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Shape effects on conductance quantization in three-dimensional nanowires:
Hard versus soft potentials
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~Received 7 November 1996!

Effects of the shapes of the cross sections of three-dimensional nanowires on electronic conductance quan-
tization are studied for both hard- and soft-wall potentials. In both models the quantum conductance is deter-
mined by both the area and shape of the narrowmost part of the nanowire. For the hard-wall potential the
semiclassical~Weyl! correction to the Sharvin formula provides an adequate approximation to the average
quantized conductance. For nanowires modeled by soft-wall potentials, the average quantum conductance may
be well estimated using a classical approximation.@S0163-1829~97!09128-5#
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The character of ballistic electronic transport in wir
~constrictions! is determined by the ratio between their tran
verse size and the wavelength of the electrons. In wide c
strictions, when the electronic wavelength is small compa
to the transverse size, electronic transport is classical in
ture, and the conductance through the constriction is de
mined by the Sharvin expression1

Gsh5
2e2

h

kF
2S

4p
, ~1!

wherekF is the Fermi wave vector of the electrons, andS is
the cross-sectional area. With a decrease of the transv
size, quantum effects become important, resulting in cond
tance quantization, exhibited by a steplike variation of
conductance in units of 2e2/h. Initially studied in two-
dimensional~2D! semiconductor structures~see a review in
Ref. 2!, this phenomenon can also occur, under appropr
conditions, in three-dimensional ~3D! metallic
nanowires.3–19The geometry of 2D constrictions may be d
scribed by the transverse size of the narrowmost part~so
called bottleneck! of the constriction and by its length~along
the axis!, and knowing these parameters is sufficient fo
description of transport through such constrictions in b
the classical and quantum regimes. The situation is diffe
for 3D wires. Classical transport through such constrictio
is determined according to Sharvin’s formula by the cro
sectional area, while for a description of the transport in
quantum regime additional information about the cro
sectional shape is necessary. As we will show below,
shape influences the quantum transport characteristics
significant manner.

We investigate shape effects of the cross sections of
nanoconstrictions~nanowires! on quantum transport throug
such nanowires connecting bulk reservoirs. We model
constrictions using either hard- or soft-wall potentials, a
compare the results for the quantum conductance in th
cases.

Consider ballistic electronic transport through 3D co
strictions with an arbitrary shape of the cross sections.
assume that all the cross sections along the nanoconstri
are geometrically similar, and that their size changes slo
on the scale ofkF

21. Such geometries pertain to constrictio
560163-1829/97/56~3!/1065~4!/$10.00
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with sufficiently large radii of curvature along the constri
tion ~i.e., axial radii of curvature!.

The conductance of the constriction,G, is determined by
a Landauer-type expression20,21

G5
2e2

h ( Tmn;m8n8 , ~2!

whereTmn;m8n8 is the transmission probability for the inc
dentmn channel, and the sum runs over all incident a
transmitted channels. The transmission probabilityTmn;m8n8
may be calculated from the solution of the single-parti
Schrödinger equation.

In the hard-wall potential model the electronic wave fun
tion c~r ! satisfies the potential-free Schro¨dinger equation
with the Dirichlet boundary conditioncus(z)50, where
s(z) is the surface of the constriction andz is the coordinate
in the direction of the constriction axis. The smoothness
the functions(z) allows us to use the method of adiaba
separation of variables,22 with the equations for the trans
verse @Eq. ~4!#, and longitudinal@through the constriction,
Eq. ~5!# directions given by

2
\2

2m*
DxyRz~x,y!5Emn~z!Rz~x,y!, ~3!

2
\2

2m*
d2Z~z!

dz2
1Emn~z!Z~z!5EZ~z!, ~4!

wherem* is the effective mass of the electron.
Near the narrowmost part of the constriction atz50, the

effective potential for the longitudinal motion,Emn(z), may
be expanded to second order with respect to the variablz.
In this approximation the transmission probability has a
agonal form~no mode mixing! ~Ref. 23!

Tmn;mn
21 511exp$22p@E2Emn~0!#/@~2\2/m* !

3Emn9 ~0!#1/2%, ~5!

where Emn9 (0)[]2Emn(0)/]z
2. Taking into account the

similarity relationEmn(z)/Emn(0)5S(0)/S(z), whereS(z)
is the area of the cross section atz, we can express the
second derivative of the energy in the form
1065 © 1997 The American Physical Society
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Emn9 ~0!52Emn~0!
S9~0!

S~0!
. ~6!

In this case the conductance of the constriction can be
fined in terms of the electronic energy levels at the narro
most partEmn(0) and the geometrical factorS9(0)/S(0)
@see Eqs.~2!, ~5!, and~6!#.

To calculate the conductance of the constriction, we n
to define its geometry. When all the cross sections o
nanowire are circles a sequence of conductance step
heights 1g0, 2g0, 2g0, 1g0 ,..., whereg052e2/h, reflecting
the cylindrical degeneracy of the electronic levels, will o
cur. Such a predicted sequence of quantized conduct
steps3 has been recently observed in conductance meas
ments of sodium nanojunctions.11c Deviation from circular
symmetry leads to restoration of single-step (g0) behavior of
the conductance, depending on the constriction shape
demonstrate such effects, we consider constrictions with
liptic cross sections. In elliptic coordinatesx
5C coshm cosu andy5C sinhmsinu @hereC5C(z)#, Eq.
~3! transforms to the Mathieu equation with the bounda
condition that the wave function should vanish on the surf
of the constrictionm5m0 . Under such conditions, the tran
verse electronic energy levels may be expressed in term
the zeros of the Mathieu function,qmn ,

Emn~z!5
\2qmn

2 p sinhm0coshm0

2m*S~z!
. ~7!

Substituting Eqs.~6! and~7! into Eq.~5!, for the conductance
of the constriction we obtain the following expression:

G5
2e2

h (
mn

X11expH 22pS 2p

S9~0! D
1/2F S k2S~0!

p D 1/2

2qmnsinhm0coshm0G J C21

, ~8!

wherek252m*E/\2.
To evaluate the energy dependence of the conducta

we compute the zeros of the Mathieu function. The dep
dence of the conductance on the dimensionless paramex
5@k2S(0)/4p#1/2 for constrictions with various values of th
ratio of elliptic axes~solid lines marked 2 and 3 correspon
to cothm051.13 and 5.06, respectively!, and a constan
value of the cross-sectional area, are displayed in Fig. 1;
dotted line corresponds to the classical~Sharvin! conduc-
tance,Gsh5(2e2/h)@k2S(0)/4p#, and the dashed lines rep
resent semiclassical results. The latter are described
Weyl’s corrections to the number of transverse states~chan-
nels!, which for the Dirichlet boundary condition have
form ~see, for example, Ref. 24!

GW5
2e2

h FS~0!k2

4p
2
L~0!k

4p G , ~9!

whereL(0) is the perimeter of the cross section.25 Note that
increasing the eccentricity of the constriction’s cross secti
while maintaining a constant value of the cross-sectio
area~with this condition the classical conductance value
mains constant! results in a decrease of the values of t
quantum conductance. Additionally, note that in Fig. 1
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plotted the conductance for a relatively short constrict
with @2p/S9(0)#1/253 @S9(0)5p sinh(2m0)CC9
5psinh(2m0)C/R, whereC gives the locations of the focii o
the elliptical cross section (6C,0), andR is the axial radius
of curvature of the nanowire#, which yields smearing of
some steps due to tunneling effects.

In the soft-wall potential model the constriction is mo
eled by a confining potential which characterizes the sh
and extent of the constriction. Expressing the confining
tential in the formV(x,y,z)5U(x,y)2F(z), with F(z)
>0 andF(0)50, and again separating the transverse a
longitudinal variables, the equation describing the motion
the electron through the constriction has the same form
Eq. ~4! with the effective potentialEmn2F(z), whereEmn
are the transverse energy levels of the electron in the po
tial U(x,y). Assuming smoothness of the confining potent
and expanding it to second order near the bottleneck~i.e.,
nearz50!, for the transmission coefficient we obtain

Tmn;mn
21 511expH 22p~E2Emn!Y F \2

m*
F9~0!G1/2J .

~10!

For calculations of the conductance we use a
generalization14 of the Büttiker model.26 The confining po-
tential in such a model has a form14

V~x,y,z!5V02
1
2m*vz

2z21 1
2m* ~vx

2x21vy
2y2!. ~11!

FIG. 1. Conductance~G, in units 2e2/h! of 3D asymmetric
constrictions modeled by a hard-well potential, plotted vs the
mensionless parameterx5@k2S(0)/4p#1/2, where k is the wave
vector of the electrons, andS(0) is the cross-sectional area of th
narrowmost part of the constriction. Solid lines 2 and 3 corresp
to different shapes of the elliptic cross sections of the constricti
~the ratios of elliptic axes are 1.13 and 5.06, respectively!, while
maintaining a constant value of the cross-sectional area of the
strictions. Dashed lines correspond to calculated conductance in
semiclassical limit ~Weyl’s corrections!, and the dotted line
~marked 1! corresponds to Sharvin’s conductance. Here we u
@2p/S9(0)#1/253.
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The parametervx /vy describes the degree of anisotropy
the cross section of the constriction@being spherical when
vx /vy51!#.

For the confining potential given by Eq.~11! the conduc-
tance of the constriction, in the notation of Eq.~8!, has the
form

G5
2e2

h (
mn

X11expH 22pS 2p

Sk9~0! D
1/2F S k2Sk~0!

p D 1/2

2S vx

vy
D 1/2~n1 1

2 !2S vy

vx
D 1/2~m1 1

2 !G J C21

. ~12!

Here Sk(0)52p(E2V0)/m*vxvy5p\2k2/m* 2vxvy is
the effective area of the narrowmost part of the nanow
and the parameter@2p/Sk9(0)#

1/25(vxvy)
1/2/vz determines

its effective axial length. In Fig. 2 we display the condu
tance of the constriction modeled by the soft potential giv

FIG. 2. Conductance~G, in units 2e2/h! of 3D asymmetric
constrictions modeled by a soft~harmonic! potential, plotted vs the
dimensionless parameterx5@k2Sk(0)/4p#1/2, where Sk(0)
5pq2k2/m* 2vxvy is the effective area of the narrowmost cro
section, andvx andvy are the effective frequencies of the confinin
potential~see text!. Dotted and dashed lines correspond to differ
shapes of the elliptic cross sections of the constrictions~the ratios of
the effective elliptic axes, are given byvy /vx51.13 and 5.06,
respectively!. The solid line corresponds to the classical value
the conductance, which is equal in this model to one-half of
Sharvin conductance. The parameter @(2p/Sk9(0)#

1/2

5(vxvy)
1/2/vz53, as in Fig. 1.
m

.

,

n

in Eq. ~11! for the same values of the geometrical paramet
as in Fig. 1. Curves corresponding to two values of the ra
of effective elliptic axesvy /vx are shown. It is of interest to
compare the quantized values of the conductance with t
classical analogsGsoft

cl . Substituting the classical expressio
for the transmission probabilityTcl5Sk(0)/S, whereS is the
total area, into the Landauer expression@Eq. ~2!# and inte-
grating over all values of the wave vectors, we obtain

Gsoft
cl 5S 2e2h D 1

2

kF
2S

4p
[
1

2
Gsh. ~13!

Note that the classical value of the conductance in the
proximation of a harmonic confining potential is one half
the Sharvin value. From a plot ofGsoft

cl ~the solid line in Fig.
2! we observe that for constrictions modeled by soft confi
ing potentials the classical value of the conductance is c
~unlike the case of constrictions with hard-wall potentials! to
the average quantized conductance.

The analysis which we performed demonstrates the
portance of shape corrections to quantum transport thro
3D nanoconstrictions. Quantum transport through such c
strictions is determined not only by the cross-sectional a
but also by the shape of the cross section. Effects of this t
have no analogs in two-dimensional quantum constrictio
Varying the shape of the cross section not only shifts
positions of the conductance steps but also changes the
ues of the conductance. For conductance calculations
used hard- and soft-wall model potentials. While both mo
els lead to conductance quantization some significant dist
tions occur. For nanowires made of typical metals~such as
Au, Na, or Cu! with relatively small values of the screenin
lengths, the hard-wall model potential may be mo
appropriate.18c,d As seen from Fig. 1, shape effects are
importance in this case, and the Weyl correction@Eq. ~9!# to
the Sharvin formula yields an adequate description of
average behavior of the quantum conductance. For nan
ires formed from semimetals, like Bi or Sb, where a soft-w
potential model may be used, the cross-sectional shape i
ences the quantized conductance, and its average behav
well estimated~see Fig. 2! using a classical approximatio
@Eq. ~13!#. Finally, these results indicate that in circum
stances where shape effects are of importance, cau
should be exercised in estimating cross-sectional areas
conductance measurements.
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