context
also demonstrate here restoration of the WF law when
energy level quantization effects are less effective, that is
short quantum wires where tunneling contributions to
transmission probabilities become significant, and/or at s
ficiently low temperatures when the Fermi distribution
sharpened. Furthermore, we investigate the influence of m
netic fields on thermal transport in 3D quantum wires, a
demonstrate that it may be controlled by external magn
fields as well as by applied finite voltages.

In the following section, we introduce first the basic e
pressions for the electric and entropy currents in wires
review the definitions of the various transport coefficients
the context of classical point contacts where derivations
analytical expressions are possible~Sec. II!. Analysis of the
transport coefficients for quantum wires is given in Sec.
and we summarize our results in Sec. IV.

II. TRANSPORT AND CLASSICAL POINT CONTACTS

We consider ballistic electric and thermal transp
through a three-dimensional~3D! nanowire connecting two
bulk reservoirs. A bias voltageV is applied between the res
ervoirs which are kept at different temperaturesT1 andT2 .
Due to the existence of electrons with different temperatu
in the wire thermal equilibrium cannot be established.

Thermal transport through a nanowire may be descri
in the entropy current formalism9 modified in Ref. 10 for the
Landauer scheme.11 In this description the electric currentI,
and the entropy flowI s ,12 are expressed in terms of th
equilibrium Fermi functionsf o , of the bulk reservoirs, and
have the forms~we assume the wire to be symmetric abo
the middle7!
11 678 ©1999 The American Physical Society
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I 5
2e

h E dEF f oS E2eV/22m1

kBT1
D2 f oS E1eV/22m2

kBT2
D G

3( Tmn;m8n8~E!, ~1!

and

I s5
2kB

h E dEFvoS E2eV/22m1

kBT1
D2voS E1eV/22m2

kBT2
D G

3( Tmn;m8n8~E!. ~2!

Here, the chemical potentialsm i5m(Ti), i 51 or 2, are de-
termined by the temperatures of the reservoirsTi ~for the
case of an isotropic and quadratic dispersion law for the e
trons,m.«F2(pkBT)2/12«F , where«F is the Fermi energy
andkB is the Boltzmann constant!, Tmn;m8n8 is the transmis-
sion probability for the incidentmnchannel, and the function
vo in Eq. ~2! is the entropy density

vo~x!5 f o~x!ln f o~x!1@12 f o~x!# ln@12 f o~x!#. ~3!

The sums in Eqs.~1! and~2! run over all incident and trans
mitted channels.

Classical point contacts

While the focus of our study is on transport phenomena
quantum wires (kFao;1), we review first the case of large
classical, point contacts~of the Sharvin type,2 with kFao
@1) where it is possible to derive analytical expressions
the pertinent transport properties~this also allows us to con
veniently introduce the various transport coefficients that
discuss for quantum constrictions in the following sectio!.
For such systems, the sums in Eqs.~1! and ~2! may be ap-
proximated ~assuming unit transmission probabilities! by
(kao)2/4, and forkBT!«F we obtain the following transpor
expressions for the electric and entropy currents9 ~compare
with the corresponding equations for the electric and h
current densities in homogeneous systems13!

I 52GV* 1K~T2
22T1

2!, ~4!

I s52K~T11T2!V* 1LoG~T22T1!. ~5!

Here, V* 5V1(m12m2)/e is the difference between th
electrochemical potentials,G5(2e2/h)(kFao)2/4 is the elec-
trical conductance of the classical 3D contact~Sharvin’s
conductance2!, K5kB

2pem* ao
2/(12\3) is the thermoelectric

coefficient withm* being the electronic effective mass, an
L05p2kB

2/(3e2) is the Lorentz number. The fact that th
expressions forI and I s involve the same thermoelectric co
efficient K follows from the Onsager principle. Note tha
relations~4! and~5! were obtained here beyond the standa
formulation of nonequilibrium thermodynamics, since t
differenceT22T1 was not assumed to be small.

In practice determination of the various transport coe
cients in Eqs.~4! and~5! requires certain arrangements of t
apparatus.13 For example to measure the electrical cond
tanceG, the apparatus is arranged such that the speci
~here the nanowire! and reservoirs are at isothermal cond
tions ~i.e., T15T25T) while a voltage differenceV ~or
c-
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equivalently an electric field! is applied. Measurement of th
electric currentI allows then a determination ofG.

A temperature differenceDT5T22T1 between the reser
voirs induces heat flowQ, through the wire. In the linea
regime~with respect toDT), the heat flow is related to the
entropy current asQ5TIs . To measure the thermocondu
tanceGT , the system is electrically insulated, thus preve
ing the flow of electric current through the wire~i.e., I 50),
and

GT5 limDT→0S Q

DTD U
I 50

. ~6!

Under these conditions one obtains from Eq. 4~with I 50)
and Eq. 5~Ref. 9!

GT5L0S 12
4T2K2

L0G2 D TG, ~7!

where T[(T11T2)/2. To order (kBT/«F)2 the correction
due to the second term in the bracket on the right-hand
of Eq. ~7! may be neglected13 ~certainly for metals! andGT
5L0TG, a relation known as the Wiedemann-Franz law.13

From Eq. ~4! with I 50 and T2ÞT1 one observes the
generation of a thermopower in the point contact,«T[V*
5K(T2

22T1
2)/G, given by

«T5
p2kB

2

6e«F
~T2

22T1
2!. ~8!

The ~absolute! thermopower coefficients~the Seebeck coef
ficient! is defined as

S5 limDT→0S «T

DTD U
I 50

, ~9!

yielding for the classical point contact~in the linear regime
with respect toDT) ~Ref. 9!

S5
p2kB

2T

3e«F
. ~10!

An additional thermoelectric phenomena that we ment
here is the Peltier effect, which describes the generation
thermal current, associated with an electric current driven
a circuit under isothermal conditions~i.e., T15T2) by an
external voltageV. The Peltier coefficient

P5 limDI→0S TIs

DI D U
T25T15T

, ~11!

is generally related9 to the absolute thermal power coefficie
S as P5ST ~this relation can be easily verified using Eq
~4! and~5!, with the corresponding expressions forG andK,
in the above definition ofP!.

III. QUANTUM WIRES

To evaluate the transport coefficients for 3D quantu
nanowires~i.e., when the Fermi wavelength is of the order
the lateral size of the wire! we start from Eqs.~1! and~2! for
the electric and entropy currents, in conjunction with t
definitions of the various coefficients given in the previo
section. To this aim we will model the nanowire as a co
striction whose cross sections perpendicular to the wir
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axis ~z! are taken to be circles of radiia(z).14 In calculations
involving a magnetic field it is taken to be parallel to th
wire’s axis. Assuming that the functiona(z) is slowly vary-
ing on the scale ofkF

21 (kF is the Fermi wave vector! the
electronic transmission probability may be calculated in
adiabatic approximation.15,16 In this case the transmissio
probability has a diagonal form~no mode mixing! ~Ref. 17!

Tmn;mn~E!511exp$22p@E2Emn~0!#/@2~\2/m* !

3Emn9 ~0!#1/2%, ~12!

whereEmn(0) are the transverse electronic energy levels
the narrowest part of the wire (z50), which we calculate in
the hard-wall potential approximation; Emn9 (0)
5]2Emn(0)/]z2, m50,61,..., andn51,2,... are the quan
tum numbers.

We examine first the differential Peltier coefficient of th
nanowire,P @Eq. ~11!#. In the absence of a magnetic field th
transverse energy levelsEmn

(o) @see Eq.~12!# are given by the
expressionEmn

(o)5\2gmn
2 /2m* a2(z),16 wheregmn are the ze-

ros of the Bessel function. To calculate the Peltier coeffici
we note from Eq.~11! thatP5TG21(]I s /]V)uDT50 , where
G5(]I /]V)uDT50 is the differential electric conductance
Taking the indicated derivatives of Eqs.~1! and ~2! with
respect toV and ~numerically! evaluating the resulting inte
grals over the energy, in conjunction with Eq.~12!, yields
then the value ofP.

The variation of the Peltier coefficient as a function of t
dimensionless parameterkFao is shown in Fig. 1 forkBT
50.01«F , R/ao550, and several values of the applied vo
ageV @R51/a9(0) is the axial radius of curvature that d
termines the effective length of the wire#. First, we note that
the Peltier coefficient has a peaklike structure, with the

FIG. 1. The Peltier coefficient~P, in units of kBT/e) of a 3D
wire plotted vs. the dimensionless parameterkFa0 , for H50.
kBT/«F50.01, R/a0550. The different curves correspond to th
three marked values of the applied voltage (V in units of«F /e). In
the linear regime (V→0) the Peltier coefficient~in the above units!
coincides with the thermopower coefficient~S! according to the
Onsager relationP/T5S, and both are given by the solid line
Deviations from the above Onsager relation occur for higher
plied voltages~compare the Peltier coefficients depicted by t
dashed and dash-dotted curve with the solid curve correspon
to S!.
e

n

t

-

sitions of the peaks as a function ofkFao@ao[a(0)# deter-
mined by the sequence of zeros of the Bessel functiongmn
and the magnitude of the applied voltage. These peak p
tions coincide with the positions of the differential condu
tance steps calculated at the same values of the app
voltages.7 The Peltier coefficient forV→0 ~solid lines in the
top and bottom curves in Fig. 1! coincides with the ther-
mopower coefficient18 ~the Seebeck coefficient! S, in accor-
dance with the aforementioned Onsager relationP5ST.
However, increase of the applied voltage~that is beyond the
linear regime! leads to the appearance of new peaks in
Peltier coefficient~dash-dotted line in the top and dashed li
in the bottom curves, corresponding to the voltages eV eq
to 0.07«F and 0.15«F , respectively!, and a consequent vio
lation of the above Onsager relation. Note that the origin
the appearance of the peaks in the Peltier coefficient is th
finite voltage differentiates right- and left-moving electro
leading to the existence of different effective chemical p
tentials for opposite moving electrons@see Eqs.~1! and~2!#.
We recall here that in large classical constrictions,2 the en-
tropy flow is a linear function of the applied voltage9 and the
Peltier coefficient is a constant~see Sec. II!.

In a magnetic field the transverse energy levels of
electrons@Emn(0) in Eq.~12!# are determined by the zeros o
the confluent hypergeometric function.17 The magnetic field
shifts the transverse energy levels and removes theim
degeneracy,17,19 resulting in the appearance of an oscillatin

-

ng
FIG. 2. ~a! The Peltier coefficient~P, in units ofkBT/e) of a 3D

wire plotted vs. the dimensionless magnetic fluxw/w0

5Hpa0
2e/hc, with R/a0550 andkFa054 ~corresponding to three

conducting channels forH50 andV→0). Different curves corre-
spond to the marked values of the applied voltage (V in units of
«F /e), and in each case for two different temperatures~T, in units
of «F /kB). ~b! The Peltier coefficient of the wire plotted vsw/w0

andeV/«F , for kBT/«F50.01.
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structure of the Peltier coefficient similar to oscillations
the thermopower coefficient discussed by us earlier.18 In Fig.
2~a! we display, for several values ofV and the temperature
T, the dependence of the Peltier coefficient on the dim
sionless magnetic fluxw/w0 (w5pa0

2H is the magnetic flux
through the narrowest part of the wire andwo5hc/e is the
flux quantum! for a wire withR/a0550 andkFa054 corre-
sponding to three conducting channels atH50 andV→0.
At V→0, the magnetic field dependencies of the Peltier a
thermopower coefficients are the same~bottom curve!. In-
crease of the voltage leads to differences in the behavio
the Peltier~upper curves! and thermopower coefficients. Th
behavior of the Peltier coefficient can be influenced either
an applied magnetic field, an applied voltage or combi
tions of the two as shown in Fig. 2~b! for kBT50.01«F .

Next we examine the thermoconductance@Eq. ~6!# in
quantum nanowires.20 As noted above@see Eq.~7! and re-
lated discussion# in a classical constriction the thermal (GT)
and electric~G! conductances obey the Wiedemann-Fra
law. However, in quantum wires the Wiedemann-Franz l
is violated, due mainly to the strong energy dependence
the transmission probabilities@Eq. ~12!# near«F .21 To illus-
trate this we plot the electric conductance~G, dashed line, in
units 2e2/h) and the thermoconductance (GT , solid line, in
units 2e2LoT/h) in Fig. 3~a!, and their ratio@in Fig. 3~b!#,
versuskFao for kBT50.01«F and for different values of the
dimensionless parameter@a0a9(0)#215R/a0 . Note that

FIG. 3. The electrical conductance~G, in units of 2e2/h, de-
noted by the dashed line! and the thermoconductance (GT , in units
of 2e2L0T/h, denoted by the solid line! in ~a! and their ratio in~b!
plotted vs the dimensionless parameterkFa0 , with H50 and
kBT/«F50.01. The different curves correspond to the three mar
values of the parameterR/a0 .
-

d

of

y
-

z

of

smearing of the steps due to tunneling effects in the sho
wires restores the Wiedemann-Franz behavior. Deviati
from the Wiedemann-Franz law are reduced also at low te
peratures because of the decrease of the energy region i
electrons distribution@that is, sharper Fermi functions in Eq
~1! and ~2!# contributing to the transport coefficients.3,4

The thermoconductance of the wire may be also affec
by applied magnetic fields. In Fig. 4 we display the magne
field dependence of the electrical and thermal conductan
for ~a! kBT50.004«F and ~b! kBT50.02«F for R/a05100,
and for different values of the parameterkFa0(kFa052.6,
4.2, 5.5, and 6.5! corresponding atH50 to 1, 3, 5, and 8
conducting channels, respectively. Such a behavior of
transport coefficients demonstrates, both for the electr
and thermal transport, a ‘‘magnetic switch’’ effect and ev
magnetic blockade~in wires with small values ofkFa0). At
lower temperatures the dependence ofG andGT on the mag-
netic field are increasingly similar to each other@compare
Figs. 4~a! and 4~b!#.

IV. SUMMARY

The analysis presented above shows that studies of t
mal transport in nanowires can be used as independent m
surements, in addition to those of the electric current,
investigations of the properties of three-dimensional na
structures. An important conclusion is that the thermal tra
port as well as the electric one,7,17 can be controlled by ex-
ternal parameters, such as an applied voltage and/o
magnetic field. Such control is of particular importance f

d

FIG. 4. The conductance~G, in units of 2e2/h, denoted by the
dashed line! and the thermoconductance (GT , in units of
2e2L0T/h, denoted by the solid line! of a 3D wire vs the dimen-
sionless magnetic fluxw/w0 , with R/a05100 andkBT/«F50.004
in ~a! andkBT/«F50.02 in ~b!. Different curves correspond to th
marked values ofkFa0 .
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investigations of~free-standing! nanowires, where the appli
cations of modern experimental techniques for generatio
such wires1~c! ~based on scanning tunneling and force m
croscopy, mechanical break junctions, and pin-plate m
ods! do not allow full mechanical control and reproducibili
from one experiment to the other.

We have demonstrated here theoretically a nonlin
Peltier effect in 3D nanowires, exhibited by the appeara
of peaks at finite voltages compared to the linear-respo
regime~deviation from the Onsager relation, Fig. 1!, as well
as magnetic field induced oscillations of the Peltier coe
cient ~Fig. 2!. In addition we have investigated the therm
conductance of nanowires in a magnetic field, includ
magnetic blockade of the thermal transport~Figs. 3 and 4!.
Such a behavior of the thermal transport coefficients
nanowires is due to the influence of the external fields on
spectrum of electronic states in the nanoconstrictions, all
ing one to change and control the number of conduct
n-
n
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channels. These effects might be experimentally observe
magnetic fields with fluxes of the order of the flux quantu
~see detailed discussion in Ref. 17!, and voltages, such tha
eV is of the order of the spacing between the electro
energy levels. Such conditions, which might be difficult
achieve for typical metals, can be readily obtained for se
metallic wires even in the linear voltage regime. Furth
more, the high sensitivity of the thermal transport to the a
plied voltage may allow observation of the phenome
discussed above in the nonlinear regime, even for typ
metals~see also discussion in Ref. 7!.
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