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Quantum electronic transport through three-dimensional microconstrictions with variable shapes
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The transport properties of three-dimensional quantum microconstrictions in field-free conditions and under
the influence of magnetic fields of arbitrary strengths and directions are studied via a generattidest Bu
model[Phys. Rev. B41, 7906(1990]. It is shown that conductance quantization is influenced by the geometry
of the microconstrictiorithat is, its length and the shape of its transverse cross sgdtica weak longitudinal
magnetic field, wherr.>d, wherer. is the cyclotron radius and the effective transverse size of the
narrowing of the microconstriction, the conductance exhibits Aharonov-Bohm—type behavior. This behavior
transforms in the strong-field limity.<d, into Shubnikov—de Haas oscillations with a superimposed
Aharonov-Bohm fine structure. The dependence of the Aharonov-Bohm-—type features on the length of the
microconstriction and on temperature are demonstrated. Transverse magnetic fields lead to depopulation of the
magnetoelectric subbands, resulting in a steplike decrease of the conductance upon increasing the strength of
the applied magnetic field.

I. INTRODUCTION boundaries effectively form a doubly connected region in a
simply connected constriction, resulting in the appearance of
Microconstrictions(sometimes referred to as point con- Aharonov-Bohm(AB) oscillations fic/e oscillations in the
tacty connecting massive reservoirs are unique objects foconductancé®!'in accordance with previous ideas pertain-
generation and investigation of ballistic quasiparticle transing to the manifestation of the AB effect in simply connected
port in solids. Studies of such systems have been inspired hyeometries?14
the pioneering investigations by Sharvin the mid-1960s. The phenomenon of conductance quantization is not re-
In early studies, three-dimension@D) metallic point con-  stricted to 2D constrictions, and under appropriate conditions
tacts were fabricated usually by pressing a needle on a cry#- should also occur in 3D metallic point contacts with
tal face and were of submicron dimensions; that is, sizesmall constriction diameters. Early molecular-dynamics
which are large compared with the electron wavelength. Thaeimulationd®'® have shown that such three-dimensional
character of electronic transport under such conditions is gunctions form between two materials bodies brought into
semiclassical nature. The most interesting phenomena olatose proximity, and that subsequent retraction of the two
served in classical point contacts were electronic focdsingcontacting bodies results in elongation of the contact and
and point-contact spectroscopy of electron-phonorgeneration of a stretched 3D constricti@onnective wirg
interactions® Quantum effects in large metallic point con- These simulations have revealed the plastic nature of the
tacts emerge in the presence of magnetic fields because efongation process of such metallic wir@ghich in the case
magnetic quantization in the reservotrs. of gold were predicted to be characterized by a critical yield
Progress in modern nanotechnologies, such as moleculastress of~2-3 Gpa, i.e., an order of magnitude larger than
beam epitaxy, made it possible to fabricate ballistic pointthat of bulk Au, occurring in a sequence of stress-
contacts with continuously variable sizes in a two-accumulation and stress-relief stages, and leading to the for-
dimensional2D) electron gage.g., GaAs-AlGa; _,As het- mation of highly ordered crystalline wires. Furthermore, it
erostructures The width of the opening in such structures was shown that the extent of such pulled wires can be con-
can be of the same order as the electron Fermi wavelengtheolled (e.g., indentation of a tip into a substrate and subse-
Me (Ag=400 A). Consequently, such point contacts can re-quent retractiol?), and that crystalline nanoscale wires
veal quantum properties even under field-free conditions. In¢nanowire$ are formed at the later stages of the elongation
deed it was found that the conductance of such 2D constrigarocess, irrespective of the initial size of the contact. Addi-
tions is quantized in units ofé/h, when the constriction tionally, it was suggested that these systems could be used
size is varied:’ for investigations of quantum effects in electronic transport
The physical origin of such a behavior of the conductancehrough nanowires and single-atom point contattglec-
lies in the discrete character of the change in the number dfonic conductance in such 3D constrictions has been theo-
transport mode&hannelswhich are transmitted through the retically analyzetf ~*° using various modelge.g., contacts
constrictiof (for a review, see Ref.)91In the absence of a with symmetric cross sections characterized by hard walls,
magnetic field the number of transmitted modes is deteri.e., an infinite confining potential, with adiabatically varying
mined by the minimal width of the constriction. Because ofshape, and in the limit of weak magnetic figlds
the 2D character of the electronic transport, the influence of The use of scanning tunneling microscd®TM) for fab-
magnetic fields is significant only in the strong-field limit rication of atomic-size metallic contact®anowire$ and
(the quantum-Hall-effect regimevhere charge transport oc- measurement of their properties, opened new avenues for
curs via edge states. The edge states localized near tlséudies of 3D quantum constrictions. Indeed, measurements
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of the electric properties of such constrictions, made with a

gold tip and sample, revealed room-temperature conductance .00
e . &R AKX,
quantization in multiples of €/h when the contact was ST
021 @i ; OSSN T HZAS,
elongated®2! Similar results have been reported using STM g@s“‘““,,,z,,";’?
in ultrahigh vacuum at room temperature with nickel, copper, ‘\Q‘%\%\“ nm%
and platinum sample€, and at cyrogenic conditions with z R -7”

lead?® as well as in measurements employing a mechanically
controllable break-junction technigéé.

In this paper we present a theory of electronic transport
through a 3D ballistic microconstriction in field-free condi-
tions and under the influence of applied magnetic fields. To X
this end we model the system via a generalizedtiBer
model, originally introduced for studies of transport in 2D
system£>?° This model, where the constriction is character-
ized by a soft-wall confining potential, allows us to investi-
gate the role of the shape of the constriction, including an-
isotropy effects, and the influence of magnetic fields of
arbitrary strengths and directions. We demonstrate that the
properties of 3D quantum contacts may differ significantly
fl’0m those found in 2D ConStI’iCtionS. The Character Of con- FIG. 1. Equipotentia] surfaces for the Conﬁning potent@e
ductance quantization occurring in long 3D constrictions de£q. (1)] modeling a three-dimensional constricti@ontac}, drawn
pends on the shape of the cross section of the contact. ar the cases of a short symmetrie=w,) constriction, and a
symmetric contactgi.e., circular cross sectigrthe height of  longer onethat is, same values fas, andw,, and a smaller value
the steps, measured in units of?2h, is proportional to the of w,).
degree of degeneracy of the transverse energy levels. In
asymmetric caseg.e., ellipsoidal cross sectiopswith non- [l. MODEL AND RESULTS

degenerate energy levels, or a reduced degree of degeneracy,We consider ballistic electronic transport through 3D con-

the steplike structure may be obliterateineareg S L ) )
Application of a magnetic field alters the character of gt S RS B TEt e B e atoms
electronic transport through the constriction, since the pres; P : y

ence of an additional parameter of length dimension, i.e., th%r\]/e only source for_ resistance Is of geome(sbap¢ orgin.
. : e model the confining potential by a smooth function. Near
cyclotron radiusr, leads to the emergence of different

transport regimes. For a longitudinal orientation of the mag—t he hottleneckithe narrowest partof the canstriction, the

F ) . . . .. _<confining model potential may be expanded, and to second

netic field with respect to the axis of the microconstriction, . . . .
o . . order in the coordinatesx(y,z) it can be expressed in the

the conductance behavior is different in two field-strength . )

. P . X - following form:
regimes: (i) a weak-field regimer.>d, and (ii) a strong-
field regimer .<d, whered is the typical transverse size of
the narrowing. In the first case the longitudinal motion of the
electron occurs via edge statesurface statgs resulting in
the appearance of an AB-type structure in the conductan
(compare with Refs. 12 and 1L3In the other limit(strong
field), electronic transport occurs both via edge states an

bulk (Landay” states (see below As a result the conduc- striction) is determined by the terms containing the frequen-

tance exhibits strong Shubnikov—de Haas oscillations with Riesw. . andw. examples of equipotential surfaces for
X y» Z

superimposed AB-type _fine structure. Increase of the temaifferent values of the ratio ab. andw. to w. are shown in
perature leads to the disappearance of the AB conductan(;,_e X Y Z

o o ! o ig. 1. Larger values of the ratio correspond to longer con-
oscillations, first in the region of strong magnetic fields, and_, =" ; 4
) ) : strictions with smaller apertures. The parameteféw, de-
then, at higher temperatures, in the region of weak ones. Y

For a transverse orientatidperpendicular to the axis of scribes the degree of anisotropy of the cross section of the

the microconstrictionof the applied magnetic field only the constriction.
edge states are current carrying. In this case, increase of the o
magnetic field leads to a decrease of the number of occupied A. Magnetic-field-free case
magnetoelectric subbands corresponding to the edge modes e consider first the magnetic-field-free case, where the
(so-called magnetic depopulation of the subbandsulting  total Hamiltonian is given by
in a steplike decrease of the conductance.
The paper is organized as follows. In Sec. I, we discuss K2
the model used to describe 3D constrictions of arbitrary M= Sew ATV(XY.2). 2
shapes, and calculate the conductance both in the magnetic-
field-free case and in magnetic fields with longitudinal, trans-Expressing the wave functiog in the form
verse, and tilted orientations. We summarize our results in
Sec. Il W(X,y,2)=R(X,¥)Z(2), 3)

= i |\\\\\\§~¢=\?\\
WSS
TS

V(x,y,2)=Vo—3m* 032%+ sm* (02x?+ wly?). (1)

Herez is the coordinate along the constriction axisand
C)‘? are the coordinates in the transverse directidfisis the
otential at the saddle point, amt is the effective mass of
e electron. The shape of the potentidéfining the con-
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and separating the transverse and longitudinal variables in 10
the Schrdinger equation we obtain the equation describing
the motion of the electron through the constrictiandirec-
tion)
he 9’z
- ﬁ ﬁ +ann2(Z)Z— EZ, 4)
where

am* w;7? (5

G(2e?/h)

Vi (2)=Vo+E,

2
is the effective potential, and
Enyn,=hox(Ni+3) +hay(ny+ ) (6) :

5 O/, J
are transverse electronic levels in the narrowest part of the ’ ;
constriction(at the planez=0), E is the total energy, and of
n; andn, are non-negative integers. The effective potential o \
Vﬁflfnz(z) may be considered as the band bottom of ihe 4 o 0 2 4 6 8

n, quantum channé?® In the absence of tunneling the £
threshold energy for each channel at the plan®, is equal

eff . ; eff
to Vin,(0). Channels with energie&>V, , (0) pass FIG. 2. Conductanc6 (in units of 26%/h) of three-dimensional
through the constriction with unit probability, while those symmetric constrictionsd,= w,=w), vs é=(E—V,)/fiw,, plot-
with E<Vﬁflfn2(0) are reflected. Consequently, in this case,ted for various values obg/w,. Note that the quantization of the

the transmission probabilitand thus the conductancis a conductance disappears for short constrictions,aglw,=<1. Note
f : Iso that the height of the steps varies with the step number, i.e., the
sharp-edge stepwise function of the total energy. Effects of
p-edg b 9y height 22/h for the first step, 2(8%/h) for the second one, and so

electronic tunneling through the effective potenfiat. (5)] on
lead to a “smearing” of the threshold energy, thus affecting™ -

the transmission probability in the vicinity of the rises of the .
conductance steps. In this case the transmission probabilitthe conductance of 2D and 3D guantum contacts which were

; ; ; ,18,25,26
for the incident channet,, n, has the forry’ Studied using different modef3: . .
Degeneracies of the transverse energy levels in symmetric
B s _ -1 contacts lead to an increase of the step he{fiy. 2). The
Toingingny = Onyn; Sngny [ 1+ XA = 2menyp) ] (7) heights of the stepsi.e., rise$, in fundamental units of
where 2¢?/h, are proportional to the degree of degeneraty,
which in our model is determined by the sum of quantum
numbersn=n;+n,+1.
(8) The slopes of the rises of the steps and of their plateaus
are determined by the expression
It is of importance to note that because of the harmonic form 4G 262
of the potential there is no mode mixing during the tunneling gb & 7 -1
process. As in the case of 2D constrictidné® the effective dE  h 2ho, %Z [cosf(menn)]™"  (10)
length of the three-dimensional narrowing is determined by = | ) ) ) . )
the frequencyw, which influences the smearing of the con- which is plotted in t_he inset to F|g. 3. This quantity can be
ductance steps. used to _chzgractenze the “quality” of the conductance
The conductance of the constriction is determined by uantizatior? » _
Landauer-type formufg2° The conductance steps exh|b|t.maX|mum value; of the
slopes at the centers of the step rises, corresponding to the
22 classical(i.e., in the absence of tunnelinthreshold energies
G=Tnzn Thyn, nyny 9 E=Ep,n, Vo [Egs. (5) and (6)]. The magnitude of the
1z maximum slope of the rise of theth step is

E-Vo,—E

_ NNy
n - .
112 ﬁwz

€n

where the sum runs over all transmitted channels.

Consider first a symmetric casg = wy,= w, (a constric- dG 2
tion with a circular cross sectipnThe conductance of such a dE/ " n 2fhw,’
system as a function of the normalized energy, m
£=(E—Vy)/tw,, for different values of the dimensionless which increases with the degree of degeneracisee the
parameterw,/w, is plotted in Fig. 2. At large values of insetto Fig. 3. The slopes of the rises of the steps and those
wo/w,, corresponding to long constrictions with smaller ap-of the plateaus also depend on the frequengy[see Eq.
ertures, the conductance has a well-defined steplike structuf@0)]. For wy> w, the slope of the plateau between thi
which is destroyed with decreasing values®f/w,. Sucha and (0+1)th steps, with=n;+n,+1 andn+ 1 degrees of
behavior is in correspondence with a similar dependence alegeneracy, respectively, is minimal at the energy

11)
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steps becomes comparable to the size of the intervening pla-
teaus, the steplike character may disappear; see the curve in
Fig. 3 which depicts the conductance and its derivative,
the slope, shown in the ingefs functions of the normalized
energy¢ for different values ofw, /0y, while maintaining a
constant value of the cross-sectional area of the constriction,
i.e., wywy is held constantwith this condition, for a given
¢ the classical conductance value in zero figkithe same
for all values of w,/w, since it depends on the cross-
sectional area of the constriction and not on its shapé-
viously, the effect of the cross-sectional asymmetry on the
quality of the conductance quantization steps is larger for
shorter constrictiongcharacterized in our model by smaller
values ofwy/w,; see Fig. 2, and its influence increases for
larger energies. It is interesting to remark in this context that,
as mentioned above, it has been shown by molecular-
dynamics simulatiorts® that the process of formation and
elongation of a three-dimensional constriction involves or-
FIG. 3. ConductanceQ, in units of 2?/h) vs ¢ for symmetric ~ dered and disordered stages occurring in the “necking” re-
(wy=wy) and asymmetric ¢, # wy) constrictions, with a constant gion of the pulled wires. Moreover, variations in the shapes
cross-sectional area, i.evs,w,= const. The plots shown in this fig- of the cross section of such 3D wires in various ordered
ure as well as in Figs. 4, 5, 8, 9, and 10, were calculated folstates have been observed. Such variations may explain the
wol/w,=3, where wy=Jw,wy, corresponding to the symmetric disappearance of some of the conductance steps during the
case withwg/w,=3 in Fig. 2. For values ofs, and w, such that  e|ongation process which were observed in experimental

oy lw,y is irrational or can be expressed as the ratio of two largemeasurements performed on 3D quantum contégtid
integers, the quantization @ is obliterated; e.g., see curves for nanowire$.21

oylwy=1.4 and 2.6. In the inset the derivative Gf JG/JE, is

plotted vs ¢ for the cases ofw,/w,=1 (solid line and o ) o
o, lw,=1.4 (dotted lind B. Longitudinal, transverse, and tilted magnetic fields
x! Wy ' '

G(2e?/h)

In this subsection, we analyze electronic transport through
E(X)=Vy+hwg(ng+n,+1+X), (12a the constriction in the presence of a magnetic field. In this
case the total Hamiltonian is given by

1 1 w, [(n+ 1) 198

2 47 wg : n (12 W= 1 ( 5_ EA
T =

The minimal slope of the plateau, obtained by evaluating Eq. 2m ¢

(10) using Eq.(12), is given by

2
+V(X,Y,2). (15

1. Longitudinal magnetic fields

dG| 2 2w First we consider the case of longitudinal orientation of
—| =T [nexp - 270X w,) cor . !
dE/ .= h fw, the magnetic field Kl|z) with the symmetric gauge for the
vector potential
+(n+1l)exp(—27wo(1—X)/ w,)]. (13

A—l(_
In asymmetric constrictionsa{;# w,) the degeneracy of A=2(—Hy,Hx,0). (16)

the transverse levels is lifted, and consequently increases j&s in the previous case of zero magnetic field, we can sepa-
the heights of the stefige., larger step risgsnay occur, for  rate the variables for longitudinal and transverse motion. In a

the harmonic model confining potential used by us here, unmagnetic field we obtain for the transverse energy levels the
der the following condition: expressiorf

Txoxt vywy =0, (14 B =fio, (Nt ) +ho_(np+3) (17
where y, and y, are integers. As aforementioned, the shape
of the cross section of the constriction is determined by thénd
parametek, /wy , With o, /w,=1 corresponding to a circu-
lar shape. For a decrease in the degree of degenaramyin 0+ =3[VO2+ (04t ) * % O+ (0~ wy)?], (18)
the absence of degeneragye., n=1), the lengths of the
plateaus(i.e., the width of the flat portions of the conduc-

tance between successive steps decrease, because a step o p X .
responding to a degenerate energy lef@annel is split netic field renormalizes the effective transverse frequencies

into several steps due to lifting of the degeneracy. At the®=» and doeanot affect the longitudinal frequeney. The
same time the slopes of the step rises also decrease beca§8rdy levels,, , given by Eqs(17) and(18) transform to
of the degeneracy inder in Eq. (11) (note that the fre- Eq. (6) for H=0, and to the Fock-Darwin levéfsin the
quencyw, is constant When the “smearing region” of the symmetric case,= w,= w,. The conductance of a 3D con-

where n; and n, are non-negative integers, and
7= eH/m*c is the cyclotron frequency. A longitudinal mag-
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striction in a longitudinal magnetic field is determined by 25 -
Egs.(7), (8), and(9) with Eﬁlnz replacingEy, - ]

The confining potential in the plane perpendicular to the 207
axis of the contact removes the degeneracy of the bulk en- ]
ergy levels which depend on both quantum numlrgrsn, 157
and the potential parametess,, », describing the cross- ]
sectional shape of the constriction. This means that all thes 1
energy levels correspond to surface states, for all values of2
the applied magnetic field, and form magnetoelectric sub-~ 5
bands. Nevertheless, in strong magnetic fields; o, (i.e., ]
when the cyclotron radius,=cm*vg/eH is much smaller
than the effective transverse radius of the narrowing
d=vr/wg, Wherevg is the Fermi velocity the spacings
between electronic energy levels with different values of the  ¢*
quantum numben, is, to a first approximation with respect 0
to the parametemwy/(), proportional to the cyclotron fre-
quency(), as for proper Landau levels.

Magnetic fields influence the conductance of the micro-
constriction in a significant manner. Because of the renor- 4 |
malization of the transverse frequencies in the presence of a
magnetic field, an otherwise symmetric constriction becomes
effectively asymmetric. In some sense the influence of the 5]
magnetic field is equivalent to the appearance of an anisot-—
ropy. In Fig. 4 we display the dependence of the conductancey,
of a symmetric constrictiow, = w,= wq on the normalized % 104
energy ¢ for different values of the magnetic fields in the
weak, Q< w, [see Fig. 4a)], and strong{)> w, [see Fig.

4(b)], limits. The removal of the degeneracy of the transverse ;]
electronic levels by the magnetic field decreases the slopes of
the step rises, and may even lead to their disappearance.

It is of interest to investigate the magnetic-field depen- 0 !
dence of the conductance for fixed parameters of the con- 0 5 10 15 20
striction. Such a dependence is shown in Fig. 5 for g
wol/w,=3.0 and different values of the parameter

¢=(E—Vo)/hw,. For weak fields, Q<w,, well- FIG. 4. ConductanceQ, in units of 26%/h) vs &, for symmetric
pronounced oscillations of the AB type are observed. Thesgynstrictions (ox=w,= wo) in the presence of applied longitudinal

oscillations are due to edge states described by Bdsand  magnetic fields. Infa) the regime of weak magnetic fields is shown,
(18). Increasing the strength of the magnetic field causes fe  (/w,<1, whereQ is the cyclotron frequency. Note the simi-
change in the number of allowed edge states in the narrowarity of the behavior of the conductance to that shown for asym-
ing, which is manifested by an oscillatory behavior of themetric constrictions in the field free case in Fig. 3, i.e., the disap-
conductance. In cylindrical channels with hard potentialpearance of the conductance quantization for certain values of
walls a similar mechanism leads, in a weak magnetic field, t@/w,. In (b) we show the behavior o in the regime of large
the appearance of a sharp steplike structure of théongitudinal magnetic fields(the case of a vanishing field,
conductancé? The inset in Fig. 5 portrays the Aharonov- Q/wy=0, is included for comparisonThe disappearance of the
Bohm oscillations for different but relatively close values of quantization of the conductance is evident. Note that change in the
the parameteé=(E—V,)/fw,. While in the presence of a slope of G for large value of¢, seen for the case df}/wy=4
magnetic field the conductance is of similar magnitude tdsimilarly, such changes of slope occur at even higher valugs of
that found for the magnetic-field-free case, its behavior igor the curves corresponding to stronger applied fields. The origin
markedly modified. Different values of the paramegeror- of such changes in slope can be found from (_axamlnatlon qf the
respond to slight changes of the constriction shape. For eadfi€rdy spectrum given in Eqél7) and (18)]. Similar changes in
shape of the constriction these oscillations are reproducibl@©P€ With increasing values gfcan also be obtained for asymmet-
and form “magnetic fingerprints” of the constrictiaisee the ric constrictions under field-free conditiofiSig. 3) for high degrees
inset to Fig. 5. of the asymmetry.

For stronger magnetic field > w; (in this region the
cyclotron radius becomes smaller than the effective size oShubnikov—de Haas ones. Moreover, the amplitude of the
the narrowing the formation of “quasi-Landau orbits” in the AB-type features in the conductance decreases with the in-
constriction leads to the appearance of Shubnikov—de Haasease of the magnetic field, unlike that of the Shubnikov—de
oscillations. In this range of magnetic fields the aforemenHaas effect(The possible coexistence of de Haas—van Al-
tioned AB oscillations occur with significantly smaller am- phen and AB oscillations in 2D systems with a dot or antidot
plitudes and periods, and they are superimposed on thieas been discussed in Refs. 32334.
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FIG. 5. ConductanceQ, in units of 2?/h)
of 3D symmetric constrictions vs cyclotron fre-
quency (2, in units of wg) for a longitudinal
applied magnetic field. The curves correspond to

§ 550 7 different close values of the parametér The
3 AB-type oscillations occurring at low fields,
(‘_r)’ 545 O =<wy, transform for high fields into the

Shubnikov—de Haas oscillations with a superim-
posed AB fine structure. Different values &f

: corresponding to slight changes of the shape of
------------ ) the constriction, result in significant changes in
the appearance of the AB oscillatiofsee the in-
set, where a magnified view of the region
0<Q/wy=<2 is shown.

530 — — - T - T - T T

Q/w,

The character of the magnetic oscillations of the conducquired for the occurrence of the AB oscillations, destroy the
tance depends on the effective length of the microconstricguantization(see, e.g., Ref. 26 Elongation of the constric-
tion which is determined by the rati®,/w,. The conduc- tion leads to increase of the AB contributidRig. 6). The
tance plotted in Fig. 5 corresponds to a long contackppearance of beats in the AB structure is due to the inter-
wo/ w,=3.0 with a well-defined quantized structusee Fig. ference of different edge channels contributing to the AB
2). The two types of magnetic oscillations discussed aboveffect. A related mechanism leading to beats in the thermo-
(the AB type and the Shubnikov—de Haas paee due to  gynamic and transport characteristics of a 2D electron-gas
edge states in the constriction and bulk states, respectivelgystem with an antidot was discussed in Refs. 34 and 35.
Short enough constrictiong/w,<1, cannot support stable |, the above we discussed the conductance behavior at
edge states in a longitudinal field, and consequently the AB g temperature. To consider thermal effects we should sub-

fine structure in the conductance dependence on the mags te Eq.(9) for the conductance by the following equation:
netic field disappearéFig. 6). However, the Shubnikov—de i a© u y wing equation:

Haas oscillations remain without charfyélote that in 3D

constrictions placed in a longitudinal magnetic field, conduc- 22 of
tance quantization and AB oscillations may coexist, unlike G= _J d (_ _0) E Tone oo (19)
the case of 2D contacts where backscattering processes, re- h J€ [nym, 122
560 0,/0,:
20
555
3 ; ; 2
555 | FIG. 6. Conductance@, in units of 2</h)
g of 3D symmetric contacts vs cyclotron frequency
© T 0.3 (Q, in units of ), plotted for various values of
QL 555 the parametew,/w, which controls the relative
O length of the constriction, and for a fixed value of
550 - the electron energyE, such that {g/w,)/¢
=0.03. Note the disappearance of #h8 oscil-
lations in short constrictiongsmall values of
545 -} wolwy).
540 T T T T T T
0 2 4 6 8 10 12
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565
T(102Rw,):

560 - m 0.05

560 0.25 FIG. 7. ConductanceQ, in units of 2?/h)
- of a 3D symmetric contact vs cyclotron fre-
< F quency ), in units of ), plotted for various
&J 560 — 0.5 values of the temperatureT( in units of
(‘5’ h 10 %4 w,). Note that the AB oscillations vanish

560 15 first in the strong-field region for

T=zhwe (w/Q). AB oscillations in the weak-
field region vanish at higher temperatures,
560 75 T=fiw,. For all temperatures we used
wol/w,=20 andé{=670.

33
3

555 -
T T T T T 1
0 2 4 6 8 10 12
Q/w,
wherefg(e€) is the Fermi distribution function. An increase alde
of the temperature leads to a smearing of the steps and to a 7 _ h? 9 d d i ara
decrease of the amplitude of the magnetic oscillations. It is Ay, 2)= 2m* \ 9 9y 9z)= y
of interest to note that the AB oscillations have different aldz
temperature dependencies in the case of Weakw,,'>*® &
and strong,wy,<Q,3* magnetic fields. The temperature de- m*
pendence of the AB oscillations is determined by the func- + 5 (dy2Al Y |. (22
tion exyd —272T/To(H)], where forTo(H) we havé?3 z
Here] is the unit matrix and the matriA has the form
fiwg,  Q<wo w2 —w, (), 0,y
To(H)= wg (20 _ 2,02 _
0 ﬁwoﬁ, wo<<(). A= x); oyt 0,0, (23

00y —0,0, —wi+0Qf

The magnetic-field dependence of the conductance at diffekyith Q,=eH,/m*c andQ,=eH,/m*c. Making a unitary
ent temperatures, demonstrating, according to E§), transformation of the coordinates y, andz, which diago-
damping(disappearangeof the AB oscillations first in the nalizes the matrix, for the Hamiltonian in the new repre-
region of strong fields and subsequently, at higher temperasentation ¢, q,, ;) we obtain the following expression:
tures, for weak ones, is plotted in Fig. 7.

3 52 2 m*

(01,92,03) = - 3+ NoF. (24
2. Tilted and transverse magnetic fields (G G2.03) izl 2m* &qiz 2 1 249

dHere); are the eigenvalues of the matix (note that the

To investigate the case of tilted fields we chose for th S g N .
matrix A is Hermitian, so that its eigenvalues are yam@hich

magnetic-field  orientation the yz plane, i.e,, = . )
- ) . may be determined from the equation
H=(0,Hy,H,), with the following gauge of the vector po-
tential: A3+ CoA2+C N+ Cy=0, (25)
where
A:(ZHy—yHZ,O,O). (21) sz_w)z(_w§+w§_ﬂg_9§,

i i i Ci1=— 0 0i+ 0+ Q)+ 0i(wi+Q2) (26)

Transforming to a mixed momentum-coordinate representa- 1 2\ Ox T @y T2z y ®x 2oy

tion ¢, y, andz, where ¢=p,/w,m*, Hamiltonian (15) 5 2 o
may be written as Co= wj0jw;.
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FIG. 8. ConductanceQ, in units of 22%/h) of a symmetric 3D
point contact vst in the presence of transverse magnetic fields of FIG. 9. Conductance@, in units of 22%/h) of 3D point con-
various strengths. Note the similarity of the behavior of the conductacts vs the strength of an applied transverse magnetic (@dd
tance at low fields to that shown for the constriction in longitudinal pressed in terms of)/ wo), plotted for various values ab,/wy,
magnetic fieldgsee Fig. 4, and the improvement of the “quality” while maintaining a constant value of the cross-sectional area of the

of the conductance quantization in the strong-field limit. constriction, i.e..wo=Voywy. Here we used=27. The different
behavior of the conductance, depending on the cross-sectional

A simple analysis of Eq925) and (26) shows that there shape of the constriction, is due to different scenarios of depopula-
exist two positive rootsy; = w3 and\,= w3, and one nega- tion of the magnetoelectric subbands.
tive root,A3=— w%, of Eq.(25). This means that the Hamil-
tonian in Eq.(24) has the same form as the Hamiltonian in ter may result in the removal of the degeneracy and even a
Eq. (2), but with different values of the effective frequencies Smearing of the steps. The frequenoy which determines
w1, w,, andws. It should be noted that for a tilted magnetic the shape of the steps changes slightly.
field the “longitudinal” frequencyw; depends on the field. In the strong-field regio)> wq, from Eq.(27) we ob-

At first we consider the case of a transverse magneti&in
field, Hy=H, H,=0. For symmetric constrictions,
wy= wy=wy, the solutions of Eqs25) and(26) are given o%)
by the expressions 01=0, wz=w, 5. (29)

wi=3(wp— w;+0?) The decrease of the frequenay with the strength of the
Iy 5% RN magnetic field corresponds to an effective lengthening of the
T2NQHH 205w wp) + (0ot 07)”, constriction. This implies that strongransversg magnetic
2 2 fields enhance the quantization characteristics of the conduc-
@2~ @os @7 tance. In a strong enough perpendicular magnetic field, con-
2 1 2, 2 o ductance quantization can occur even in constrictions which
w3=3z(~ gt w; =0 do not exhibit such quantization under zero-field conditions.

1[04 2, 2_ 2 2. 2\2 A similar effect of the influence of a strong magnetic field on
+EVQMH20%(wg— wp) + (wpt @))% the quantization of the conductance was discussed by
Equations(26) and (27) allow us to calculate the conduc- Biittiker?>2® for two-dimensional contacts.
tance of the constriction in a transverse magnetic field. The As mentioned above, the steplike structure of the conduc-
dependence of the conductance on the energy, for differetance is caused by changes in the number of transmitted
values of the magnetic field, is shown in Fig. 8. In the weakchannels. This can be achieved most easily by varying the
field region,(0<wq, the influence of the transverse field is magnitude of the magnetic field. In Fig. 9 we plotted the
similar to that of the longitudinal onfcompare Figs. 8 and conductance of symmetricurve 2 and asymmetri¢curves
4(a)]. In this limit, from Eg.(27) we obtain 1 and 3 constrictions as a function of the strength of a trans-
verse (oriented along the direction magnetic field, for a
1 0? fixed value of the energy. Increase of the magnetic field leads

@17 @o 1+§ 24 2] (283 to depopulation of the magnetoelectric subbands in the con-

Wyt w
’ striction, resulting in a steplike decrease of the conductance.
1 02 Notice that the slopes of the steps become larger at higher
w3=wy| 1—5 —5—/, (28D values of the magnetic field.
2 wyt ws . . "~ .
The role of the confining potential describing the constric-

The magnetic field shifts one of the transverse frequenciedion in the process of the depopulation of the subbands may
thus making the constriction effectively asymmetric. The lat-be readily demonstrated for asymmetric constrictiémste
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G (2e%/h)

FIG. 10. Conductance@, in
units of 2e?/h) of a 3D constric-
tion with the configuration de-
noted as 1 in Fig. 9, plotted as a
function of a tilted magnetic field
(in units of Qlwg, with
wo=\wywy). Here we used
£=27 as in Fig. 9(a) and(b) cor-
respond to different orientations
of the magnetic field; in(a) the
X (b) applied field is in theyz plane,
“\\\O\}\:\\:\\\ and in (p) in the xz plane. Note.
\\\“\ thg coexistence of quantum oscil-
\\\\x\\\\\ = \\\\\\‘\\\\\\\\\\\:\‘ W lations (the AB and Shubnikov—
N \\\‘“\\ \\““\\“*‘“\ & de Haas effecjsand the effect of

the depopulation of the magneto-
electric subbands.
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that the value of the cross-sectional area of the constriction is Finally, for an arbitrarily tilted orientation of the magnetic
maintained constant, i.ew,w,=const., corresponding to a field the conductance of the constriction exhibits properties
constant value of the classical conductance at zero'field due to both the longitudinalAB and Shubnikov—de Haas
Different relative orientations of the transverse magneticoscillationg and transversésteplike decreagecomponents
field with respect to the andy axes lead to different field of the field. As a demonstration, in Fig. () we show the
dependencies of the conductanégg. 9, curves 1 and)3  conductance of the constriction denoted as 1 in Fig. 9, for an
Such a behavior is due to different scenarios of the depopuwapplied magnetic field of arbitrary orientations in the
lation of the magnetoelectric subbands for different orientaplane. For longitudinal orientation of the magnetic fiéle.,
tions of a transverse magnetic field relative to the crossvanishing value of),=eH,/m*c), one observes AB oscil-
sectional axes of the contact. Depopulation of the subbandfations for small values of Q,=eH,/m*c, and
leading to a decrease of the conductance, occurs eéirber Shubnikov—de Haas oscillations for larger orjese Sec.
for smaller field strengthfor a magnetic field oriented along 11B 1]. For the transverse orientation of the fie(de.,

the small axis of the ellipsoidal cross section of the constric{),=0) a steplike decrease of the conductance is $emm-
tion. This effect is related to the decrease of the number opare our discussion in connection with Fig. th Fig. 1Qb)
current-carrying edge modes with increasing strength of théhe conductance for the same constriction, but for a magnetic
applied magnetic field; for configuration 1 in Fig. 9 the num-field tilted in the xz plane (for this configuration the short
ber of propagating modes is larger than for configurations 2xis of the elliptical cross section of the constriction lies in
and 3, and consequently the relative change in the conduthe plane of the magnetic fieldis shown. The behavior of
tance caused by the increase of the magnetic field is smalléhe conductance for longitudinaf),=0) orientation of the
for this configuration. field is the same as in Fig. (&, while for a transverse
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orientation the steplike decrease is faster than that in Fig. Longitudinal magnetic fields change the character of bal-

10(a) (compare curves 1 and 3 in Fig).9 listic electronic transport through the constriction leading to
the appearance of AB oscillations in the conductance. In the
I1l. SUMMARY strong magnetic field€)> w0, (r.<d, whered is the effec-

_ ) _tive transverse size of the narrowintghe AB oscillations are
The analysis which we performed demonstrated a Va“et)éuperimposed on the Shubnikov—de Haas dfés 5).

of transport properties of 3D quantum constrictions. Certain Temperature damps the AB oscillations on a scale of
properties of.the electror_nc. eigenvalue spectra, and_corls%-wo(wom) in strong fields and on a scale bfo, in weak
quently certain characteristics of conductance quantlzatlorbnesQ<wo (Fig. 7). Itis of interest to note that in such 3D
in such structures, depend on the nature of the confiningystems there exists a correlation between conductance quan-
potential describing the system. In particular, different potenyization and the AB effect. Both effects vanish in short con-
tials lead to different distributions of the eigenvalues as &trictions(compare Figs. 2 and)6
function of the energy, and to different degrees of degenera- Transverse magnetic fields depopulate the magnetoelec-
cies of the spectrum. For example, in symmetric constricysic sybbands created by the magnetic field and the confining
tions (i.e., contacts with circular cross sectipuescribed by hotential, leading to a steplike decrease of the conductance
a hard-wall confining potential the spectrum is obtained agy the constriction as a function of the field strengfigs. 9
the zeros of the Bessel functions, and the conductance exhilyg 10
. . . . 2 . ) i
s a stepwise structure with step heights 0&°/h or The AB oscillations of the conductance of the quantum
2(2e?/h), depending on the eigenvalue degenefd@n the point contact may be observed in magnetic fields, such that

other hand for similar constrictions described by a soft conyhe magnetic flux through the cross section of the contact is
fining potential, such as the harmonic potential used in thigys the order of the flux quanturd,, i.e.

paper, the conductance quantization steps are characterized
by step heights proportional to the degree of degeneracy, H=®,/d2 (30)
which is equal in our model to the step numlfsee Fig. 2
In both cases the sharp step structure occurring in the aticor H~10° G we obtaind=10 nm. The Shubnikov—de
sence of quantum tunneling, may be “smeared” when theHaas oscillations appear in stronger magnetic fields or larger
tunneling effect on the transmission through the constrictiorconstrictions, such that the cyclotron radius of the electron is
is included, and the degree of such smearing of the condusmaller than the effective transverse sid@ ¢f the constric-
tance steps depends on the radius of curvafteéective tion, i.e.,
length”) of the wire (see Figs. 1 and)2

The presence of an additional parameter characterizing m* cug
the shape of the cross section of the 3D constriction leads to d= eH
a significant effect on the conductance quantization. In con-
strictions with an asymmetric transverse cross section thEor a magnetic fieldd ~10° G, we estimatal=10? nm.
degeneracy may be removed. When a size of the plateau
betyveen successive steps becomes smallgr than the smearing ACKNOWLEDGMENTS
region of nondegenerate steps, the steplike structure of the
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