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Electronic energy spectra in antiferromagnetic media with broken reciprocity
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Electronic energy spectraq) of antiferromagnetically ordered media may display nonreciprocity; that is,
the energies corresponding to Bloch states with wave nunbarsd —qg may be different. In this paper a
simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the
proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antifer-
romagnetically ordered crystals as well as periodical layered strucf@@%63-182807)06318-3

[. INTRODUCTION tions, then there would be no symmetry reasons for the
equality e(q)=¢e(—q) to apply for this particular direction
In common crystals, the spectedq) of all elementary of the wave vectoq,.

excitations, such as photonic, phononic, electronic, and mag- Along with Eq. (3) we consider the stronger condition
netic, possess the fundamental property of being symmetric
with respect to the sign of the Bloch wave vectprFor a
nondegenerate band structure this property, referred to as the
reciprocity principle, reads

> T(9)g#0, (4)
geG

which will be referred to as the condition fetrong nonreci-
e(q)=e(—Qq), (1)  procity (this term refers not to the magnitude of the effect but
to its symmetry. The stronger condition Eq4), suggests
for all q. that there is at least one directiarof the wave vectoq for
The reciprocity principle is a direct consequence of thewhich
time reversal and/or space inversion symmetry. Indepd,
changes sign both under the space inversion operatam T(g)g=q for any ge G, andqln, 5)
under time reversdR, whereas: is a scalar. If neither space ] N )
inversion nor time reversal operations are present in the mac- 1he key difference between conditio(® and(4) is that
roscopic symmetry group of a crystal, the reciprocity prin-the weaker one, Eq3), still allows the pointg=0 of the

ciple may not apply, and instead of EG) we may get Brillouin zone to possess a higher symmetry than that of any
e(q)#e(—q). 2 e@

Relation(1) may still apply to isolated points of accidental

degeneracy or to some special directions of the wave vector @

g for whichqg and—q are related by a symmetry operatisn
other than the missing and R. Recall that the absence of
time-reversal symmetry implies the existence of a spontane-
ous long-range magnetic order in the crystal, and/or that the
system is placed in an external magnetic field. In this study 0 a
we restrict ourself to the former circumstance.
Generally, from symmetry considerations, nonreciprocity e(@)
(see Fig. 1 occurs when none of the symmetry operations
g, belonging to the macroscopic symmetry gra@pof the ®)
crystal, transforng to —q, i.e.,

T(g)g#—q for all geG, (3)

whereT(g) is the transformation corresponding to the sym-
metry operationg of the macroscopigpoint) symmetry 0 q
group G of the crystal.

Indeed, if at least one of the symmetry operations from FIG. 1. Schematic examples of nondegenerate asymmetric spec-
G transformsg to —q, thene(q)=e(—q). If such transfor-  tra: (a) the case of weak nonreciprocityb) the case of strong
mation cannot be achieved by any of the symmetry operanonreciprocity.

0163-1829/97/548.8)/125666)/$10.00 55 12 566 © 1997 The American Physical Society



55 ELECTRONIC ENERGY SPECTRAN. .. 12 567
other point in its vicinity. In this case, any nondegenerate |l. ELECTRON ENERGY SPECTRUM OF A RHOMBIC
branch of a spectruna(q) would have a vanishing vector ANTIFERROMAGNET CRYSTAL WITH STRONG
derivative, v(q)=0de/(q)/fdq, at the Brillouin zone(BZ) NONRECIPROCITY
center, as shown schematically in Figa)l i.e., the group
velocity »(q) of the corresponding=0 excitation vanishes.
This is a direct consequence of the fact that the veak(g
and g transform in the same way under any time-space op- (_
erationsg from the magnetic symmetry grou®. 2m
On the other hand, the stronger conditi@h) or, equiva-
lently, Eq.(5), suggests that the group-velociig) may be
finite at the center of the Brillouin zorsee Fig. 1b)]. The
corresponding direction a#(0) will be parallel to the vector
n, which, according to Eq5) is invariant under all transfor-

mations of the grouyt. Here a is a lattice vector,a=N,a,+Nya,+N,a,, where
Conditions (4) or (5) for strong nonreciprocity may be (a,,a,,a,) are the primitive lattice translations, and

met in magnetically ordered materials with some speciatNx,Ny,Nz) are integers.

magnetic symmetry. Such materials may display an asym- The spatially varying electric and magnetic fields in the

metric linear magnetoelectric effectndeed, by definition, |attice are defined by the standard relations

the linear magnetoelectric efféc?is characterized by a non-

zero cross-magnetoelectric susceptibility tengex,oP/oH, E(r)=—VV(r)=E(r+a), H(r)=VXA(r)=H(r+a).

whereP andM are the electric and magnetic polarizations of 9

the material. From the definition of the tensewe get

Consider the single-electron Schimger equation

2
P A +eV<r>]¢(r>=sw<r>, Y

where the scalar potenti®l(r) and the vector potentid(r)
are 3D-periodic functions, i.e.,

V(r)y=V(r+a); A(r)=A(r+a). (8)

The necessary condition for constructing the lattice scalar
and vector potentialsy(r) and A(r), such that they would
reflect adequately the actual space-time magnetic symmetry

- : of a magnetoelectric crystal with strong nonreciprocity, is
where the symbok indicates equivalence of the transforma- that the space distributions @(r) and V/(r) be consistent

e e e e onea rt, e ey symmenyconaitiny)
y Y ! : Y uthicl The translational periodicity requirement E&) implies

condltllon for a spectrum to _dlsplay strong nonreciprocity isy . oiconce of macroscopispace averagecelectric and
the existence of ansymmetricalinear magnetoelectric sus- magnetic fields, i.e

ceptibility tensor, i.e..a# a', where the superscripf de-
notes the transposition operation. _ _

It is important to note, however, that the physical origins (B)=(H(r)=0, (10
of the magnetoelectric effect and nonreciprocity of the specwhere(--) denotes spatial averaging.
tra of various elementary excitations are generally different; The conditions on the electric and magnetic fields in the
the sole known exception is provided by the long-wave electattice expressed in E@8) or, equivalently, Eq(10), are of
tromagnetic spectrum for which the linear magnetoelectritkey importance since otherwise Bloch’s theorem would not
susceptibility underlies the possible occurrence of nonrecipapp|y to the Hamiltoniar{7) and the corresponding electron
rocal behavioP. For instance, in conducting media the con- energy spectrum would display the complicated features that
ventional magnetoelectric effect does not exist by definitiongccur in the presence of external uniform electric and/or
instead, there may exist a kinetic magnetoelectric effect amagnetic fieldfor a recent review see Ref. 14 and refer-
predicted in Ref. 10, while the electronic spectrum may disences therein Physically, these conditions mean that the
play significant nonreciprocity. medium is neither a ferromagnet nor a ferroelectric, and no

Nonreciprocity[Eq. (2)] was predicted first theoretically external fields are applied. For methodological reasons, we
for the electromagnetic spectrum in magnetoelectric crystalgonsider only models where the existence of the macroscopic
(see Ref. 5 and references thejeiAn extensive symmetry electric and magnetic polarizations can be ruled out for sym-
analysis of the electromagnetic and acoustic spectral nonreginetry reasons alone. In other words, the relations given in
procity has been presented in Ref. 11. However, in thesgq_(lo) should be imposed by the magnetic symmetry group
studies only the low-frequency hydrodynamic limit has beeng of the spatial distributions oA(r) and V(r).
discussed. The nonreciprocity propef®y pertaining to elec- In light of the above assumptions and requirements, we
tronic spectra has been discussed in the context of systemragsume that both the scalar and vector potentials can be rep-
with toroidal current ordering'” as well as for a model sys- resented as a superposition of three separable contributions,
tem with an alternate magnetic-field distribution with a one-depending each on a single coordinatey, or z. Let us
dimensional(1D) periodicity® consider field distributions which vary only along tiieco-

In this study we focus on characteristic qualitative fea-ordinate. From Eqs(8) and (9) we obtain
tures of the band structure of a “nonreciprocal material.” To
this aim, we consider a simple microscopic model which E(y)=E(y+ay)ly, H(y)=H(y+a,)Ly. (1)
adequately reflects the space-time symmetry of the crystal
and is solvable throughout the BZ. We restrict ourselves ifMore specifically, we choose
this study to the most interesting case of strong nonreciproc-

ity. E(y)lly, H(y)llz (12

@y, A< Esz_ EzHyOc Qx » (6)
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The following functional forms oH,(y) andE,(y) com- E,  H
ply with both symmetry conditionés) and (8). 4 a
d b
Hy)=2 gly-Na), g(y)=-g(-y), (13 :
0 2 £ J

E,y)=3 fy-Na), fy)=—f(-y). (14 | ‘
Indeed, the time-space symmetry of the above microscopic
field distributions belongs to the magnetic symmetry class

m, my m, , FIG. 2. A Kronig-Penney-type distribution of the microscopic
Dan(Cav)= 2. 5 ommm (15 electric and magnetic field€,(y) andH,(y), respectively, which

is expected to exhibit nonreciprocity of the spectrumdx. If b
satisfying the key requiremefiEq. (4), or, equivalently, Eq. #d=a—Db, the microscopic magnetic field alone provides the re-
(5)] for strong nonreciprocity witmilx, as well as the addi- guired magnetic point symmetry 0D n(Cay)=(m/2,)(m,/
tional symmetry conditions which lead to the absence ofy)/(MA2)=m'mm

macroscopic electric and magnetic polarizatins., rela-

tions (8) or (10)]. In Eq. (15) we have employed standard ¢an be realized in some periodic layered superstructsess
notation? i.e., g’ =gR, whereR is the time-reversal opera- Ref. 11, and references thergin

tion.

Any functional form forf(y) andg(y) is acceptable, pro- Ill. ELECTRON ENERGY SPECTRUM
vided that the magnetic symmetry of the corresponding fieldOR A THREE-DIMENSIONAL MODEL OF THE KRONIG-
distributions is not highé? than that given in Eq(15). In PENNEY TYPE

this context it is important to remember that the resulting . ] o
symmetry group is defined as the intersection of those of the The field pattern of the Kronig-Penney type which is con-
electric and magnetic components taken separately. Clearlgistent with Eqs(13) and (14) and, consequently, with the
the electric component itself never possesses the proper syf¥mmetry conditions for strong nonreciprocity, has the fol-
metry because it is always invariant under the time-reversdPwing functional form:

operation. At the same time, the magnetic component by

itself can provide the proper symmetry. It would be interest- 1 b b

ing to consider both situationgi) when the microscopic =HZ_§ Hoa% [5(3/_ E_Na —o\y E_Na }
magnetic field yields the effect by itself, afid) when only a (17
combination of the two fields possesses the proper symme-

try. Indeed, both of the above situations may be realized in 1 b b
magnetically ordered systems; most of the known magneto- EEEy=§ an% [5(y— 5 Na|— 68| y+ E—Na .

electric crystals fall into the second category, for which the
electric component of the microscopic field does not affect

the resulting macroscopic symmetry of the system. It is displayed schematically in Fig. 2, whese=b+d is the
The one-dimensionally periodic fields given in EG53) 5 5netic lattice period in the direction. If for this particu-
and(14) should be complemented by the two additional mi- |5 fielq distribution we také=d, then both the electric and
croscopic electric components magnetic components are needed in order to obtain the
proper D,,(C,,)=m’mm magnetic symmetry; otherwise,
Eyzz f.(x—Nay), E,=2 f(z—Na,);: i.e., whenb#d, the magnetic component alone insures the
N N existence of strong nonreciprocity with the characteristic di-
rectionn|ix. The quantitiedd, andE, have a simple physical
meaning; they equal the mean absolute values of the corre-

which altogether represent a three-dimensional periodic la€Ponding microscopic fields

tice. The contributions given in Eq16) give rise to a com-

plete 3D electronic band structure, while not affecting the Ho=(IH(r)); Eo=(|E(MI). (19

resulting macroscopic time-space symmetry of the system.

These components of the microscopic field will be treated The spatial distributions of the vector and scalar potentials

perturbatively. corresponding to the field pattern given in E(s?) and(18),
The field configuration described by E¢$3)—(16) is not  are

just the simplest one which complies with the symmetry re-

quirements Eqs(5) and (10), it is also qualitatively similar  A(y)=A(y)= tHoap(y); V(y)= %an(p(y)Jr %),

to those existing in some actual crystals exhibiting the linear (20)

magnetoelectric effedtsee, for instance, Ref. 16Further-

more, a magnetic-field distribution with the above symmetrywhere

(18

with f(y)=—f(—-y), (16)
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1
p(y)=2, [G) y+5—Na —®(y———Na
N 2 2

b b '
- Ev 700 —
(2D 600 | (@)
with ® denoting the Heaviside step function. Substituting

2m )
&—y2+ Wz £(q)—q;

Eqg. (20) into the Schrdinger equatior(7) and setting ‘Zx 500
\I}(r):X(y)expi{qxx+ qzz}, (22) (:E 400 /\
£
we obtain the following equation for the functigf(y): 2 300
@

p(y)a 2 I
_lHZ[T_CMH —u(y)]x(y)=0, (23 01 : : , : :
H -3 2 -1 0 1 2 3

where (d+b)q,

ly=(hcleHy)Y? and u(y)=2meMy)/42. (24

190 -

The quantityl, is themagnetic lengttwhich corresponds to &7 \—/ (b)
the characteristic radius of the first quantum Landau level in < - 180
a magnetic field of strengtH . &

Equation(23) is of the form of the Kronig-Penney model & 1704
(see, for example Ref. 18with the corresponding dispersion T
relation @ /

160
')’2_ 2 T T T T
cogaqy)=cog Bd)ch(yb)+ 26y sin(Bd)sh( yb), 0.4 02 0.0 0.2 0.4
(25) (d+b)q,

where FIG. 3. Normalized energy spectfa(q)2m/#2 in units of

) I52] vs (d+b)ay, plotted for uy=500,% d=b=0.3,, and
Bzzz_m e(q) — 92— g+ a |2mW/%2|=5.0;2 for all K. The region indicated by the dotted
h? z VTS box is shown enlarged itb).

2m 2

2__

V== 27 e(@+ o+ | o

. om . 27 2w
+Uoi  Uo=27 Eea W(r):; Wi expi(K-r), K=|{—=n0,—n,/,
X Z

(26) (27
Equation(25) determines the energy spectrurfg) for the  \yherea, anda, are primitive lattice translations in theand

case of the one-dimensional periodic crossed electric ang directions;n, andn, are integers. Applying standard per-

magnetic fields given in Eqgl7) and(18). _ . turbation theory we find for the spectrusq)
To account for the additional field components given in

Eq. (16), which together with those given in Egd7) and

a
T

1
(18) yield a three-dimensional crystal structure, we employ e(qQ)= > {eo(q) +eo(gq—K)
perturbation theory. In general, these components of the
fields may not be smaller than those given by &q) or Eq. +J(eo(a) —eo(q—KNZHAW 2, (28

(18). However the contributions given in Eq4.7) and(18),
being of the proper symmetry, are the ones responsible fonhereey(q) is the dispersion relation in the absence of the
the spectral nonreciprocifiexhibited by the dispersion rela- periodic electric field(27), given by Eqgs.(25) and (26).
tion given in Eq.(25) for q,# 0], while the additional field Analysis of the band structure given by Eg8) can be per-
components Eq(16) are included in order to create a three- formed numerically.
dimensional band structure within the framework of the sym- In accordance with the results of the symmetry consider-
metry imposed by the principal field components given byations given in Secs. | and Il, nonreciprocal behavior is ex-
Egs.(13) and(14) [or equivalently, Eqs(17) and(18)]. Con-  pected to occur in our model system if and only if the wave
sequently, it is sufficient for our purpose here to consider theectorg has a nonzerg component. As examples, we show
effect of these additional field components in an approximatén Figs. 3 and 4 typical energy spectra fgirx. In the case
manner since they do not introduce new qualitative featureshown in Fig. 3 we choode=d [see Eqs(17) and(18), and

Let us represent the componelii$) of the microscopic  Egs.(25) and(28)]. This special case corresponds to a mi-
electric field, which are periodic in theandz directions, as croscopic magnetic fieldH(r), with higher symmetry than
a Fourier seriedwith W representing the corresponding that required for condition&}) or (5) to apply. Therefore, for
components; see E@L6), or Egs.(17) and (18)] nonreciprocity to exist in this case, both the magnetic and
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700 and (14) includes the twofold axis 2as well as the antire-
flectionm;=Rxm, . Either of these operations transfgto
600 | —q for gL x. Thus, there is neither strong nor weak nonreci-
(a) procity for wave vecto lying in the yz plane.

500
IV. DISCUSSION AND ESTIMATES OF THE MAGNITUDE
400 -1 OF THE NONRECIPROCITY EFFECT

The magnitude of the nonreciprocity effects may be char-
acterized by the magnitude of the shéitj of the extremal
points of the spectrum ig space. For instance, a vanishing
effect means that the corresponding extrema are situated at
the center and at the edges of the regular BZ as should be the
case in the absence of magnetic order. In considerations of
the magnitude of nonreciprocity effects for the low-lying en-

3 2 A 0 1 2 3 ergy bands it is convenient to introduce a parameiete-
(d+b)q, fined as

300 H

g(@2mMm? (11,2

200 +

100

130

a

110 4 one of the structurallattice) periods. The shifq= 6q, be-
comes small when the ratj@is small. For the sake of speci-
ficity, in what follows we will discuss quantitatively the shift
of the extremal point which in the absence of the effect
would correspond tg=0 andn=1.

When the microscopic magnetic-field distribution pos-
sesses the proper symmetry which allows strong nonreci-
procity to exist(i.e., the case ob#d, see Fig. 4, one can
estimate the magnitude of the shift as if it is causedHy)

alone. Foru<1 the asymptotic expression féq, is

g(@)2mMz (11,2

100 -

p=7 (30
120 (b) H
wherel, is the magnetic length defined in E@4), anda, is

90 T T T T
-0.4 -0.2 0.0 0.2 04

(d+b)q,

FIG. 4. Normalized energy spectfa(q)2m/22 in units of
Iy 2] vs (d+b)a,, plotted foruy=0, d=0.49,, b=0.1,, and
[2mW/A2=5.0 gz for all K. The region indicated by the dotted d—b
box is shown enlarged itb). 8Q,~ 2 (3D

H

electric components, Eqg¢17) and (18), of the spatially Recall that in accordance with Fig. a=a,=b+d. It is
varying fields should be nonzero. The case shown in Fig. 4jgnificant that there is no special “magnetoelectric” small
corresponds to a system with¥d. In this situation the mag- parameter in our model system other than the amplitdgle
netic component alone produces the spectral asymmetry pogf the antiferromagnetic microscopic field(r) itself. The

traying strong nonreciprocity. ~__ magnitude of the microscopic electric field does influence
The most significant features of the spectra shown in Figsthe result, but it is not crucial for the very existence of the
3 and 4 are: effect since as discussed above a staggered magnetic field of

(1) The values* m/a, of the wave vectol,, which in  the proper symmetry by itself can cause nonreciprocal be-
common crystals represent the BZ boundaries, are no |0ng‘hravior(as is the case here
special points of the spectrum. While the electron group ve-  since the internal microscopic magnetic field in common
locity »v=de/fidq vanishes at two values of the wave vector gntiferromagnets never exceeds several Tesla, the magnitude
dx separated by 2/a,, these values are not equal to of|, is of the order of 10° cm or larger. This value exceeds
* m/ay as is normally the case. Moreover, the correspondinghe typical interatomic distance in crystals by one or two
critical values qux are not the same for different branches orders of magnitude_ Consequenﬂy, there is every reason to

n of the spectrum. expect that in common crystalline antiferromagnets nonreci-
(2) The same is true for the point=0 of the BZ. The  procity effects of purely “magnetic” nature will be small.
extremal energy for each particular brantloccurs now for Though from the symmetry point of view, the electric
some finite wave vectay(n)lix, and not at the center of the component of the microscopic field is not essential for the

BZ. existence of spectral asymmetfgxcluding the special case
(3) For the case ofjLx the electron energy spectrum whenb=d), it may influence the magnitude of the effect in
appears to be symmetric, i.e., a significant manner. Taking into account the electric com-

ponent(18), we obtain the following asymptotic expression
e(q)=e(—q), for glx. 29 for 5q,. Whenu<1
This result does not depend on the approximations em- a
ployed. Indeed, the magnetic symmetry gro(u?tﬁ) of the 80y~ 3 @(Ug,b,d), (32)
microscopic magnetic- and electric-field distributiofis3) aly
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whereu, is given in Eq.(28). This expression is a generali- The estimate$31) and (33) imply that in order to get a
zation of Eq.(31) for the case of a nonzero microscopic relatively strong “orbital” nonreciprocity one has to search
electric field;e(ug,b,d) is a dimensionless function. Below, for magnetically ordered systems in which the corresponding
two of the most interesting limiting cases are presented exprimitive translationa is much greater than a typical inter-
plicitly: ) atomic distance. Such circumstance may be found for long-
(1) Whenugl{;<1, period magnetic structures with periods of 102 ifter-

atomic distances; examples of such systems include domain

6(d—b)+Ugb[ (d—b)a+2d?ba 1] P y

@(Ug,b,d)~ , structures, both ferro- and antiferromagnetéc ferromag-
a(6+upab) netic domain structure can be thought of as a long-period
(33 antiferromagnet as well as certain artificially created lay-
(2) Whenuga?>1, ered superlattices with the proper periodicigxamples of
such systems are discussed in Ref. 17, and references
@(Ug,b,d)~1. (39 therein. Under such circumstances, the effects associated
In any case, wheb#d, ¢(Ug,b,d) is of the order of mag- With nonreciprocity may be expected to be strong, that is the
nitude of unity. shift 5q, may be comparable with72/a. Finally, it is note-

The spectral shifts given by Eg&1) and(32) may differ, ~ worthy that for the nonreciprocity behavior to be of signifi-
but they are apparently of the same order of magnitudecance, only one of the three principle translations should
Therefore, once again we estimate that in common antiferromeet the conditionu<<1. The above considerations could
magnets, within the framework of a spinless approximatiorassist in designing and fabricating materials which could be
the degree of the spectral asymmetry is expected to be rathased for spectroscopic measurements and potential utiliza-
small, e.g., less than 16. tion of nonreciprocity effects in solids.

A much stronger magnetic interaction than that of the
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which, in fact, is responsible for the very phenomenon of ACKNOWLEDGMENTS
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