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Electronic energy spectra in antiferromagnetic media with broken reciprocity
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Electronic energy spectra«~q! of antiferromagnetically ordered media may display nonreciprocity; that is,
the energies corresponding to Bloch states with wave numbersq and2q may be different. In this paper a
simple Kronig-Penney model, which includes a staggered microscopic magnetic and electric fields of the
proper symmetry, is employed to estimate the magnitude of nonreciprocity effects in systems such as antifer-
romagnetically ordered crystals as well as periodical layered structures.@S0163-1829~97!06318-2#
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I. INTRODUCTION

In common crystals, the spectra«~q! of all elementary
excitations, such as photonic, phononic, electronic, and m
netic, possess the fundamental property of being symme
with respect to the sign of the Bloch wave vectorq. For a
nondegenerate band structure this property, referred to a
reciprocityprinciple, reads

«~q!5«~2q!, ~1!

for all q.
The reciprocity principle is a direct consequence of

time reversal and/or space inversion symmetry. Indeedq
changes sign both under the space inversion operationI and
under time reversalR, whereas« is a scalar. If neither spac
inversion nor time reversal operations are present in the m
roscopic symmetry group of a crystal, the reciprocity pr
ciple may not apply, and instead of Eq.~1! we may get

«~q!Þ«~2q!. ~2!

Relation~1! may still apply to isolated points of accident
degeneracy or to some special directions of the wave ve
q for whichq and2q are related by a symmetry operation~s!
other than the missingI andR. Recall that the absence o
time-reversal symmetry implies the existence of a sponta
ous long-range magnetic order in the crystal, and/or that
system is placed in an external magnetic field. In this stu
we restrict ourself to the former circumstance.

Generally, from symmetry considerations, nonreciproc
~see Fig. 1! occurs when none of the symmetry operatio
g, belonging to the macroscopic symmetry groupG of the
crystal, transformq to 2q, i.e.,

T~g!qÞ2q for all gPG, ~3!

whereT(g) is the transformation corresponding to the sy
metry operationg of the macroscopic~point! symmetry
groupG of the crystal.

Indeed, if at least one of the symmetry operations fr
G transformsq to 2q, then«(q)5«(2q). If such transfor-
mation cannot be achieved by any of the symmetry ope
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tions, then there would be no symmetry reasons for
equality «(q)5«(2q) to apply for this particular direction
of the wave vectorq.

Along with Eq. ~3! we consider the stronger condition

(
gPG

T~g!qÞ0, ~4!

which will be referred to as the condition forstrong nonreci-
procity ~this term refers not to the magnitude of the effect b
to its symmetry!. The stronger condition Eq.~4!, suggests
that there is at least one directionn of the wave vectorq for
which

T~g!q5q for any gPG, and qin, ~5!

The key difference between conditions~3! and~4! is that
the weaker one, Eq.~3!, still allows the pointq50 of the
Brillouin zone to possess a higher symmetry than that of

FIG. 1. Schematic examples of nondegenerate asymmetric s
tra: ~a! the case of weak nonreciprocity;~b! the case of strong
nonreciprocity.
12 566 © 1997 The American Physical Society
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55 12 567ELECTRONIC ENERGY SPECTRA IN . . .
other point in its vicinity. In this case, any nondegener
branch of a spectrum«~q! would have a vanishing vecto
derivative, n(q)[]«/(q)/\]q, at the Brillouin zone~BZ!
center, as shown schematically in Fig. 1~a!; i.e., the group
velocity n~q! of the correspondingq50 excitation vanishes
This is a direct consequence of the fact that the vectorsn~q!
andq transform in the same way under any time-space
erationsg from the magnetic symmetry groupG.

On the other hand, the stronger condition~4! or, equiva-
lently, Eq.~5!, suggests that the group-velocityn~q! may be
finite at the center of the Brillouin zone@see Fig. 1~b!#. The
corresponding direction ofn~0! will be parallel to the vector
n, which, according to Eq.~5! is invariant under all transfor
mations of the groupG.

Conditions ~4! or ~5! for strong nonreciprocity may be
met in magnetically ordered materials with some spe
magnetic symmetry. Such materials may display an as
metric linear magnetoelectric effect. Indeed, by definition,
the linear magnetoelectric effect1–9 is characterized by a non
zero cross-magnetoelectric susceptibility tensor,a5]P/]H,
whereP andM are the electric and magnetic polarizations
the material. From the definition of the tensora we get

ayz2azy}EyHz2EzHy}qx , ~6!

where the symbol} indicates equivalence of the transform
tion properties. Using Eq.~5!, with nix, we observe that
from symmetry considerations the necessary and suffic
condition for a spectrum to display strong nonreciprocity
the existence of anasymmetricallinear magnetoelectric sus
ceptibility tensor, i.e.,aÞaT, where the superscriptT de-
notes the transposition operation.

It is important to note, however, that the physical origi
of the magnetoelectric effect and nonreciprocity of the sp
tra of various elementary excitations are generally differe
the sole known exception is provided by the long-wave el
tromagnetic spectrum for which the linear magnetoelec
susceptibility underlies the possible occurrence of nonre
rocal behavior.5 For instance, in conducting media the co
ventional magnetoelectric effect does not exist by definiti
instead, there may exist a kinetic magnetoelectric effec
predicted in Ref. 10, while the electronic spectrum may d
play significant nonreciprocity.

Nonreciprocity@Eq. ~2!# was predicted first theoreticall
for the electromagnetic spectrum in magnetoelectric crys
~see Ref. 5 and references therein!. An extensive symmetry
analysis of the electromagnetic and acoustic spectral non
procity has been presented in Ref. 11. However, in th
studies only the low-frequency hydrodynamic limit has be
discussed. The nonreciprocity property~2! pertaining to elec-
tronic spectra has been discussed in the context of sys
with toroidal current ordering,12 as well as for a model sys
tem with an alternate magnetic-field distribution with a on
dimensional~1D! periodicity.13

In this study we focus on characteristic qualitative fe
tures of the band structure of a ‘‘nonreciprocal material.’’ T
this aim, we consider a simple microscopic model wh
adequately reflects the space-time symmetry of the cry
and is solvable throughout the BZ. We restrict ourselves
this study to the most interesting case of strong nonrecip
ity.
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II. ELECTRON ENERGY SPECTRUM OF A RHOMBIC
ANTIFERROMAGNET CRYSTAL WITH STRONG

NONRECIPROCITY

Consider the single-electron Schro¨dinger equation

H 1

2mS p2
e

c
A~r ! D 21eV~r !J c~r !5«c~r !, ~7!

where the scalar potentialV(r ) and the vector potentialA~r !
are 3D-periodic functions, i.e.,

V~r !5V~r1a!; A~r !5A~r1a!. ~8!

Here a is a lattice vector,a5Nxax1Nyay1Nzaz , where
(ax ,ay ,az) are the primitive lattice translations, an
(Nx ,Ny ,Nz) are integers.

The spatially varying electric and magnetic fields in t
lattice are defined by the standard relations

E~r !52¹V~r !5E~r1a!, H~r !5¹3A~r !5H~r1a!.
~9!

The necessary condition for constructing the lattice sca
and vector potentials,V(r ) andA~r !, such that they would
reflect adequately the actual space-time magnetic symm
of a magnetoelectric crystal with strong nonreciprocity,
that the space distributions ofA~r ! andV(r ) be consistent
with the key symmetry condition~4!.

The translational periodicity requirement Eq.~8! implies
the absence of macroscopic~space averaged! electric and
magnetic fields, i.e.,

^E~r !&5^H~r !&50, ~10!

where^•••& denotes spatial averaging.
The conditions on the electric and magnetic fields in

lattice expressed in Eq.~8! or, equivalently, Eq.~10!, are of
key importance since otherwise Bloch’s theorem would
apply to the Hamiltonian~7! and the corresponding electro
energy spectrum would display the complicated features
occur in the presence of external uniform electric and
magnetic fields~for a recent review see Ref. 14 and refe
ences therein!. Physically, these conditions mean that t
medium is neither a ferromagnet nor a ferroelectric, and
external fields are applied. For methodological reasons,
consider only models where the existence of the macrosc
electric and magnetic polarizations can be ruled out for sy
metry reasons alone. In other words, the relations given
Eq. ~10! should be imposed by the magnetic symmetry gro
G of the spatial distributions ofA~r ! andV(r ).

In light of the above assumptions and requirements,
assume that both the scalar and vector potentials can be
resented as a superposition of three separable contribut
depending each on a single coordinatex, y, or z. Let us
consider field distributions which vary only along they co-
ordinate. From Eqs.~8! and ~9! we obtain

E~y!5E~y1ay!iy, H~y!5H~y1ay!'y. ~11!

More specifically, we choose

E~y!iy, H~y!iz. ~12!



p
s

o

d
-

el

ing
th
ar
sy
rs
b
st

m

et
h
ec

i

la

h
em
te

re

ea

tr

n-

ol-

the
,
he
di-
l
rre-

ials

ic

re-

12 568 55I. VITEBSKY et al.
The following functional forms ofHz(y) andEy(y) com-
ply with both symmetry conditions~5! and ~8!.

Hz~y!5(
N

g~y2Na!, g~y!52g~2y!, ~13!

Ey~y!5(
N

f ~y2Na!, f ~y!52 f ~2y!. ~14!

Indeed, the time-space symmetry of the above microsco
field distributions belongs to the magnetic symmetry clas

D2h~C2V![
mx8

2x

my

2y8

mz

2x8
[m8mm, ~15!

satisfying the key requirement@Eq. ~4!, or, equivalently, Eq.
~5!# for strong nonreciprocity withnix, as well as the addi-
tional symmetry conditions which lead to the absence
macroscopic electric and magnetic polarizations@i.e., rela-
tions ~8! or ~10!#. In Eq. ~15! we have employed standar
notation,2 i.e., g8[gR, whereR is the time-reversal opera
tion.

Any functional form forf (y) andg(y) is acceptable, pro-
vided that the magnetic symmetry of the corresponding fi
distributions is not higher15 than that given in Eq.~15!. In
this context it is important to remember that the result
symmetry group is defined as the intersection of those of
electric and magnetic components taken separately. Cle
the electric component itself never possesses the proper
metry because it is always invariant under the time-reve
operation. At the same time, the magnetic component
itself can provide the proper symmetry. It would be intere
ing to consider both situations:~i! when the microscopic
magnetic field yields the effect by itself, and~ii ! when only a
combination of the two fields possesses the proper sym
try. Indeed, both of the above situations may be realized
magnetically ordered systems; most of the known magn
electric crystals fall into the second category, for which t
electric component of the microscopic field does not aff
the resulting macroscopic symmetry of the system.

The one-dimensionally periodic fields given in Eqs.~13!
and~14! should be complemented by the two additional m
croscopic electric components

Ey5(
N

f x~x2Nax!, Ez5(
N

f z~z2Naz!;

with f ~y!52 f ~2y!, ~16!

which altogether represent a three-dimensional periodic
tice. The contributions given in Eq.~16! give rise to a com-
plete 3D electronic band structure, while not affecting t
resulting macroscopic time-space symmetry of the syst
These components of the microscopic field will be trea
perturbatively.

The field configuration described by Eqs.~13!–~16! is not
just the simplest one which complies with the symmetry
quirements Eqs.~5! and ~10!, it is also qualitatively similar
to those existing in some actual crystals exhibiting the lin
magnetoelectric effect~see, for instance, Ref. 16!. Further-
more, a magnetic-field distribution with the above symme
ic
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can be realized in some periodic layered superstructures~see
Ref. 11, and references therein!.

III. ELECTRON ENERGY SPECTRUM
FOR A THREE-DIMENSIONAL MODEL OF THE KRONIG-

PENNEY TYPE

The field pattern of the Kronig-Penney type which is co
sistent with Eqs.~13! and ~14! and, consequently, with the
symmetry conditions for strong nonreciprocity, has the f
lowing functional form:

H[Hz5
1

2
H0a(

N
H dS y2

b

2
2NaD2dS y1

b

2
2NaD J ,

~17!

E[Ey5
1

2
E0a(

N
H dS y2

b

2
2NaD2dS y1

b

2
2NaD J .

~18!

It is displayed schematically in Fig. 2, wherea5b1d is the
magnetic lattice period in they direction. If for this particu-
lar field distribution we takeb5d, then both the electric and
magnetic components are needed in order to obtain
proper D2h(C2n)[m8mm magnetic symmetry; otherwise
i.e., whenbÞd, the magnetic component alone insures t
existence of strong nonreciprocity with the characteristic
rectionnix. The quantitiesH0 andE0 have a simple physica
meaning; they equal the mean absolute values of the co
sponding microscopic fields

H05^uH~r !u&; E05^uE~r !u&. ~19!

The spatial distributions of the vector and scalar potent
corresponding to the field pattern given in Eqs.~17! and~18!,
are

A~y![Ax~y!5 1
2H0ar~y!; V~y!5 1

2E0a~ r~y!1 1
2 ! ,

~20!

where

FIG. 2. A Kronig-Penney-type distribution of the microscop
electric and magnetic fields,Ey(y) andHz(y), respectively, which
is expected to exhibit nonreciprocity of the spectrum forqix. If b
Þd[a2b, the microscopic magnetic field alone provides the
quired magnetic point symmetry ofD2h(C2V)[(mx8/2x)(my/
2y8)/(mz/2x8)[m8mm.
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r~y!5(
N

H QS y1
b

2
2NaD2QS y2

b

2
2NaD J 2

1

2
,

~21!

with Q denoting the Heaviside step function. Substituti
Eq. ~20! into the Schro¨dinger equation~7! and setting

C~r !5x~y!exp i $qxx1qzz%, ~22!

we obtain the following equation for the functionx(y):

]2x~y!

]y2
1H 2m\2 «~q!2qz

2

2 l H
22Fr~y!a

2l H
2qxl HG22u~y!J x~y!50, ~23!

where

l H5~\c/eH0!
1/2 and u~y!52meV~y!/\2. ~24!

The quantityl H is themagnetic lengthwhich corresponds to
the characteristic radius of the first quantum Landau leve
a magnetic field of strengthH0 .

Equation~23! is of the form of the Kronig-Penney mode
~see, for example Ref. 18!, with the corresponding dispersio
relation

cos~aqy!5cos~bd!ch~gb!1
g22b2

2bg
sin~bd!sh~gb!,

~25!

where

b25
2m

\2 «~q!2qz
22S qx1 a

4l H
2 D 2,

g252
2m

\2 «~q!1qz
21S qx2 a

4l H
2 D 21u0 ; u05

m

\2 E0ea.

~26!

Equation~25! determines the energy spectrum«~q! for the
case of the one-dimensional periodic crossed electric
magnetic fields given in Eqs.~17! and ~18!.

To account for the additional field components given
Eq. ~16!, which together with those given in Eqs.~17! and
~18! yield a three-dimensional crystal structure, we emp
perturbation theory. In general, these components of
fields may not be smaller than those given by Eq.~17! or Eq.
~18!. However the contributions given in Eqs.~17! and~18!,
being of the proper symmetry, are the ones responsible
the spectral nonreciprocity@exhibited by the dispersion rela
tion given in Eq.~25! for qxÞ0#, while the additional field
components Eq.~16! are included in order to create a thre
dimensional band structure within the framework of the sy
metry imposed by the principal field components given
Eqs.~13! and~14! @or equivalently, Eqs.~17! and~18!#. Con-
sequently, it is sufficient for our purpose here to consider
effect of these additional field components in an approxim
manner since they do not introduce new qualitative featu

Let us represent the components~16! of the microscopic
electric field, which are periodic in thex andz directions, as
a Fourier series@with W representing the correspondin
components; see Eq.~16!, or Eqs.~17! and ~18!#
n
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W~r !5(
K

WK exp i ~K•r !, K5S 2p

ax
nx,0,

2p

az
nzD ,

~27!

whereax andaz are primitive lattice translations in thex and
z directions;nx andnz are integers. Applying standard per
turbation theory we find for the spectrum«~q!

«~q!5
1

2
$«0~q!1«0~q2K !

6A~«0~q!2«0~q2K !!214uWKu2%, ~28!

where«0(q) is the dispersion relation in the absence of th
periodic electric field~27!, given by Eqs.~25! and ~26!.
Analysis of the band structure given by Eq.~28! can be per-
formed numerically.

In accordance with the results of the symmetry conside
ations given in Secs. I and II, nonreciprocal behavior is e
pected to occur in our model system if and only if the wav
vectorq has a nonzerox component. As examples, we show
in Figs. 3 and 4 typical energy spectra forqix. In the case
shown in Fig. 3 we chooseb5d @see Eqs.~17! and~18!, and
Eqs. ~25! and ~28!#. This special case corresponds to a m
croscopic magnetic fieldH~r !, with higher symmetry than
that required for conditions~4! or ~5! to apply. Therefore, for
nonreciprocity to exist in this case, both the magnetic a

FIG. 3. Normalized energy spectra@«(q)2m/\2 in units of
l H

22# vs (d1b)qx , plotted for u05500l H
22, d5b50.3l H , and

u2mWK/\
2u55.0l H

22 for all K . The region indicated by the dotted
box is shown enlarged in~b!.
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12 570 55I. VITEBSKY et al.
electric components, Eqs.~17! and ~18!, of the spatially
varying fields should be nonzero. The case shown in Fig
corresponds to a system withbÞd. In this situation the mag-
netic component alone produces the spectral asymmetry
traying strong nonreciprocity.

The most significant features of the spectra shown in F
3 and 4 are:

~1! The values6p/ax of the wave vectorqx , which in
common crystals represent the BZ boundaries, are no lo
special points of the spectrum. While the electron group
locity n5d«/\dq vanishes at two values of the wave vect
qx separated by 2p/ax , these values are not equal
6p/ax as is normally the case. Moreover, the correspond
critical values ofqx are not the same for different branch
n of the spectrum.

~2! The same is true for the pointq50 of the BZ. The
extremal energy for each particular branchn occurs now for
some finite wave vectorq(n)ix, and not at the center of th
BZ.

~3! For the case ofq'x the electron energy spectrum
appears to be symmetric, i.e.,

«~q!5«~2q!, for q'x. ~29!

This result does not depend on the approximations
ployed. Indeed, the magnetic symmetry group~15! of the
microscopic magnetic- and electric-field distributions~13!

FIG. 4. Normalized energy spectra@«(q)2m/\2 in units of
l H

22# vs (d1b)qx , plotted for u050, d50.5l H , b50.1l H , and
u2mWk/\

255.0l H
22 for all K . The region indicated by the dotte

box is shown enlarged in~b!.
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and ~14! includes the twofold axis 2x as well as the antire-
flectionmx8[R3mx . Either of these operations transferq to
2q for q'x. Thus, there is neither strong nor weak nonre
procity for wave vectorq lying in the yz plane.

IV. DISCUSSION AND ESTIMATES OF THE MAGNITUDE
OF THE NONRECIPROCITY EFFECT

The magnitude of the nonreciprocity effects may be ch
acterized by the magnitude of the shiftdq of the extremal
points of the spectrum inq space. For instance, a vanishin
effect means that the corresponding extrema are situate
the center and at the edges of the regular BZ as should be
case in the absence of magnetic order. In consideration
the magnitude of nonreciprocity effects for the low-lying e
ergy bands it is convenient to introduce a parameterm de-
fined as

m[
ay
l H
, ~30!

wherel H is the magnetic length defined in Eq.~24!, anday is
one of the structural~lattice! periods. The shiftdq5dqx be-
comes small when the ratiom is small. For the sake of spec
ficity, in what follows we will discuss quantitatively the shi
of the extremal point which in the absence of the effe
would correspond toq50 andn51.

When the microscopic magnetic-field distribution po
sesses the proper symmetry which allows strong nonr
procity to exist~i.e., the case ofbÞd, see Fig. 4!, one can
estimate the magnitude of the shift as if it is caused byH~r !
alone. Form!1 the asymptotic expression fordqx is

dqx'
d2b

4l H
2 . ~31!

Recall that in accordance with Fig. 2,a[ay[b1d. It is
significant that there is no special ‘‘magnetoelectric’’ sm
parameter in our model system other than the amplitudeH0
of the antiferromagnetic microscopic fieldH~r ! itself. The
magnitude of the microscopic electric field does influen
the result, but it is not crucial for the very existence of t
effect since as discussed above a staggered magnetic fie
the proper symmetry by itself can cause nonreciprocal
havior ~as is the case here!.

Since the internal microscopic magnetic field in comm
antiferromagnets never exceeds several Tesla, the magn
of l H is of the order of 10

26 cm or larger. This value exceed
the typical interatomic distancea in crystals by one or two
orders of magnitude. Consequently, there is every reaso
expect that in common crystalline antiferromagnets nonre
procity effects of purely ‘‘magnetic’’ nature will be small.

Though from the symmetry point of view, the electr
component of the microscopic field is not essential for
existence of spectral asymmetry~excluding the special cas
whenb5d!, it may influence the magnitude of the effect
a significant manner. Taking into account the electric co
ponent~18!, we obtain the following asymptotic expressio
for dqx . Whenm!1

dqx;
a

4l H
2 w~u0 ,b,d!, ~32!
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whereu0 is given in Eq.~28!. This expression is a general
zation of Eq. ~31! for the case of a nonzero microscop
electric field;w(u0 ,b,d) is a dimensionless function. Below
two of the most interesting limiting cases are presented
plicitly:
~1! Whenu0l H

2 !1,

w~u0 ,b,d!;
6~d2b!1u0b@~d2b!a12d2ba21#

a~61u0ab!
,

~33!

~2! Whenu0a
2@1,

w~u0 ,b,d!;1. ~34!

In any case, whenbÞd, w(u0 ,b,d) is of the order of mag-
nitude of unity.

The spectral shifts given by Eqs.~31! and~32! may differ,
but they are apparently of the same order of magnitu
Therefore, once again we estimate that in common antife
magnets, within the framework of a spinless approximat
the degree of the spectral asymmetry is expected to be ra
small, e.g., less than 1022.

A much stronger magnetic interaction than that of t
Zeeman type is known to occur, i.e., the exchange interac
which, in fact, is responsible for the very phenomenon
spontaneous magnetic order. This interaction may also c
tribute to the spectral asymmetry, but it is not obvious
which cases it may play a significant role. In any case, si
accounting for an exchange interaction within the framew
of a spinless approximation is unwarranted, we will not co
sider here its possible contribution to the nonreciprocity.
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The estimates~31! and ~33! imply that in order to get a
relatively strong ‘‘orbital’’ nonreciprocity one has to searc
for magnetically ordered systems in which the correspond
primitive translationa is much greater than a typical inte
atomic distance. Such circumstance may be found for lo
period magnetic structures with periods of 10–103 inter-
atomic distances; examples of such systems include dom
structures, both ferro- and antiferromagnetic~a ferromag-
netic domain structure can be thought of as a long-per
antiferromagnet!, as well as certain artificially created lay
ered superlattices with the proper periodicity~examples of
such systems are discussed in Ref. 17, and refere
therein!. Under such circumstances, the effects associa
with nonreciprocity may be expected to be strong, that is
shift dqx may be comparable with 2p/a. Finally, it is note-
worthy that for the nonreciprocity behavior to be of signi
cance, only one of the three principle translations sho
meet the conditionm,1. The above considerations cou
assist in designing and fabricating materials which could
used for spectroscopic measurements and potential uti
tion of nonreciprocity effects in solids.
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