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Shape effects on conductance quantization in three-dimensional nanowires:
Hard versus soft potentials
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Effects of the shapes of the cross sections of three-dimensional hanowires on electronic conductance quan-
tization are studied for both hard- and soft-wall potentials. In both models the quantum conductance is deter-
mined by both the area and shape of the narrowmost part of the nanowire. For the hard-wall potential the
semiclassicalWeyl) correction to the Sharvin formula provides an adequate approximation to the average
guantized conductance. For nanowires modeled by soft-wall potentials, the average quantum conductance may
be well estimated using a classical approximat{@0163-1827)09128-5

The character of ballistic electronic transport in wireswith sufficiently large radii of curvature along the constric-
(constrictiong is determined by the ratio between their trans-tion (i.e., axial radii of curvature
verse size and the wavelength of the electrons. In wide con- The conductance of the constrictidB, is determined by
strictions, when the electronic wavelength is small compared Landauer-type expressforf!
to the transverse size, electronic transport is classical in na-

ture, and the conductance through the constriction is deter- G— 2_92 ST @)
mined by the Sharvin expression " h mmm’n’ »
2e? k2S whereT,,mn is the transmission probability for the inci-
=T 2 (1) dent mn channel, and the sum runs over all incident and

transmitted channels. The transmission probablify,

wherekg is the Fermi wave vector of the electrons, @i may be calculated from the solution of the single-particle
the cross-sectional area. With a decrease of the transver§§hralinger equation.

size, quantum effects become important, resulting in conduc- In the hard-wall potential model the electronic wave func-
tance quantization, exhibited by a steplike variation of thetion {r) satisfies the potential-free Schiinger equation
conductance in units of &/h. Initially studied in two- With the Dirichlet boundary conditiory|,;=0, where
dimensional(2D) semiconductor structurdsee a review in  o(2) is the surface of the constriction amds the coordinate
Ref. 2, this phenomenon can also occur, under appropriaté the direction of the constriction axis. The smoothness of
conditions, in three-dimensional (3D) metallic  the functiono(z) allows us to use the method of adiabatic
nanowires’*° The geometry of 2D constrictions may be de- separation of variable€, with the equations for the trans-
scribed by the transverse size of the narrowmost (eot Verse[Eq. (4)], and longitudinal[through the constriction,
called bottleneckof the constriction and by its lengtalong  EQ. (5)] directions given by

the axig, and knowing these parameters is sufficient for a 2

description of transport through such constrictions in both _ Av RAXV)=E. (2)RAX 3
the classical and quantum regimes. The situation is different ome SoReXY)=Em(2)R(x.Y), &
for 3D wires. Classical transport through such constrictions .

is determined according to Sharvin’s formula by the cross- B hie d°Z(2) +E 2(2)=EZ 4
sectional area, while for a description of the transport in the > a2 T Em(2)2(2)=EZ(2), 4

guantum regime additional information about the cross- Y .

sectional shape is necessary. As we will show below, thd/herem* is the effective mass of the electron.

shape influences the quantum transport characteristics in g N€&r the narrowmost part of the constrictionzat0, the

significant manner. effective potential for the Iong|tUQ|naI motiok,,,(2), may
We investigate shape effects of the cross sections of 3[8€¢ €xpanded to second order with respect to the variable

nanoconstrictiongnanowire$ on quantum transport through N this approximation the transmission probability has a di-

such nanowires connecting bulk reservoirs. We model th&gonal form(no mode mixing (Ref. 23

constrictions using either hard- or soft-wall potentials, and _

compare the resmﬂts for the quantum conduF::tance i these  Tmmmn=1+exp[— 27 E—En(0)J/[(—A/m*)

cases. . o _ XE;m(O)]lIZ}, (5)
Consider ballistic electronic transport through 3D con-

strictions with an arbitrary shape of the cross sections. Wavhere E/, (0)=°E(0)/dz2. Taking into account the

assume that all the cross sections along the nanoconstrictigimilarity relationE,,(2)/E,(0)=S(0)/S(z), where S(z)

are geometrically similar, and that their size changes slowlys the area of the cross section at we can express the

on the scale okg 1. Such geometries pertain to constrictions second derivative of the energy in the form
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, S'(0) ]
Emn(o):_Emn(O) W (6) 18 1
In this case the conductance of the constriction can be de-
fined in terms of the electronic energy levels at the narrow-
most partE,,(0) and the geometrical factd8’(0)/S(0)
[see Eqgs(2), (5), and(6)].
To calculate the conductance of the constriction, we need
to define its geometry. When all the cross sections of a
nanowire are circles a sequence of conductance steps of ]
heights Do, 290, 290, 10o.. .., Wwheregy=2€?/h, reflecting 6 -
the cylindrical degeneracy of the electronic levels, will oc- 1
cur. Such a predicted sequence of quantized conductance 3
step$ has been recently observed in conductance measure-
ments of sodium nanojunctiod¥ Deviation from circular
symmetry leads to restoration of single-steg)(behavior of
the conductance, depending on the constriction shape. To
demonstrate such effects, we consider constrictions with el- X

“_ng (;lross asec(;loﬂsc' .“;] ?”;ptlhc éo_oédmateEsx FIG. 1. ConductancéG, in units 2%/h) of 3D asymmetric
~ - cos f'u“ cos anhy— Em psin [ eret P: h(Z)], g. constrictions modeled by a hard-well potential, plotted vs the di-
(3) transforms to the Mathieu equation with the boundary,ansioniess parametar=[k?S(0)/47]¥2 wherek is the wave

condition that the wave function should vanish on the surfacgeacior of the electrons, an®(0) is the cross-sectional area of the

of the constrictionu = uq. Under such conditions, the trans- narrowmost part of the constriction. Solid lines 2 and 3 correspond
verse electronic energy levels may be expressed in terms @f gitferent shapes of the elliptic cross sections of the constrictions

15 A

12

G(2e%h)

the zeros of the Mathieu functiony,,, (the ratios of elliptic axes are 1.13 and 5.06, respectjyaishile
9 2 ) maintaining a constant value of the cross-sectional area of the con-
i O Sinhuocoshug strictions. Dashed lines correspond to calculated conductance in the
Emn(2)= 2m* S(z) ) (7 semiclassical limit (Weyl's correctiony and the dotted line

o . (marked 1 corresponds to Sharvin's conductance. Here we used
Substituting Egs(6) and(7) into Eq.(5), for the conductance [2/5'(0)]¥2=3.

of the constriction we obtain the following expression:

. 27 \ V7 [K2S(0)) 12 plotted the conductance for a relatively short constriction
G=—_ 2 (1+exp[ _277( . ) 2[( ) with [27/S'(0)]Y?=3 [S'(0)= = sinh(2uy)CC’
h S'(0) ™ =msinh(2ug)C/R, whereC gives the locations of the focii of

— QmpSinhugcoshug (8  of curvature of the nanqwiﬂe which yields smearing of
some steps due to tunneling effects.
wherek?=2m* E/#2. In the soft-wall potential model the constriction is mod-

To evaluate the energy dependence of the conductancg!€d by a confining potential which characterizes the shape
we compute the zeros of the Mathieu function. The depen‘:"nd extent of the constriction. Expressing the confining po-

dence of the conductance on the dimensionless parargetert€ntial in the formV(x,y,z)=U(x,y) =F(2), with F(2)
—[k2S(0)/47]Y2 for constrictions with various values of the =0 andF(0)=0, and again separating the transverse and
ratio of elliptic axes(solid lines marked 2 and 3 correspond longitudinal variables, the equation describing the motion of
to cothuy=1.13 and 5.06, respectivélyand a constant the electron through the constriction has the same form as
value of the cross-sectional area, are displayed in Fig. 1; thEd- (4) with the effective potentiakn,—F(z), whereEn,
dotted line corresponds to the classi¢gharvin conduc- @€ the transverse energy levels of the electrc_)n_ in the poten-
tance,G¢= (2%/h)[k2S(0)/4ar], and the dashed lines rep- tial U(X,y). Assuming smoothness of the confining p_otent|al
resent semiclassical results. The latter are described Hd €xpanding it to second order near the bottleneex,
Weyl's corrections to the number of transverse statban-  N€arz= 0), for the transmission coefficient we obtain

nels, which for the Dirichlet boundary condition have a

])1 the elliptical cross section#{ C,0), andR is the axial radius

form (see, for example, Ref. 24 » 72 1/2
Tmn;mn=1+exp[—2w(E—Emn)/ [W F”(O)} }
2’ [S(0)k*  L(0)k o 10
W7 h A7 47 | ©)
whereL (0) is the perimeter of the cross sectforNote that For calculations of the conductance we use a 3D

increasing the eccentricity of the constriction’s cross sectiongeneralizatiolf of the Bittiker model®® The confining po-
while maintaining a constant value of the cross-sectionajential in such a model has a fotfn

area(with this condition the classical conductance value re-
mains constantresults in a decrease of the values of the - o 29 25
quantum conductance. Additionally, note that in Fig. 1 we V(X,y,2)=Vo—zM* 0;2°+ ;m* (0 x“+ ojy©). (11
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in Eq. (11) for the same values of the geometrical parameters
as in Fig. 1. Curves corresponding to two values of the ratio
of effective elliptic axeso, / w, are shown. It is of interest to
compare the quantized values of the conductance with their
classical analog&< ;. Substituting the classical expression
for the transmission probabilitf®=S,(0)/S, whereS is the
total area, into the Landauer express|[@&@y. (2)] and inte-

§A grating over all values of the wave vectors, we obtain
(O]
(&)
o o (2% 1KES 1
o\ | 2 47 2 O (19

Note that the classical value of the conductance in the ap-
proximation of a harmonic confining potential is one half of
the Sharvin value. From a plot @&, (the solid line in Fig.
2) we observe that for constrictions modeled by soft confin-
ing potentials the classical value of the conductance is close
(unlike the case of constrictions with hard-wall potenlidts

X the average quantized conductance.

FIG. 2. ConductancéG, in units 22/h) of 3D asymmetric The analysis which we performed demonstrates the im-
constrictions modeled by a sdftarmoni¢ potential, plotted vs the portance of shf’;lp_e corrections to quantum transport through
dimensionless parametery =[k2S,(0)/4w ]2 where S(0) 3D_ nanoconstrictions. Quantum transport through .such con-
= 7h2/m* 2,0, is the effective area of the narrowmost cross STiCtions is determined not only by the cross-sectional area
section, andv, andw, are the effective frequencies of the confining Ut also by the shape of the cross section. Effects of this type
potential(see text Dotted and dashed lines correspond to differenthave no analogs in two-dimensional quantum constrictions.
shapes of the elliptic cross sections of the constrictitimsratios of ~ Varying the shape of the cross section not only shifts the
the effective elliptic axes, are given hy,/w,=1.13 and 5.06, positions of the conductance steps but also changes the val-

respectively. The solid line corresponds to the classical value ofues of the conductance. For conductance calculations we
the conductance, which is equal in this model to one-half of theused hard- and soft-wall model potentials. While both mod-
Sharvin  conductance.  The  parameter[(27/S,(0)]*?2 els lead to conductance quantization some significant distinc-
=(wxwy) " w,=3, as in Fig. 1. tions occur. For nanowires made of typical meta@sch as
Au, Na, or Cy with relatively small values of the screening
The parametet, / w, describes the degree of anisotropy of lengths, the hard-wall model potential may be more
the cross section of the constrictipheing spherical when appropriate®“ As seen from Fig. 1, shape effects are of
wx/ wy=1)]. importance in this case, and the Weyl correcign. (9)] to
For the confining potential given by E(L1) the conduc- the Sharvin formula yields an adequate description of the
tance of the constriction, in the notation of H§), has the average behavior of the quantum conductance. For nanow-
form ires formed from semimetals, like Bi or Sb, where a soft-wall
2e? p 12 [ 125.(0) | 12 potential model may be used, the crossjsectional shape ir.n‘lu_—
G= & 2 (1+exp[ _277( 77 Z[( Sl )) ences the quantized conductance, and its average behavior is
h mn S(0) ™ well estimated(see Fig. 2 using a classical approximation
4 [Eqg. (13)]. Finally, these results indicate that in circum-
) 12 stances where shape effects are of importance, caution
should be exercised in estimating cross-sectional areas from
conductance measurements.

Wy 1/2 . wy 1/2 .
(ﬁ)y) (n+3) (‘Ux) (m+3)
Here S (0)=2#w(E—Vy)/m* wxwy=7'rﬁ2k2/m*2wxwy is
the effective area of the narrowmost part of the nanowire, This work was supported by the U.S. Department of En-
and the parametd27/S;(0)]*?= (w,0,)*% w, determines  ergy, Grant No. DE-FG05-86ER45234, and AFOSR Grant
its effective axial length. In Fig. 2 we display the conduc- No. F49620-93-1-0231. Computations were performed at the
tance of the constriction modeled by the soft potential giverGeorgia Tech Center for Computational Materials Science.
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