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The transport properties of three-dimensional quantum microconstrictions in field-free conditions and under
the influence of magnetic fields of arbitrary strengths and directions are studied via a generalized Bu¨ttiker
model@Phys. Rev. B41, 7906~1990!#. It is shown that conductance quantization is influenced by the geometry
of the microconstriction~that is, its length and the shape of its transverse cross section!. In a weak longitudinal
magnetic field, whenr c@d, where r c is the cyclotron radius andd the effective transverse size of the
narrowing of the microconstriction, the conductance exhibits Aharonov-Bohm–type behavior. This behavior
transforms in the strong-field limit,r c!d, into Shubnikov–de Haas oscillations with a superimposed
Aharonov-Bohm fine structure. The dependence of the Aharonov-Bohm–type features on the length of the
microconstriction and on temperature are demonstrated. Transverse magnetic fields lead to depopulation of the
magnetoelectric subbands, resulting in a steplike decrease of the conductance upon increasing the strength of
the applied magnetic field.

I. INTRODUCTION

Microconstrictions~sometimes referred to as point con-
tacts! connecting massive reservoirs are unique objects for
generation and investigation of ballistic quasiparticle trans-
port in solids. Studies of such systems have been inspired by
the pioneering investigations by Sharvin1 in the mid-1960s.
In early studies, three-dimensional~3D! metallic point con-
tacts were fabricated usually by pressing a needle on a crys-
tal face and were of submicron dimensions; that is, sizes
which are large compared with the electron wavelength. The
character of electronic transport under such conditions is of
semiclassical nature. The most interesting phenomena ob-
served in classical point contacts were electronic focusing1

and point-contact spectroscopy of electron-phonon
interactions.2,3 Quantum effects in large metallic point con-
tacts emerge in the presence of magnetic fields because of
magnetic quantization in the reservoirs.4,5

Progress in modern nanotechnologies, such as molecular-
beam epitaxy, made it possible to fabricate ballistic point
contacts with continuously variable sizes in a two-
dimensional~2D! electron gas~e.g., GaAs-AlxGa12xAs het-
erostructures!. The width of the opening in such structures
can be of the same order as the electron Fermi wavelengths
lF (lF.400 Å!. Consequently, such point contacts can re-
veal quantum properties even under field-free conditions. In-
deed it was found that the conductance of such 2D constric-
tions is quantized in units of 2e2/h, when the constriction
size is varied.6,7

The physical origin of such a behavior of the conductance
lies in the discrete character of the change in the number of
transport modes~channels! which are transmitted through the
constriction8 ~for a review, see Ref. 9!. In the absence of a
magnetic field the number of transmitted modes is deter-
mined by the minimal width of the constriction. Because of
the 2D character of the electronic transport, the influence of
magnetic fields is significant only in the strong-field limit
~the quantum-Hall-effect regime! where charge transport oc-
curs via edge states. The edge states localized near the

boundaries effectively form a doubly connected region in a
simply connected constriction, resulting in the appearance of
Aharonov-Bohm~AB! oscillations (hc/e oscillations! in the
conductance,10,11 in accordance with previous ideas pertain-
ing to the manifestation of the AB effect in simply connected
geometries.12–14

The phenomenon of conductance quantization is not re-
stricted to 2D constrictions, and under appropriate conditions
it should also occur in 3D metallic point contacts with
small constriction diameters. Early molecular-dynamics
simulations15,16 have shown that such three-dimensional
junctions form between two materials bodies brought into
close proximity, and that subsequent retraction of the two
contacting bodies results in elongation of the contact and
generation of a stretched 3D constriction~connective wire!.
These simulations have revealed the plastic nature of the
elongation process of such metallic wires~which in the case
of gold were predicted to be characterized by a critical yield
stress of;2–3 Gpa, i.e., an order of magnitude larger than
that of bulk Au!, occurring in a sequence of stress-
accumulation and stress-relief stages, and leading to the for-
mation of highly ordered crystalline wires. Furthermore, it
was shown that the extent of such pulled wires can be con-
trolled ~e.g., indentation of a tip into a substrate and subse-
quent retraction15!, and that crystalline nanoscale wires
~nanowires! are formed at the later stages of the elongation
process, irrespective of the initial size of the contact. Addi-
tionally, it was suggested that these systems could be used
for investigations of quantum effects in electronic transport
through nanowires and single-atom point contacts.15 Elec-
tronic conductance in such 3D constrictions has been theo-
retically analyzed17–19 using various models~e.g., contacts
with symmetric cross sections characterized by hard walls,
i.e., an infinite confining potential, with adiabatically varying
shape, and in the limit of weak magnetic fields!.

The use of scanning tunneling microscopy~STM! for fab-
rication of atomic-size metallic contacts~nanowires! and
measurement of their properties, opened new avenues for
studies of 3D quantum constrictions. Indeed, measurements
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of the electric properties of such constrictions, made with a
gold tip and sample, revealed room-temperature conductance
quantization in multiples of 2e2/h when the contact was
elongated.20,21Similar results have been reported using STM
in ultrahigh vacuum at room temperature with nickel, copper,
and platinum samples,22 and at cyrogenic conditions with
lead,23 as well as in measurements employing a mechanically
controllable break-junction technique.24

In this paper we present a theory of electronic transport
through a 3D ballistic microconstriction in field-free condi-
tions and under the influence of applied magnetic fields. To
this end we model the system via a generalized Bu¨ttiker
model, originally introduced for studies of transport in 2D
systems.25,26This model, where the constriction is character-
ized by a soft-wall confining potential, allows us to investi-
gate the role of the shape of the constriction, including an-
isotropy effects, and the influence of magnetic fields of
arbitrary strengths and directions. We demonstrate that the
properties of 3D quantum contacts may differ significantly
from those found in 2D constrictions. The character of con-
ductance quantization occurring in long 3D constrictions de-
pends on the shape of the cross section of the contact. In
symmetric contacts~i.e., circular cross section! the height of
the steps, measured in units of 2e2/h, is proportional to the
degree of degeneracy of the transverse energy levels. In
asymmetric cases~i.e., ellipsoidal cross sections!, with non-
degenerate energy levels, or a reduced degree of degeneracy,
the steplike structure may be obliterated~smeared!.

Application of a magnetic field alters the character of
electronic transport through the constriction, since the pres-
ence of an additional parameter of length dimension, i.e., the
cyclotron radiusr c , leads to the emergence of different
transport regimes. For a longitudinal orientation of the mag-
netic field with respect to the axis of the microconstriction,
the conductance behavior is different in two field-strength
regimes:~i! a weak-field regime,r c.d, and ~ii ! a strong-
field regimer c,d, whered is the typical transverse size of
the narrowing. In the first case the longitudinal motion of the
electron occurs via edge states~surface states!, resulting in
the appearance of an AB-type structure in the conductance
~compare with Refs. 12 and 13!. In the other limit ~strong
field!, electronic transport occurs both via edge states and
‘‘bulk ~Landau!’’ states ~see below!. As a result the conduc-
tance exhibits strong Shubnikov–de Haas oscillations with a
superimposed AB-type fine structure. Increase of the tem-
perature leads to the disappearance of the AB conductance
oscillations, first in the region of strong magnetic fields, and
then, at higher temperatures, in the region of weak ones.

For a transverse orientation~perpendicular to the axis of
the microconstriction! of the applied magnetic field only the
edge states are current carrying. In this case, increase of the
magnetic field leads to a decrease of the number of occupied
magnetoelectric subbands corresponding to the edge modes
~so-called magnetic depopulation of the subbands!, resulting
in a steplike decrease of the conductance.

The paper is organized as follows. In Sec. II, we discuss
the model used to describe 3D constrictions of arbitrary
shapes, and calculate the conductance both in the magnetic-
field-free case and in magnetic fields with longitudinal, trans-
verse, and tilted orientations. We summarize our results in
Sec. III.

II. MODEL AND RESULTS

We consider ballistic electronic transport through 3D con-
strictions modeled by a confining potential which character-
izes the shape and extent of the constriction. In such systems
the only source for resistance is of geometric~shape! origin.
We model the confining potential by a smooth function. Near
the bottleneck~the narrowest part! of the constriction, the
confining model potential may be expanded, and to second
order in the coordinates (x,y,z) it can be expressed in the
following form:

V~x,y,z!5V02
1
2m*vz

2z21 1
2m* ~vx

2x21vy
2y2!. ~1!

Herez is the coordinate along the constriction axis,x and
y are the coordinates in the transverse directions,V0 is the
potential at the saddle point, andm* is the effective mass of
the electron. The shape of the potential~defining the con-
striction! is determined by the terms containing the frequen-
ciesvx , vy , andvz ; examples of equipotential surfaces for
different values of the ratio ofvx andvy to vz are shown in
Fig. 1. Larger values of the ratio correspond to longer con-
strictions with smaller apertures. The parametersvx /vy de-
scribes the degree of anisotropy of the cross section of the
constriction.

A. Magnetic-field-free case

We consider first the magnetic-field-free case, where the
total Hamiltonian is given by

H52
\2

2m*
D1V~x,y,z!. ~2!

Expressing the wave functionc in the form

c~x,y,z!5R~x,y!Z~z!, ~3!

FIG. 1. Equipotential surfaces for the confining potential@see
Eq. ~1!# modeling a three-dimensional constriction~contact!, drawn
for the cases of a short symmetric (vx5vy) constriction, and a
longer one~that is, same values forvx andvy , and a smaller value
of vz).
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and separating the transverse and longitudinal variables in
the Schro¨dinger equation we obtain the equation describing
the motion of the electron through the constriction (z direc-
tion!

2
\2

2m*
]2z

]z2
1Vn1n2

eff ~z!Z5EZ, ~4!

where

Vn1n2
eff ~z!5V01En1n2

2 1
2m*vz

2z2 ~5!

is the effective potential, and

En1n2
5\vx~n11

1
2 !1\vy~n21

1
2 ! ~6!

are transverse electronic levels in the narrowest part of the
constriction~at the planez50!, E is the total energy, and
n1 andn2 are non-negative integers. The effective potential
Vn1n2
eff (z) may be considered as the band bottom of then1 ,

n2 quantum channel.8,25 In the absence of tunneling the
threshold energy for each channel at the planez50, is equal
to Vn1n2

eff (0). Channels with energiesE.Vn1n2
eff (0) pass

through the constriction with unit probability, while those
with E,Vn1n2

eff (0) are reflected. Consequently, in this case,

the transmission probability~and thus the conductance! is a
sharp-edge stepwise function of the total energy. Effects of
electronic tunneling through the effective potential@Eq. ~5!#
lead to a ‘‘smearing’’ of the threshold energy, thus affecting
the transmission probability in the vicinity of the rises of the
conductance steps. In this case the transmission probability
for the incident channeln1 , n2 has the form27

Tn1n2 ;n18n285dn1n18dn2n28@11exp~22pen1n2!#
21, ~7!

where

en1n25
E2V02En1n2

\vz
. ~8!

It is of importance to note that because of the harmonic form
of the potential there is no mode mixing during the tunneling
process. As in the case of 2D constrictions,25,26 the effective
length of the three-dimensional narrowing is determined by
the frequencyvz which influences the smearing of the con-
ductance steps.

The conductance of the constriction is determined by a
Landauer-type formula28,29

G5
2e2

h (
n1 ,n2

Tn1n2 ,n1n2, ~9!

where the sum runs over all transmitted channels.
Consider first a symmetric casevx5vy5v0 ~a constric-

tion with a circular cross section!. The conductance of such a
system as a function of the normalized energy,
j5(E2V0)/\vz , for different values of the dimensionless
parameterv0 /vz is plotted in Fig. 2. At large values of
v0 /vz , corresponding to long constrictions with smaller ap-
ertures, the conductance has a well-defined steplike structure
which is destroyed with decreasing values ofv0 /vz . Such a
behavior is in correspondence with a similar dependence of

the conductance of 2D and 3D quantum contacts which were
studied using different models.17,18,25,26

Degeneracies of the transverse energy levels in symmetric
contacts lead to an increase of the step height~Fig. 2!. The
heights of the steps~i.e., rises!, in fundamental units of
2e2/h, are proportional to the degree of degeneracy,n,
which in our model is determined by the sum of quantum
numbers,n5n11n211.

The slopes of the rises of the steps and of their plateaus
are determined by the expression

dG

dE
5
2e2

h

p

2\vz
(
n1 ,n2

@cosh2~pen1n2!#
21, ~10!

which is plotted in the inset to Fig. 3. This quantity can be
used to characterize the ‘‘quality’’ of the conductance
quantization.25

The conductance steps exhibit maximum values of the
slopes at the centers of the step rises, corresponding to the
classical~i.e., in the absence of tunneling! threshold energies
E5En1n2

1V0 @Eqs. ~5! and ~6!#. The magnitude of the
maximum slope of the rise of thenth step is

S dGdED
max

.n
2e2

h

p

2\vz
, ~11!

which increases with the degree of degeneracyn ~see the
inset to Fig. 3!. The slopes of the rises of the steps and those
of the plateaus also depend on the frequencyvz @see Eq.
~10!#. For v0@vz the slope of the plateau between thenth
and (n11)th steps, withn5n11n211 andn11 degrees of
degeneracy, respectively, is minimal at the energy

FIG. 2. ConductanceG ~in units of 2e2/h) of three-dimensional
symmetric constrictions (vx5vy5v0), vsj5(E2V0)/\vz , plot-
ted for various values ofv0 /vz . Note that the quantization of the
conductance disappears for short constrictions, i.e.,v0 /vz&1. Note
also that the height of the steps varies with the step number, i.e., the
height 2e2/h for the first step, 2(2e2/h) for the second one, and so
on.
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E~X!.V01\v0~n11n2111X!, ~12a!

X5
1

2
2

1

4p

vz

v0
lnS n11

n D . ~12b!

The minimal slope of the plateau, obtained by evaluating Eq.
~10! using Eq.~12!, is given by

S dGdED
min

.
2e2

h

2p

\vz
@n exp~22pv0X/vz!

1~n11!exp„22pv0~12X!/vz…#. ~13!

In asymmetric constrictions (vxÞvy) the degeneracy of
the transverse levels is lifted, and consequently increases in
the heights of the steps~i.e., larger step rises! may occur, for
the harmonic model confining potential used by us here, un-
der the following condition:

gxvx1gyvy50, ~14!

wheregx andgy are integers. As aforementioned, the shape
of the cross section of the constriction is determined by the
parametervx /vy , with vx /vy51 corresponding to a circu-
lar shape. For a decrease in the degree of degeneracyn, or in
the absence of degeneracy~i.e., n51!, the lengths of the
plateaus~i.e., the width of the flat portions of the conduc-
tance! between successive steps decrease, because a step cor-
responding to a degenerate energy level~channel! is split
into several steps due to lifting of the degeneracy. At the
same time the slopes of the step rises also decrease because
of the degeneracy indexn in Eq. ~11! ~note that the fre-
quencyvz is constant!. When the ‘‘smearing region’’ of the

steps becomes comparable to the size of the intervening pla-
teaus, the steplike character may disappear; see the curve in
Fig. 3 which depicts the conductance and its derivative~i.e.,
the slope, shown in the inset!, as functions of the normalized
energyj for different values ofvx /vy , while maintaining a
constant value of the cross-sectional area of the constriction,
i.e., vxvy is held constant~with this condition, for a given
j the classical conductance value in zero field1 is the same
for all values of vx /vy since it depends on the cross-
sectional area of the constriction and not on its shape!. Ob-
viously, the effect of the cross-sectional asymmetry on the
quality of the conductance quantization steps is larger for
shorter constrictions~characterized in our model by smaller
values ofv0 /vz ; see Fig. 2!, and its influence increases for
larger energies. It is interesting to remark in this context that,
as mentioned above, it has been shown by molecular-
dynamics simulations15,16 that the process of formation and
elongation of a three-dimensional constriction involves or-
dered and disordered stages occurring in the ‘‘necking’’ re-
gion of the pulled wires. Moreover, variations in the shapes
of the cross section of such 3D wires in various ordered
states have been observed. Such variations may explain the
disappearance of some of the conductance steps during the
elongation process which were observed in experimental
measurements performed on 3D quantum contacts~gold
nanowires!.21

B. Longitudinal, transverse, and tilted magnetic fields

In this subsection, we analyze electronic transport through
the constriction in the presence of a magnetic field. In this
case the total Hamiltonian is given by

H5
1

2m* S pW 2
e

c
AW D 21V~x,y,z!. ~15!

1. Longitudinal magnetic fields

First we consider the case of longitudinal orientation of
the magnetic field (Hiz) with the symmetric gauge for the
vector potential

AW 5 1
2 ~2Hy,Hx,0!. ~16!

As in the previous case of zero magnetic field, we can sepa-
rate the variables for longitudinal and transverse motion. In a
magnetic field we obtain for the transverse energy levels the
expression30

En1n2
H 5\v1~n11

1
2 !1\v2~n21

1
2 ! ~17!

and

v65 1
2 @AV21~vx1vy!

26AV21~vx2vy!
2#, ~18!

where n1 and n2 are non-negative integers, and
V5eH/m* c is the cyclotron frequency. A longitudinal mag-
netic field renormalizes the effective transverse frequencies
v6 , and does not affect the longitudinal frequencyvz . The
energy levelsEn1n2

H given by Eqs.~17! and~18! transform to

Eq. ~6! for H50, and to the Fock-Darwin levels31 in the
symmetric casevx5vy5v0 . The conductance of a 3D con-

FIG. 3. Conductance (G, in units of 2e2/h) vs j for symmetric
(vx5vy) and asymmetric (vxÞvy) constrictions, with a constant
cross-sectional area, i.e.,vxvy5const. The plots shown in this fig-
ure as well as in Figs. 4, 5, 8, 9, and 10, were calculated for
v0 /vz53, wherev05Avxvy, corresponding to the symmetric
case withv0 /vz53 in Fig. 2. For values ofvx andvy such that
vx /vy is irrational or can be expressed as the ratio of two large
integers, the quantization ofG is obliterated; e.g., see curves for
vx /vy51.4 and 2.6. In the inset the derivative ofG, ]G/]E, is
plotted vs j for the cases ofvx /vy51 ~solid line! and
vx /vy51.4 ~dotted line!.
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striction in a longitudinal magnetic field is determined by
Eqs.~7!, ~8!, and~9! with En1n2

H replacingEn1n2
.

The confining potential in the plane perpendicular to the
axis of the contact removes the degeneracy of the bulk en-
ergy levels which depend on both quantum numbersn1 , n2
and the potential parametersvx , vy describing the cross-
sectional shape of the constriction. This means that all the
energy levels correspond to surface states, for all values of
the applied magnetic field, and form magnetoelectric sub-
bands. Nevertheless, in strong magnetic fields,V@v0 ~i.e.,
when the cyclotron radiusr c5cm* vF /eH is much smaller
than the effective transverse radius of the narrowing
d5vF /v0 , where vF is the Fermi velocity! the spacings
between electronic energy levels with different values of the
quantum numbern1 is, to a first approximation with respect
to the parameterv0 /V, proportional to the cyclotron fre-
quencyV, as for proper Landau levels.

Magnetic fields influence the conductance of the micro-
constriction in a significant manner. Because of the renor-
malization of the transverse frequencies in the presence of a
magnetic field, an otherwise symmetric constriction becomes
effectively asymmetric. In some sense the influence of the
magnetic field is equivalent to the appearance of an anisot-
ropy. In Fig. 4 we display the dependence of the conductance
of a symmetric constrictionvx5vy5v0 on the normalized
energyj for different values of the magnetic fields in the
weak,V!v0 @see Fig. 4~a!#, and strong,V@v0 @see Fig.
4~b!#, limits. The removal of the degeneracy of the transverse
electronic levels by the magnetic field decreases the slopes of
the step rises, and may even lead to their disappearance.

It is of interest to investigate the magnetic-field depen-
dence of the conductance for fixed parameters of the con-
striction. Such a dependence is shown in Fig. 5 for
v0 /vz53.0 and different values of the parameter
j5(E2V0)/\vz . For weak fields, V,v0 , well-
pronounced oscillations of the AB type are observed. These
oscillations are due to edge states described by Eqs.~17! and
~18!. Increasing the strength of the magnetic field causes a
change in the number of allowed edge states in the narrow-
ing, which is manifested by an oscillatory behavior of the
conductance. In cylindrical channels with hard potential
walls a similar mechanism leads, in a weak magnetic field, to
the appearance of a sharp steplike structure of the
conductance.19 The inset in Fig. 5 portrays the Aharonov-
Bohm oscillations for different but relatively close values of
the parameterj5(E2V0)/\vz . While in the presence of a
magnetic field the conductance is of similar magnitude to
that found for the magnetic-field-free case, its behavior is
markedly modified. Different values of the parameterj cor-
respond to slight changes of the constriction shape. For each
shape of the constriction these oscillations are reproducible
and form ‘‘magnetic fingerprints’’ of the constriction~see the
inset to Fig. 5!.

For stronger magnetic fieldsV.v0 ~in this region the
cyclotron radius becomes smaller than the effective size of
the narrowing! the formation of ‘‘quasi-Landau orbits’’ in the
constriction leads to the appearance of Shubnikov–de Haas
oscillations. In this range of magnetic fields the aforemen-
tioned AB oscillations occur with significantly smaller am-
plitudes and periods, and they are superimposed on the

Shubnikov–de Haas ones. Moreover, the amplitude of the
AB-type features in the conductance decreases with the in-
crease of the magnetic field, unlike that of the Shubnikov–de
Haas effect.~The possible coexistence of de Haas–van Al-
phen and AB oscillations in 2D systems with a dot or antidot
has been discussed in Refs. 32–34.!

FIG. 4. Conductance (G, in units of 2e2/h) vs j, for symmetric
constrictions (vx5vy5v0) in the presence of applied longitudinal
magnetic fields. In~a! the regime of weak magnetic fields is shown,
i.e.,V/v0,1, whereV is the cyclotron frequency. Note the simi-
larity of the behavior of the conductance to that shown for asym-
metric constrictions in the field free case in Fig. 3, i.e., the disap-
pearance of the conductance quantization for certain values of
V/v0 . In ~b! we show the behavior ofG in the regime of large
longitudinal magnetic fields~the case of a vanishing field,
V/v050, is included for comparison!. The disappearance of the
quantization of the conductance is evident. Note that change in the
slope ofG for large value ofj, seen for the case ofV/v054
@similarly, such changes of slope occur at even higher values ofj
for the curves corresponding to stronger applied fields. The origin
of such changes in slope can be found from examination of the
energy spectrum given in Eqs.~17! and ~18!#. Similar changes in
slope with increasing values ofj can also be obtained for asymmet-
ric constrictions under field-free conditions~Fig. 3! for high degrees
of the asymmetry.
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The character of the magnetic oscillations of the conduc-
tance depends on the effective length of the microconstric-
tion which is determined by the ratiov0 /vz . The conduc-
tance plotted in Fig. 5 corresponds to a long contact
v0 /vz53.0 with a well-defined quantized structure~see Fig.
2!. The two types of magnetic oscillations discussed above
~the AB type and the Shubnikov–de Haas one! are due to
edge states in the constriction and bulk states, respectively.
Short enough constrictions,v0 /vz!1, cannot support stable
edge states in a longitudinal field, and consequently the AB
fine structure in the conductance dependence on the mag-
netic field disappears~Fig. 6!. However, the Shubnikov–de
Haas oscillations remain without change.4 Note that in 3D
constrictions placed in a longitudinal magnetic field, conduc-
tance quantization and AB oscillations may coexist, unlike
the case of 2D contacts where backscattering processes, re-

quired for the occurrence of the AB oscillations, destroy the
quantization~see, e.g., Ref. 26!. Elongation of the constric-
tion leads to increase of the AB contribution~Fig. 6!. The
appearance of beats in the AB structure is due to the inter-
ference of different edge channels contributing to the AB
effect. A related mechanism leading to beats in the thermo-
dynamic and transport characteristics of a 2D electron-gas
system with an antidot was discussed in Refs. 34 and 35.

In the above we discussed the conductance behavior at
zero temperature. To consider thermal effects we should sub-
stitute Eq.~9! for the conductance by the following equation:

G5
2e2

h E deS 2
] f 0
]e D (

n1 ,n2
Tn1n2 ,n1n2, ~19!

FIG. 5. Conductance (G, in units of 2e2/h)
of 3D symmetric constrictions vs cyclotron fre-
quency (V, in units of v0) for a longitudinal
applied magnetic field. The curves correspond to
different close values of the parameterj. The
AB-type oscillations occurring at low fields,
V&v0 , transform for high fields into the
Shubnikov–de Haas oscillations with a superim-
posed AB fine structure. Different values ofj,
corresponding to slight changes of the shape of
the constriction, result in significant changes in
the appearance of the AB oscillations~see the in-
set, where a magnified view of the region
0<V/v0<2 is shown!.

FIG. 6. Conductance (G, in units of 2e2/h)
of 3D symmetric contacts vs cyclotron frequency
(V, in units ofv0), plotted for various values of
the parameterv0 /vz which controls the relative
length of the constriction, and for a fixed value of
the electron energyE, such that (v0 /vz)/j
50.03. Note the disappearance of theAB oscil-
lations in short constrictions~small values of
v0 /vz).
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where f 0(e) is the Fermi distribution function. An increase
of the temperature leads to a smearing of the steps and to a
decrease of the amplitude of the magnetic oscillations. It is
of interest to note that the AB oscillations have different
temperature dependencies in the case of weakV!v0 ,

12,13

and strong,v0!V,34 magnetic fields. The temperature de-
pendence of the AB oscillations is determined by the func-
tion exp@22p2T/T0(H)#, where forT0(H) we have12,34

T0~H !.H \v0 , V!v0

\v0

v0

V
, v0!V.

~20!

The magnetic-field dependence of the conductance at differ-
ent temperatures, demonstrating, according to Eq.~20!,
damping~disappearance! of the AB oscillations first in the
region of strong fields and subsequently, at higher tempera-
tures, for weak ones, is plotted in Fig. 7.

2. Tilted and transverse magnetic fields

To investigate the case of tilted fields we chose for the
magnetic-field orientation the yz plane, i.e.,

HW 5(0,Hy ,Hz), with the following gauge of the vector po-
tential:

AW 5~zHy2yHz ,0,0!. ~21!

Transforming to a mixed momentum-coordinate representa-
tion f, y, and z, wheref5px /vxm* , Hamiltonian ~15!
may be written as

H~c,y,z!52
\2

2m* S ]

]f

]

]y

]

]zD I=S ]/]f

]/]y

]/]z
D

1
m*

2
~fyz!A= S f

y

z
D . ~22!

Here I= is the unit matrix and the matrixA= has the form

A= 5S vx
2 2vxVz vxVy

2vxVz vy
21Vz

2 2VyVz

vxVy 2VyVz 2vz
21Vy

2D , ~23!

with Vy5eHy /m* c andVz5eHz /m* c. Making a unitary
transformation of the coordinatesf, y, andz, which diago-
nalizes the matrixA= , for the Hamiltonian in the new repre-
sentation (q1 , q2 , q3) we obtain the following expression:

H~q1 ,q2 ,q3!5(
i51

3 H 2
\2

2m*
]2

]qi
2 1

m*

2
l iqi

2J . ~24!

Here l i are the eigenvalues of the matrixA= ~note that the
matrixA= is Hermitian, so that its eigenvalues are real! which
may be determined from the equation

l31C2l
21C1l1C050, ~25!

where

C252vx
22vy

21vz
22Vz

22Vy
2 ,

C152vz
2~vx

21vy
21Vz

2!1vy
2~vx

21Vy
2!, ~26!

C05vx
2vy

2vz
2 .

FIG. 7. Conductance (G, in units of 2e2/h)
of a 3D symmetric contact vs cyclotron fre-
quency (V, in units of v0), plotted for various
values of the temperature (T, in units of
1022\v0). Note that the AB oscillations vanish
first in the strong-field region for
T*\v0 (v0 /V). AB oscillations in the weak-
field region vanish at higher temperatures,
T*\v0 . For all temperatures we used
v0 /vz520 andj5670.
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A simple analysis of Eqs.~25! and ~26! shows that there
exist two positive roots,l15v1

2 andl25v2
2 , and one nega-

tive root,l352v3
2 , of Eq. ~25!. This means that the Hamil-

tonian in Eq.~24! has the same form as the Hamiltonian in
Eq. ~2!, but with different values of the effective frequencies
v1 , v2 , andv3 . It should be noted that for a tilted magnetic
field the ‘‘longitudinal’’ frequencyv3 depends on the field.

At first we consider the case of a transverse magnetic
field, Hy5H, Hz50. For symmetric constrictions,
vx5vy5v0 , the solutions of Eqs.~25! and ~26! are given
by the expressions

v1
25 1

2 ~v0
22vz

21V2!

1 1
2AV412V2~v0

22vz
2!1~v0

21vz
2!2,

v2
25v0

2 , ~27!

v3
25 1

2 ~2v0
21vz

22V2!

1 1
2AV412V2~v0

22vz
2!1~v0

21vz
2!2.

Equations~26! and ~27! allow us to calculate the conduc-
tance of the constriction in a transverse magnetic field. The
dependence of the conductance on the energy, for different
values of the magnetic field, is shown in Fig. 8. In the weak
field region,V!v0 , the influence of the transverse field is
similar to that of the longitudinal one@compare Figs. 8 and
4~a!#. In this limit, from Eq.~27! we obtain

v1.v0S 11
1

2

V2

v0
21vz

2D , ~28a!

v3.vzS 12
1

2

V2

v0
21vz

2D , ~28b!

The magnetic field shifts one of the transverse frequencies,
thus making the constriction effectively asymmetric. The lat-

ter may result in the removal of the degeneracy and even a
smearing of the steps. The frequencyv3 which determines
the shape of the steps changes slightly.

In the strong-field regionV@v0 , from Eq. ~27! we ob-
tain

v1.V, v3.vz

v0

V
. ~29!

The decrease of the frequencyv3 with the strength of the
magnetic field corresponds to an effective lengthening of the
constriction. This implies that strong~transverse! magnetic
fields enhance the quantization characteristics of the conduc-
tance. In a strong enough perpendicular magnetic field, con-
ductance quantization can occur even in constrictions which
do not exhibit such quantization under zero-field conditions.
A similar effect of the influence of a strong magnetic field on
the quantization of the conductance was discussed by
Büttiker25,26 for two-dimensional contacts.

As mentioned above, the steplike structure of the conduc-
tance is caused by changes in the number of transmitted
channels. This can be achieved most easily by varying the
magnitude of the magnetic field. In Fig. 9 we plotted the
conductance of symmetric~curve 2! and asymmetric~curves
1 and 3! constrictions as a function of the strength of a trans-
verse~oriented along they direction! magnetic field, for a
fixed value of the energy. Increase of the magnetic field leads
to depopulation of the magnetoelectric subbands in the con-
striction, resulting in a steplike decrease of the conductance.
Notice that the slopes of the steps become larger at higher
values of the magnetic field.

The role of the confining potential describing the constric-
tion in the process of the depopulation of the subbands may
be readily demonstrated for asymmetric constrictions~note

FIG. 8. Conductance (G, in units of 2e2/h) of a symmetric 3D
point contact vsj in the presence of transverse magnetic fields of
various strengths. Note the similarity of the behavior of the conduc-
tance at low fields to that shown for the constriction in longitudinal
magnetic fields~see Fig. 4!, and the improvement of the ‘‘quality’’
of the conductance quantization in the strong-field limit.

FIG. 9. Conductance (G, in units of 2e2/h) of 3D point con-
tacts vs the strength of an applied transverse magnetic field~ex-
pressed in terms ofV/v0), plotted for various values ofvx /vy ,
while maintaining a constant value of the cross-sectional area of the
constriction, i.e.,v05Avxvy. Here we usedj527. The different
behavior of the conductance, depending on the cross-sectional
shape of the constriction, is due to different scenarios of depopula-
tion of the magnetoelectric subbands.
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that the value of the cross-sectional area of the constriction is
maintained constant, i.e.,vxvy5const., corresponding to a
constant value of the classical conductance at zero field1!.
Different relative orientations of the transverse magnetic
field with respect to thex andy axes lead to different field
dependencies of the conductance~Fig. 9, curves 1 and 3!.
Such a behavior is due to different scenarios of the depopu-
lation of the magnetoelectric subbands for different orienta-
tions of a transverse magnetic field relative to the cross-
sectional axes of the contact. Depopulation of the subbands,
leading to a decrease of the conductance, occurs earlier~i.e.,
for smaller field strength! for a magnetic field oriented along
the small axis of the ellipsoidal cross section of the constric-
tion. This effect is related to the decrease of the number of
current-carrying edge modes with increasing strength of the
applied magnetic field; for configuration 1 in Fig. 9 the num-
ber of propagating modes is larger than for configurations 2
and 3, and consequently the relative change in the conduc-
tance caused by the increase of the magnetic field is smaller
for this configuration.

Finally, for an arbitrarily tilted orientation of the magnetic
field the conductance of the constriction exhibits properties
due to both the longitudinal~AB and Shubnikov–de Haas
oscillations! and transverse~steplike decrease! components
of the field. As a demonstration, in Fig. 10~a! we show the
conductance of the constriction denoted as 1 in Fig. 9, for an
applied magnetic field of arbitrary orientations in theyz
plane. For longitudinal orientation of the magnetic field~i.e.,
vanishing value ofVy5eHy /m* c), one observes AB oscil-
lations for small values of Vz5eHz /m* c, and
Shubnikov–de Haas oscillations for larger ones@see Sec.
II B 1#. For the transverse orientation of the field~i.e.,
Vz.0) a steplike decrease of the conductance is seen~com-
pare our discussion in connection with Fig. 9!. In Fig. 10~b!
the conductance for the same constriction, but for a magnetic
field tilted in thexz plane ~for this configuration the short
axis of the elliptical cross section of the constriction lies in
the plane of the magnetic field!, is shown. The behavior of
the conductance for longitudinal (Vx50) orientation of the
field is the same as in Fig. 10~a!, while for a transverse

FIG. 10. Conductance (G, in
units of 2e2/h) of a 3D constric-
tion with the configuration de-
noted as 1 in Fig. 9, plotted as a
function of a tilted magnetic field
~in units of V/v0 , with
v05Avxvy). Here we used
j527 as in Fig. 9.~a! and~b! cor-
respond to different orientations
of the magnetic field; in~a! the
applied field is in theyz plane,
and in ~b! in the xz plane. Note
the coexistence of quantum oscil-
lations ~the AB and Shubnikov–
de Haas effects! and the effect of
the depopulation of the magneto-
electric subbands.
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orientation the steplike decrease is faster than that in Fig.
10~a! ~compare curves 1 and 3 in Fig. 9!.

III. SUMMARY

The analysis which we performed demonstrated a variety
of transport properties of 3D quantum constrictions. Certain
properties of the electronic eigenvalue spectra, and conse-
quently certain characteristics of conductance quantization,
in such structures, depend on the nature of the confining
potential describing the system. In particular, different poten-
tials lead to different distributions of the eigenvalues as a
function of the energy, and to different degrees of degenera-
cies of the spectrum. For example, in symmetric constric-
tions ~i.e., contacts with circular cross sections! described by
a hard-wall confining potential the spectrum is obtained as
the zeros of the Bessel functions, and the conductance exhib-
its a stepwise structure with step heights of 2e2/h or
2(2e2/h), depending on the eigenvalue degeneracy.17 On the
other hand for similar constrictions described by a soft con-
fining potential, such as the harmonic potential used in this
paper, the conductance quantization steps are characterized
by step heights proportional to the degree of degeneracy,
which is equal in our model to the step number~see Fig. 2!.
In both cases the sharp step structure occurring in the ab-
sence of quantum tunneling, may be ‘‘smeared’’ when the
tunneling effect on the transmission through the constriction
is included, and the degree of such smearing of the conduc-
tance steps depends on the radius of curvature~‘‘effective
length’’! of the wire ~see Figs. 1 and 2!.

The presence of an additional parameter characterizing
the shape of the cross section of the 3D constriction leads to
a significant effect on the conductance quantization. In con-
strictions with an asymmetric transverse cross section the
degeneracy may be removed. When a size of the plateau
between successive steps becomes smaller than the smearing
region of nondegenerate steps, the steplike structure of the
conductance may disappear~Fig. 3!. Such effects occur for
both hard and soft confining potentials,36 and may explain
the occasional disappearance of steps in experiments on 3D
quantum point contacts.21

Longitudinal magnetic fields change the character of bal-
listic electronic transport through the constriction leading to
the appearance of AB oscillations in the conductance. In the
strong magnetic fields,V@v0 (r c!d, whered is the effec-
tive transverse size of the narrowing!, the AB oscillations are
superimposed on the Shubnikov–de Haas ones~Fig. 5!.

Temperature damps the AB oscillations on a scale of
\v0(v0 /V) in strong fields and on a scale of\v0 in weak
ones,V!v0 ~Fig. 7!. It is of interest to note that in such 3D
systems there exists a correlation between conductance quan-
tization and the AB effect. Both effects vanish in short con-
strictions~compare Figs. 2 and 6!.

Transverse magnetic fields depopulate the magnetoelec-
tric subbands created by the magnetic field and the confining
potential, leading to a steplike decrease of the conductance
of the constriction as a function of the field strength~Figs. 9
and 10!.

The AB oscillations of the conductance of the quantum
point contact may be observed in magnetic fields, such that
the magnetic flux through the cross section of the contact is
of the order of the flux quantumF0 , i.e.,

H*F0 /d
2. ~30!

For H;105 G we obtaind*10 nm. The Shubnikov–de
Haas oscillations appear in stronger magnetic fields or larger
constrictions, such that the cyclotron radius of the electron is
smaller than the effective transverse size (d) of the constric-
tion, i.e.,

d*
m* cvF
eH

. ~31!

For a magnetic fieldH;105 G, we estimated*102 nm.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy, Grant No. DE-FG05-86ER45234 and AFOSR Grant
No. F49620-93-1-0231. Computations were performed at the
Georgia Tech Center for Computational Materials Science.

1Yu. V. Sharvin, Zh. E´ksp. Teor. Fiz.48, 984 ~1965! @Sov. Phys.
JETP21, 655 ~1965!#.

2I. K. Yanson, Zh. E´ksp. Teor. Fiz.66, 1035 ~1974! @Sov. Phys.
JETP39, 506 ~1974!#.

3I. O. Kulik, A. N. Omelyanchuk, and R. I. Shekhter, Fiz. Nizk.
Temp.3, 1543~1977! @Sov. J. Low Temp. Phys.3, 789 ~1977!#.

4E. N. Bogachek, I. O. Kulik, and R. I. Shekhter, Solid State Com-
mun. 56, 999 ~1985!; E. N. Bogachek and R. I. Shekhter, Fiz.
Nizk. Temp.14, 810 ~1987! @Sov. J. Low Temp. Phys.14, 445
~1988!#.

5H. M. Swartjes, A. P. van Gelder, A. G. M. Jansen, and P. Wyder,
Phys. Rev. B39, 3086~1989!; I. K. Yanson, O. I. Shklyarevskii,
and N. N. Gribov, J. Low Temp. Phys.88, 135 ~1992!; N. L.
Bobrov, J. A. Kokkedee, N. N. Gribov, I. K. Yanson, and A. G.
M. Jansen, Physica B204, 83 ~1995!.

6B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Wil-

liamson, L. P. Kouwenhoven, D. van der Marel, and C. T.
Foxon, Phys. Rev. Lett.60, 848 ~1988!.

7D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H.
Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A.
Ritchie, and G. A. C. Jones, J. Phys. C21, L209 ~1988!.

8L. I. Glazman, G. B. Lesovik, D. E. Khmelnitskii, and R. I. Shek-
hter, Pis’ma Zh. E´ksp. Teor. Fiz.48, 218 ~1988! @JETP Lett.48,
238 ~1988!#.

9H. van Houten, C. W. J. Beenakker, and B. J. van Wees, Semi-
cond. Semimet.35, 9 ~1992!.

10P. H. M. van Loosdrecht, C. W. J. Beenakker, H. van Houten, J.
G. Williamson, B. J. van Wees, J. E. Mooij, C. T. Foxon, and J.
J. Harris, Phys. Rev. B38, 10 162~1988!.

11L. I. Glazman and M. Jonson, Phys. Rev. B41, 10 686~1990!.
12E. N. Bogachek and G. A. Gogadze, Zh. E´ksp. Teor. Fiz.63, 1839

~1972! @Sov. Phys. JETP36, 973 ~1973!#.

53 4063QUANTUM ELECTRONIC TRANSPORT THROUGH THREE- ...



13E. N. Bogachek, Fiz. Nizk. Temp.2, 473 ~1976! @Sov. J. Low
Temp. Phys.2, 235 ~1976!#.

14N. B. Brandt, D. V. Gitsu, A. A. Nikolayeva, and Ya. G. Pono-
marev, Pis’ma Zh. E´ksp. Teor. Fiz.24, 304 ~1976! @JETP Lett.
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