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Nonlinear Peltier effect and thermoconductance in nanowires
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A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of
applied magnetic fields, is presented. It is shown that in the nonlinear réfiimte applied voltagenew peaks
in the Peltier coefficient appear leading to violation of Onsager’s relation between the Peltier and thermopower
coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance
has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the
Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads
to the possibility of magnetic blockade of thermal transport in wires with a small nhumber of conducting
channels. Possible control of thermal transport in nanowires through external parameters, that is applied
through finite voltages and magnetic fields, is discusg®d163-1829)04140-3

[. INTRODUCTION linear response dependence on the Fermi energy and/or the
quantum wire’s lateral sizes, implying violation of Onsager’s
Electric and heat transport processes between bulk resesymmetry relations between the kinetic coefficients. Addi-
voirs connected via a system of reduced sinécroconstric-  tionally, we find that as in the case of 2D quantum point
tion) have been the subject of numerous studies for a rathaontactd the Wiedemann-Fran@VF) law, relating the ther-
long timeX@-1© |n recent years research pertaining to suchmal and electric conductances, which holds in classical point
phenomena focused particularly on ballistic transportcontacts’ is violated in 3D quantum wires due to the strong-
through two!® and thre&®-dimensional(2D and 3D, re- energy dependence of the transmission probabilities of the
spectively constrictions(referred to also as point contacts or conducting electrons through the wire; in this context we
wires) with a transverse sizécross-sectional radius,, in - also demonstrate here restoration of the WF law when the
the case of a 3D wilecomparable to the Fermi wavelength energy level quantization effects are less effective, that is for
(\g) of the electrons. In such cases the transport is of quanshort quantum wires where tunneling contributions to the
tum nature, unlike the case of classical point contacts withyansmission probabilities become significant, and/or at suf-
ke@o>1 (that is, in the Sharvin limf, portraying the dis- ficiently low temperatures when the Fermi distribution is
crete character of the_ electronic transport moﬂ_mnsver_se sharpened. Furthermore, we investigate the influence of mag-
subbands, or conducting channelsiich develop in the wire netic fields on thermal transport in 3D quantum wires, and
Hemonstrate that it may be controlled by external magnetic
Fields as well as by applied finite voltages.
In the following section, we introduce first the basic ex-

nomena in such wires is exhibited by a step-wise quantiz
tion of the electric conductant®© (varying as a function

of a gate voltage, or equivalently the width of the constric- . . C o
tion, in steps of the conductance quanture?/®, or mul- pressions for the electric and entropy currents in wires and

tiples thereof, as well as by quantization of the thermal con- review the definition_s of thg various transport coef_fici(_ents in

ductance and a consequent peakliscillatory) variation of the cqntext of cla§S|caI point cqntacts where d(—?rlvatlons of

the thermopower and Peltier coefficiefthe later related to @nalytical expressions are possib&ec. I). Analysis of the

the generation of a heat current driven by an applied voltagéansport coefficients for quantum wires is given in Sec. lll,

between the connected reservoirs under isothermand we summarize our results in Sec. IV.

condition3.X®34 These phenomena, as well as magne-

totransport processes in such 3D quanffimwires, have

been investigated mostly in the linear-response regime; for 1. TRANSPORT AND CLASSICAL POINT CONTACTS

theoretical studies of finite-voltadee., nonlinear effects on ) o )

electric and/or magnetoconductance in 2D and 3D quantum W€ consider ballistic electric and thermal transport

constrictions, see Ref. 5 and Refs. 6 and 7, respectively, ariirough a three-dimension&8D) nanowire connecting two

7, respectively, and for a most recent discussion of nonlinbulk reservoirs. A bias voltagé is applied between the res-

earities in thermal transport through 2D quantum point con€rvoirs which are kept at different temperatufigsand T,.

tacts see Ref. 8. Due to the existence of electrons with different temperatures
In this paper, we focus on thermal transport properties ofn the wire thermal equilibrium cannot be established.

3D quantum nanowires through comparative theoretical Thermal transport through a nanowire may be described

analysis of the thermal conductance and Peltier coefficients the entropy current formalishmodified in Ref. 10 for the

in the linear and nonlinear regimes. One of our findings perLandauer schem.In this description the electric curreht

tains to significant finite-voltage effects on the behavior ofand the entropy flowls,'? are expressed in terms of the

the Peltier coefficient as a function kfa,; that is, we find  equilibrium Fermi functiond,, of the bulk reservoirs, and

marked variations in the peak structure of the Peltier coeffihave the formgwe assume the wire to be symmetric about

cient (including the development of new peakisom it's  the middl€)
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2e E—eVi2— u, E+eVi2— u, equivalently an electric fie)ds applied. Measurement of the
= ]y B I R = — electric current allows then a determination @3.
A temperature differencAT=T,— T, between the reser-
voirs induces heat flowQ, through the wire. In the linear
X 2 Tngne (E), (D) regime(with respect toAT), the heat flow is related to the
entropy current a®=TIls. To measure the thermoconduc-
and tanceGy, the system is electrically insulated, thus prevent-
| _ 2kg f e E—eVI2—u, E+eVi2— u, ingdthe flow of electric current through the witee., | =0),
: Q
Gr=limyr_o| 7= (6)
X2 Tmnmnr(E). 2 AT/ o

Under these conditions one obtains from Eqwdth 1=0
Here, the chemical potentiajs;= u(T;), i=1 or 2, are de- and Eq. 5(Ref. 9 a )

termined by the temperatures of the reservdirs(for the
case of an isotropic and quadratic dispersion law for the elec-
trons,u=ger— (7kgT)?/12e , wheres is the Fermi energy
andkg is the Boltzmann constantT . iS the transmis-
sion probability for the incidentnnchannel, and the function
V, in EQ. (2) is the entropy density

2K 2
GT:LO(]-_W) TG, (7)
where T=(T;+T,)/2. To order kgT/eg)? the correction
due to the second term in the bracket on the right-hand side
of Eq. (7) may be neglectéd (certainly for metalsand Gt
Vo(X)=F,(X)Inf (X)+[1=F,(X)]IN[1—fo(x)]. (3) =LoTG, a relation known as the Wiedemann-Franz faw.

From Eq.(4) with =0 and T,#T,; one observes the
generation of a thermopower in the point contagi=V*
=K(T5—T?)/G, given by

Classical point contacts ”Zké )
. _ _ STZQ(Tz_Tl)- 8

While the focus of our study is on transport phenomena in F
quantum wires Kra,~ 1), we review first the case of large, The (absolutg thermopower coefficient@he Seebeck coef-
classical, point contactéof the Sharvin typé&, with kra, ficient) is defined as
>1) where it is possible to derive analytical expressions for e
the pertinent transport propertiéhis also allows us to con- S= IimATHO<_T)
veniently introduce the various transport coefficients that we AT
glsrcgiirfosty(l?;;:Thgogjﬂgt;gné q']g ;hn% f((;l)lor\r/]v;r;/gbzeg);c_m yi_elding for the classical point conta¢in the linear regime

; . . o C o with respect toAT) (Ref. 9

proximated (assuming unit transmission probabilitieby
(ka,)?/4, and forkgT<ep we obtain the following transport w2kAT
expressions for the electric and entropy currégempare = 3esp (10)

with the corresponding equations for the electric and heat
current densities in homogeneous systeins An additional thermoelectric phenomena that we mention

y here is the Peltier effect, which describes the generation of a
|=—-GV*+K(T3—TY), (4 thermal current, associated with an electric current driven in
. . _ a circuit under isothermal conditionge., T;=T,) by an
ls= = KT+ T) VI +LoG(To = Ty). ) external voltage/. The Peltier coefficient

The sums in Eq91) and(2) run over all incident and trans-
mitted channels.

, 9

1=0

Here, V* =V+(u,— uy)/e is the difference between the Tl
electrochemical potential§ = (2e?/h)(kga,)?%/4 is the elec- 1= |imA|Ho(H)
trical conductance of the classical 3D contd8harvin's

2 2 3 -
cond_ut_:tanc%_, K=kgmen*ag/(12h°) is the thermoelectric g yanerally relatetto the absolute thermal power coefficient
coefficient withm* being the electronic effective mass, and SasII=ST (this relation can be easily verified using Egs.

Lo=m2k3/(3€?) is the Lorentz number. The fact that the (4) and (5), with the corresponding expressions B=andK,
expressions fot and| involve the same thermoelectric co- jn the above definition ofI).
efficient K follows from the Onsager principle. Note that
relations(4) and(5) were obtained here beyond the standard
formulation of nonequilibrium thermodynamics, since the
differenceT,— T, was not assumed to be small. To evaluate the transport coefficients for 3D quantum
In practice determination of the various transport coeffi-nanowiredi.e., when the Fermi wavelength is of the order of
cients in Eqs(4) and(5) requires certain arrangements of the the lateral size of the wijeve start from Eqs(1) and(2) for
apparatus® For example to measure the electrical conduc-the electric and entropy currents, in conjunction with the
tanceG, the apparatus is arranged such that the specimedefinitions of the various coefficients given in the previous
(here the nanowipeand reservoirs are at isothermal condi- section. To this aim we will model the nanowire as a con-
tions (i.e., T;=T,=T) while a voltage difference/ (or  striction whose cross sections perpendicular to the wire’s

: 11
T,=T=T

IIl. QUANTUM WIRES
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coincides with the thermopower coefficie(®) according to the
Onsager relatiodl/T=S, and both are given by the solid line.

Deviations from the above Onsager relation occur for higher ap- 0
plied voltages(compare the Peltier coefficients depicted by the

dashed and dash-dotted curve with the solid curve corresponding
to 9. FIG. 2. (a) The Peltier coefficient], in units ofkgT/e) of a 3D

wire plotted vs. the dimensionless magnetic flux/¢g

axis (2) are taken to be circles of radiiz).* In calculations = Hﬂag?/hC. with R/a,=50 andkga,=4 (corresponding to three
involving a magnetic field it is taken to be parallel to the conducting channels fdd =0 andV—0). Different curves corre-

wire's axis. Assuming that the functica(z) is slowly vary- spond to thg marked values of th.e applied voltayeir{ gnits .of
ing on the scale ok,Zl (ke is the Fermi wave vectprthe er/e), and in each case for two different temperatufgsin units

. ot - . f kg). The Pelti ffici f the wi |
electronic transmission probability may be calculated in the) e /kg). (b) The Peltier coefficient of the wire plotted s/ ¢

. . . . . . deVieg, for kgT/eg=0.01.
adiabatic approximatiof''® In this case the transmission o C " oF 10T KB l/eF
probability has a diagonal forrfno mode mixing (Ref. 179

@/, : )

sitions of the peaks as a function kfa,[a,=a(0)] deter-

Trnnmn(E) =1+ exp{ = 2a[E—Epo(0) J/[ - (A%/m*) mined by the sequence of zeros of the Bessel funciigp
' . N and the magnitude of the applied voltage. These peak posi-
XEni(0)1Y3, (12)  tions coincide with the positions of the differential conduc-

i _tance steps calculated at the same values of the applied
whereE,(0) are the transverse electronic energy levels inq\aqed’ The Peltier coefficient fow— 0 (solid lines in the

the narrowest part of the wire{0), which we calculate in -y 504 bottom curves in Fig.) Icoincides with the ther-
the2 hard—wr;tll potential  approximation; Eq,(0)  mopower coefficierf (the Seebeck coefficiens, in accor-
=0°Emn(0)/9z°, m=0,%1,.., andn=1,2,... are the quan- gance with the aforementioned Onsager relatidmST.
tum numbers. _ _ _ o However, increase of the applied voltag@eat is beyond the
We examine first the differential Peltier coefflc!en.t of the jinear regimg leads to the appearance of new peaks in the
nanowire I [Eq. (11)]. In the absence of a magnetic field the pgjiier coefficientdash-dotted line in the top and dashed line
transverse energy levels) [see Eq(12)] are given by the in the bottom curves, corresponding to the voltages eV equal
expressiorE(Q =#2y2 /2m* a%(z),'® where yn, are the ze- to 0.0% and 0.15, respectively, and a consequent vio-
ros of the Bessel function. To calculate the Peltier coefficientation of the above Onsager relation. Note that the origin of
we note from Eq(11) thatIT=TG 1(dls/dV)|s1—0, Where  the appearance of the peaks in the Peltier coefficient is that a
G=(dl1dV)|a1=0 is the differential electric conductance. finite voltage differentiates right- and left-moving electrons
Taking the indicated derivatives of Eq€l) and (2) with leading to the existence of different effective chemical po-
respect tov and (numerically evaluating the resulting inte- tentials for opposite moving electrofsee Eqs(1) and(2)].
grals over the energy, in conjunction with E4.2), yields ~ We recall here that in large classical constrictibribe en-

then the value ofl. tropy flow is a linear function of the applied voltagend the
The variation of the Peltier coefficient as a function of thePeltier coefficient is a constafgéee Sec. )
dimensionless paramet&ga, is shown in Fig. 1 forkgT In a magnetic field the transverse energy levels of the

=0.01e¢, R/a,=50, and several values of the applied volt- electrondE,,,(0) in Eqg.(12)] are determined by the zeros of
ageV [R=1/a"(0) is the axial radius of curvature that de- the confluent hypergeometric functibhThe magnetic field
termines the effective length of the wirdrirst, we note that shifts the transverse energy levels and removes their
the Peltier coefficient has a peaklike structure, with the podegeneracy’*° resulting in the appearance of an oscillating
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FIG. 3. The electrical conductané6, in units of 2&%/h, de-
noted by the dashed linand the thermoconductanc&4, in units
of 2e?LT/h, denoted by the solid lindn (a) and their ratio in(b)
plotted vs the dimensionless parametgra,, with H=0 and

keT/er=0.01. The different curves correspond to the three markegMearing of the steps due to tunneling effects in the shorter
values of the paramet@®/a, . wires restores the Wiedemann-Franz behavior. Deviations

from the Wiedemann-Franz law are reduced also at low tem-

structure of the Peltier coefficient similar to oscillations of peratures because of the decrease of the energy region in the
the thermopower coefficient discussed by us eatfiém.Fig.  electrons distributiofithat is, sharper Fermi functions in Egs.
2(a) we display, for several values df and the temperature (1) and(2)] contributing to the transport coefficiertts.
T, the dependence of the Peltier coefficient on the dimen- The thermoconductance of the wire may be also affected
sionless magnetic flup/ ¢, (¢=ma3H is the magnetic flux by applied magnetic fields. In Fig. 4 we display the magnetic
through the narrowest part of the wire apg=hc/e is the field dependence of the electrical and thermal conductances
flux quantum for a wire with R/ay=50 andkra,=4 corre-  for (&) kgT=0.004¢ and (b) kgT=0.0% for R/ay= 100,
sponding to three conducting channelsHat 0 andv—0.  and for different values of the parameteray(keao=2.6,
At V—0, the magnetic field dependencies of the Peltier and¢-2, 5.5, and 6bcorresponding aH=0 to 1, 3, 5, and 8
thermopower coefficients are the sar®ttom curve. In-  conducting che.m.nels, respectively. Such a behavior of .the
crease of the voltage leads to differences in the behavior dfansport coefficients demonstrates, both for the electrical
the Peltier(upper curvesand thermopower coefficients. The and thermal transport, a “magnetic switch” effect and even
behavior of the Peltier coefficient can be influenced either bynagnetic blockadéin wires with small values okgao). At
an applied magnetic field, an applied voltage or combinalower temperatures the dependenc&andG+ on the mag-
tions of the two as shown in Fig(1® for kgT=0.01s . netic field are increasingly similar to each otHeompare

Next we examine the thermoconductan&g. (6)] in  Figs. 4a) and 4b)].
quantum nanowire® As noted abovdsee Eq.(7) and re-
lated discussiohin a classical constriction the thermab{)
and electric(G) conductances obey the Wiedemann-Franz
law. However, in quantum wires the Wiedemann-Franz law The analysis presented above shows that studies of ther-
is violated, due mainly to the strong energy dependence ahal transport in nanowires can be used as independent mea-
the transmission probabilitig&q. (12)] nearer .2 Toillus-  surements, in addition to those of the electric current, for
trate this we plot the electric conductan&® dashed line, in investigations of the properties of three-dimensional nano-
units 2¢%/h) and the thermoconductanc&{, solid line, in  structures. An important conclusion is that the thermal trans-
units 2?L,T/h) in Fig. 3@), and their ratio[in Fig. 3b)],  port as well as the electric orfé/ can be controlled by ex-
versuskra, for kgT=0.01e and for different values of the ternal parameters, such as an applied voltage and/or a
dimensionless parametdraga”’(0)] *=R/a,. Note that magnetic field. Such control is of particular importance for

IV. SUMMARY
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investigations offree-standingnanowires, where the appli- channels. These effects might be experimentally observed in
cations of modern experimental techniques for generation ainagnetic fields with fluxes of the order of the flux quantum
such wires*® (based on scanning tunneling and force mi-(see detailed discussion in Ref.)1and voltages, such that
croscopy, mechanical break junctions, and pin-plate metheV is of the order of the spacing between the electronic
ods do not allow full mechanical control and reproducibility energy levels. Such conditions, which might be difficult to
from one experiment to the other. achieve for typical metals, can be readily obtained for semi-
We have demonstrated here theoretically a nonlineametallic wires even in the linear voltage regime. Further-
Peltier effect in 3D nanowires, exhibited by the appearancenore, the high sensitivity of the thermal transport to the ap-
of peaks at finite voltages compared to the linear-responsglied voltage may allow observation of the phenomena
regime(deviation from the Onsager relation, Fig, &s well  discussed above in the nonlinear regime, even for typical
as magnetic field induced oscillations of the Peltier coeffi-metals(see also discussion in Ref).7
cient (Fig. 2). In addition we have investigated the thermo-
conductance of nanowires in a magnetic field, including
magnetic blockade of the thermal transpgfigs. 3 and 4
Such a behavior of the thermal transport coefficients in This research was supported by the U.S. Department of
nanowires is due to the influence of the external fields on th&nergy, Grant No. FG05-86ER45234. Calculations were per-
spectrum of electronic states in the nanoconstrictions, allowformed at the Georgia Tech. Center for Computational Ma-
ing one to change and control the number of conductingerials Science.
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