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s and p plasmons in coaxial carbon nanotubes and multishell fullerenes are modeled in analogy with
coupled collective excitations in finite, layered, two-dimensional-electron-gas, planar semiconductor superlat-
tices. The curvature of the surface of these complex carbon clusters plays an important role in shaping the
dimensionality~one dimensional, two dimensional, or three dimensional! of the plasmons. Direct crossover
from a one-dimensional to a three-dimensional regime is found under readily fulfilled conditions for carbon
nanotubes in the case of small finite longitudinal momentum transfer\q, while for q50 bulk graphitic
plasmons fail to develop. For largeq, a two-dimensional behavior is found. The case of multishell fullerenes
resembles in all instances theq50 behavior of carbon nanotubes. Such behavior correlates with the observed
systematic redshift of the strong interstellar absorption band as compared to thep plasmon of bulk oriented
graphite~i.e., the 5.7 eV position of the former compared to the 6.2 eV energy of the latter!. Furthermore, in
the case ofp plasmons in carbon nanotubes, a special surface mode can develop for largeq, due to the
difference in the values of the dielectric constants between the graphitic structures and the surrounding me-
dium.

I. INTRODUCTION

Collective electronic plasma excitations have been widely
studied in a variety of physical systems characterized by
various sizes and dimensionalities. Such excitations include
bulk1,2 and surface3–6 plasmons in three-dimensional~3D!
infinite and semi-infinite media, respectively; plasma excita-
tions of two-dimensional~2D! electron gases~2DEG’s!, as in
inversion layers in semiconductors7 and at the surface of
liquid helium;8 coupled plasmons in planarlayered2DEG’s,
as in artificial semiconductor superlattices,9–12 as well as in
bulk graphite13 ~considered as a stack of planar graphitic
sheets! and in graphite intercalation compounds;14,15 and re-
cently plasma excitations in nanometer-scale systems, as in
atoms,16,17 metal clusters,18–20 and carbon clusters21,22 ~i.e.,
the C60 fullerene molecule23!.

The present paper focuses on the coupled plasmons which
can develop in carbon nanostructures made from graphene
sheets curved to form superlattices of cylindrical or spherical
symmetries, namely, coaxial carbon nanotubes24,25 and con-
centric multishell fullerenes,26,27which are the latest carbon-
based materials experimentally synthesized. Moreover, re-
cent experimental work has observed plasma modes both in
coaxial carbon nanotubes28–30 @i.e., s andp excitations by
means of parallel electron energy loss spectroscopy
~PEELS!# and in multishell fullerenes31 ~i.e., p excitations
by means of ultraviolet absorption!. It has also been
suggested31–34that the well known strong interstellar absorp-
tion band35,36 centered at 217.5 nm~5.7 eV! is related to
multishell fullerenes.

The present work will show that the ability to prepare
such carbon structures with variable numbers of coaxial
sheets~or concentric shells! offers unique opportunities for
exploration of the effects of dimensionality on the nature of
collective excitations incurvedlow-dimensional electron-gas

superlattices. In particular, we will show that a succession of
dimensionality crossovers@e.g., from one-dimensional~1D!
to 3D, and then to 2D# may occur in carbon nanotubes as a
function of the number of graphitic sheetsN and of the lon-
gitudinal plasmon wavelengthq, and that such crossovers
may account for the main experimentally observed
trends.28–30 In contrast, multishell fullerenes, lacking the in-
finite longitudinal direction, fail to develop a bulk~3D! plas-
mon. Rather, their behavior is similar to that of coaxial car-
bon nanotubes in the limit ofq50. Such behavior is of
particular interest, since it may underlie the systematic red-
shift of the interstellar absorption band, believed to be asso-
ciated with multishell fullerenes, as compared to thep plas-
mon in coaxial carbon nanotubes28 and in the bulk oriented
graphite37 ~the redshift amounts to 0.5 eV if the bulk plas-
mon is taken at 6.2 eV according to Refs. 32 and 37!.

Moreover, in the case ofp plasmons, we show that it is
essential to account for the difference in the dielectric con-
stants between the carbon structures (e) and the surrounding
medium (em). In the case of carbon nanotubes, we predict
that for largeq this difference will result in a special surface
plasmon, in analogy with the surface plasmons of semicon-
ductor supperlattices11,12 and of semi-infinite graphite inter-
calation compounds.15

Some earlier investigations by us ofs plasmons in co-
axial carbon nanotubes, using a semiclassical random-phase
approximation~RPA! formulation ~with the simplification
that e5em51), have been briefly discussed in Ref. 38. The
dispersion of coupled plasmons as a function ofq in coaxial
carbon nanotubes withN<4 sheets has also been studied
earlier.39,40As we discussed previously,38 such a small num-
ber of tubules precludes the development of the bulk gra-
phitic plasmon. Concerning dimensionality crossovers, such
a small assembly exhibits strong similarities with the case of
a single tubule, where only a 1D to 2D crossover can
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develop41 @see also Fig. 2~b! in Ref. 38#.
We further mention here another investigation,42 which

used a hydrodynamical approach in conjunction with a
model of multishell fullerenes consisting of concentric shells
of finite width. Rich spectra of collective excitations were
found for multishell fullerenes withN<40 shells, but the
associated matrix equations were rather complex~due to the
finite width of the shells!, and thus inhibited any investiga-
tions concerning the development of the bulk graphitic plas-
mon and of the emergence, or not, of dimensionality cross-
overs.

Finally, we mention that Refs. 39, 40, and 42 have re-
stricted their investigations to the simplest casee5em51.
Using a different approach, Lucaset al.32 have developed a
model for multishell fullerenes witheÞem by assuming full
transferability~or conformal invariance, see Ref. 28! of the
dielectric tensor of bulk~3D! planar graphite to the spatial
dimensions and curved geometry of multishell carbon micro-
structures. However, the richness of dimensionality regimes
~1D and 2D in addition to 3D! revealed by our studies sug-
gests that such transferability of the bulk planar-graphite di-
electric tensor to the nanometer-scale multishell fullerenes is
questionable.

II. THEORY OF COUPLED PLASMONS IN CURVED
FINITE SUPERLATTICES

Plasmon modes are commonly described in the random-
phase approximation method of the linear response theory.1

At the microscopic, atomistic and molecular, level, this
method43 allows one to incorporate the particular atomic or
molecular structure of the ground state of the system, and has
been successfully applied to a variety of microsystems, such
as atoms,16,17 metallic clusters,20 and the C60 molecule.

22

However, the more complicated the electronic structure of
the ground state, the more computationally demanding the
associated RPA equations become. For multiunit structures
like coaxial carbon nanotubes and multishell fullerenes, for
which the precise electronic structure of the ground state is
unknown, the computational treatment of the RPA equations
describing the coupled plasmons is rather prohibitive. Con-
sequently, we have adopted a simple variant of the hydrody-
namical method, which has been used in the field of planar
layered semiconductor superlattices.9–12 Accordingly, we
view each shell as a two-componentcurved2DEG exhibiting
s- andp electron plasma modes. Since it neglects quantal
size effects@e.g., the influence of individual particle-hole ex-
citations~Landau damping! or the effects of electronic spill-
out, see e.g., Ref. 20#, this approach does not provide a com-
plete description for each graphene sheet~or shell!, but
nonetheless it becomes advantageous for the case of many
sheets~or shells!, since it captures the essential features of
the coupling between sheets~or shells! due to the Coulomb
field.38

We model coaxial carbon nanotubes and multishell
fullerenes as two-dimensional cylindrical and spherical
electron-gas layers coupled through their mutual electric
fields. In such superlattices, undamped plasma excitations
can be described by Newton’s equation of motion for the
electrons, in conjunction with the continuity and Poisson
equations. In the linear approximation, one has

me

]vi

]t
5e¹F~r5Ri !, ~1!

]n1
i

]t
1n0

i ¹vi50, ~2!

DF~r !50, rÞRi , ~3!

whereme is the electronic mass, andv
i is the velocity of the

electrons residing on thei th shell whose radius isRi . n0
i and

n1
i are the values of the equilibrium electronic density~asso-
ciated with thei th shell! and its small perturbation due to the
plasma oscillation, respectively. Finally,F(r ) is the total
electrostatic potential. We note that the equations of motion
and continuity@Eqs.~1! and~2!# are restricted to the surface
of each shell, and thus the velocity vectorvi is two-
dimensional in character, and2¹F represents the tangential
component of the electric field. We further note that the La-
placian in the Poisson equation~3! is naturally of a three-
dimensional character.

To solve the system of Eqs.~1!–~3!, we have to provide
appropriate boundary conditions. We denote asF i the poten-
tial in the regionRi21<r<Ri between two successive shells
i21 and i with i52, . . . ,N. In the innermost region
r<R1 , we denote the potential asF1 , while in the outer-
most regionRN<r , the potential is denoted asFN11 . These
boundary conditions are given by

F i~Ri !5F i11~Ri !, ~4!

and by

]F i11~Ri !

]r
2

]F i~Ri !

]r
54pen1

i . ~5!

In writing Eq. ~5!, we assumed that the dielectric constant
of the carbon microstructures (e) is equal to the dielectric
constant of the surrounding medium (em), which is further
assumed to be air or vacuum, i.e.,e5em51. As will be
elaborated later ~Sec. III B 3!, the assumption that
e5em51 is a valid approximation for the case ofs plas-
mons~for the case ofp plasmons,44 see below; the general-
ized matrix equations foreÞem are given in the Appendix!.

Assuming a harmonic dependence for all quantities as a
function of time@;exp(2ivt), wherev is the frequency of a
coupled plasmon#, we obtain from Eqs.~1! and ~2! after the
elimination of the velocityvi

mev
2n1

i 5n0
i eDF~r5Ri !. ~6!

Combining Eqs.~3! and~6!, and the boundary conditions
~4! and~5!, one can derive a secular eigenvalue equation for
the coupled-plasmon frequencies in the form

mev
2n1

i 5(
j51

N

Mi j n1
j , ~7!

where the indicesi and j denote different shells of the mul-
tishell structure. Specific expressions for the matrixM in the
cases of coaxial carbon nanotubes and of multishell
fullerenes will be derived in the next two subsections.
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A. Eigenvalue equation for coaxial carbon nanotubes

Due to the cylindrical symmetry of carbon nanotubes, one
can replace the quantitiesn1

i andF in Eqs. ~3! and ~6! by
expressions of the form

n1
i ~f,z!5ñ1

i exp~ imf!exp~ iqz!, ~8!

and

F~r ,f,z!5F̃~r !exp~ imf!exp~ iqz!, ~9!

wherem is the integer azimuthal quantum number, andq is
the longitudinal wave vector. After substitution, one finds

mev
2ñ1

i 52n0
i eSm2

Ri
2 1q2D F̃ i~Ri !, ~10!

and

]2F̃

]r 2
1
1

r

]F̃

]r
2Sm2

r 2
1q2D F̃50, rÞRi . ~11!

The solution of Eq.~11! has the general form

F̃15A1I m~qr !,

F̃ i5AiIm~qr !1BiKm~qr !, i52,3, . . . ,N,

F̃N115BN11Km~qr !, ~12!

whereI m(x) andKm(x) are modified Bessel functions.45

The coefficientsAi andBi in Eq. ~12! can be expressed as
functions of the perturbation densitiesñ1

i by using the
boundary conditions~4! and~5!. A subsequent substitution46

for F̃ i in Eq. ~10! yields the matrix eigenvalue quation,

v2ñ1
i 5(

j51

N

Mi j
tubñ1

j , ~13a!

where the matrix elementsMi j
tub are given by the expression

Mi j
tub5

4pn0
i e2

me
Rj Sm2

Ri
2 1q2D I m~qR,!Km~qR.!.

~13b!

In Eq. ~13b!, R,[min(Ri , Rj) andR.[max(Ri , Rj).
In the case of a single tubule~i.e.,N51) with label i , it

follows from Eq. ~13! that the plasmon frequency is given
as40

v0i
2 5

4pn0
i e2

me
Ri Sm2

Ri
2 1q2D I m~qRi !Km~qRi !. ~14!

From Eq.~14!, two different dimensionality regimes can
be distinguished40,41 depending on the limiting cases
qRi@umu and qRi!umu. For this we use the well known
limiting forms of the modified Bessel functions,45 namely,

x!1, I m~x!→
1

G~m11! S x2D
m

,

Km~x!→H 2F lnS x2D10.5772 . . . G , m50

G~m!

2 S 2xD
m

, mÞ0;

~15!

x@1,m, I m~x!→
1

A2px
exF110S 1xD G ,

Km~x!→Ap

2x
e2xF110S 1xD G . ~16!

As a result of the limits displayed in Eq.~16!, Eq. ~14! in
the limit qRi@umu yields

v0i
2 '

2pn0
i e2

me
q, ~17!

which corresponds to a proper 2D behavior47 ~namely, the
plasmon energy is proportional to the square root ofq), since
the longitudinal momentum transfer\q is a continuous vari-
able.

In the opposite limitqRi!umu, Eq. ~14! yields with the
help of Eq.~15! for mÞ0

v0i
2 '

2pn0
i e2

me

m

Ri
, mÞ0, ~18!

which may be viewed as 2D in character whenm/Ri@1,
sincem/Ri is then aquasicontinuouseffective wave vector
along the perimeter of the cylinder. However, for small val-
ues of the discrete azimuthal quantum numberm, the right-
hand side~RHS! of Eq. ~18! depends strongly on the radius
of the tube, unlike the case of Eq.~17! where the plasmon
frequency is independent of the dimensions of the tube. This
latter case cannot be properly characterized as 2D, and we
will adopt the convention of referring to it as a 1D case.

For m50 andqRi!1, the plasmon excitation has a tra-
ditional one-dimensional character,48,49 namely, it exhibits
~up to a slowly varying factor of the square root of a loga-
rithmic term! a linear dependence onq,

v0i
2 '

4pn0
i e2Ri

me
q2ln~1.123/qRi !, m50. ~19!

In the case of two coaxial tubes, naturally, there are two
modes with frequencies given by the expression

v1,2
2 5

1

2
~v01

2 1v02
2 !6A1

4
~v01

2 2v02
2 !21F12v01

2 v02
2 ,

~20!

where

F125
I m~qR1!Km~qR2!

I m~qR2!Km~qR1!
. ~21!

Whenq(R22R1)@1, the tubules decouple~i.e.,F12'0) and
oscillate independently of each other with frequencies
v1,2'v01,v02 @see Eq.~14!#.

53 10 227COLLECTIVE EXCITATIONS OF MULTISHELL CARBON . . .



In the special case when the longitudinal wave vector is
zero (q50), the matrix elementsMi j

tub for the case ofN
tubules reduce to the expression

Mi j
tub~q50!5

2pn0
i e2

me
m
Rj

Ri
2 SR,

R.
Dm, mÞ0. ~22!

As we will see below, this special case of the cylindrical
symmetry has strong similarities to the spherical case asso-
ciated with multishell fullerenes.

B. Eigenvalue equation for multishell fullerenes

Multishell fullerenes are modeled as concentric spherical
shells, in which case the density perturbationsn1

i on each
shell and the electrostatic potential are of the form

n1
i ~u,f!5ñ1

i Ylm~u,f!, ~23!

F~r ,u,f!5F̃~r !Ylm~u,f!, ~24!

whereYlm denote the spherical harmonics.
Using Eqs.~23! and~24!, we obtain from Eqs.~6! and~3!

mev
2ñ1

i 52n0
i el~ l11!

1

Ri
2F̃~Ri !, ~25!

]2F̃

]r 2
1
2

r

F̃

]r
2
l ~ l11!

r 2
F̃50, rÞRi . ~26!

The solutions of Eq.~26! have the general form

F̃1~r !5A1r
l ,

F̃ i~r !5Air
l1Bir

2 l21, i52,3, . . . ,N,

F̃N11~r !5BN11r
2 l21. ~27!

The coefficientsAi andBi in Eq. ~27! can be expressed as
functions of the densitiesñ1

i by using the boundary condi-

tions ~4! and ~5!. A subsequent substitution46 for F̃ in Eq.
~25! yields the matrix equation

v2ñ1
i 5(

j51

N

Mi j
fullerñ1

j , ~28a!

where the matrix elements are given by

Mi j
fuller5v0i

2 H ~Ri /Rj !
l21, i< j

~Rj /Ri !
l12, i. j ,

~28b!

with v0i the frequency of a single shell (i th shell! given by
50

v0i
2 5

4pn0
i e2

me

l ~ l11!

2l11

1

Ri
. ~28c!

It is seen that the matrix in Eq.~28! has a strong similarity
with the matrix in Eq.~22! valid for coaxial nanotubes in the
limiting case ofq50.

We note that expression~28c! for the plasmon frequency
of a single shell depends on the sphere radiusRi and that it
becomes smaller the larger the radius, approaching a vanish-

ing value forRi→`. In this respect, the plasmons of single-
shell hollow fullerenes contrast with the surface plasmons of
metal clusters,20 whose energy for large radii approaches the
classical Mie constant51,52 associated with a solid metallic
sphere.

We further notice that forl@1 and l /Ri@1 ~quasicon-
tinuum case! the plasmon frequencies~28c! have a two-
dimensional character with respect to the effective wave vec-
tor l /Ri , namely,

v0i
2→

2pn0
i e2

me

l

Ri
. ~29!

In the case of only two spherical shells, the plasma fre-
quencies are given by the same expression as Eq.~20!, but
the constantF12 is now given by

F12
fuller5~R1 /R2!

2l11. ~30!

In the limit R1!R2 , or l@1, the two shells decouple and
oscillate independently of each other with frequencies given
by Eq. ~28c!.

In the following sections, we will present an analysis of
coupled plasmons in coaxial carbon nanotubes and multishell
fullerenes withN.2 based on numerical solutions of the
eigenvalue equations~13! and ~28!.

III. NUMERICAL INVESTIGATIONS

A. Qualitative considerations and interpretative framework

One of the aims of our investigation is to inquire whether
the matrix eigenvalue equation~7!, specified for the cases of
coaxial carbon nanotubes and multishell fullerenes, can yield
among its multitude of solutions a volume plasmon identical
to the 3D plasmon of bulk graphite. For qualitative consid-
erations in this subsection, it will be sufficient to restrict the
presentation to the case of unscreeneds plasmons with
e5em51 ~for screeneds plasmons44 with e50.8 and
em51, see the last paragraph of Sec. III B 3!. The dispersion
relation of the plasmon of bulk graphite is given by the ex-
pression

v~q!5vp
bulk1cq2, ~31!

where the long-wavelength plasmon energy\vp
bulk is a con-

stant,

vp
bulk5@4pe2n/~med!#1/2, ~32!

and the proportionality coefficient10 c5(3/16)vF
2/vp

bulk , vF
being the Fermi velocity of the 2DEG on each graphitic
sheet.

In Eq. ~32!, n is the areal electronic density on a planar
graphitic sheet~we taken to be equal to 0.319a0

22 for the
density ofs electrons!, andd is the interlayer distance of
planar graphite (d5 6.4a0). The ration/d defines an effec-
tive volume density, and therefore Eq.~32! represents the
corresponding volume~3D! plasmon.9,10Using the above pa-
rameters for the densitiesn and interlayer distanced, one
finds that the bulk graphite, unscreeneds plasmon energy in
our model is 21.53 eV~the massme is taken equal to the free
electron mass!.
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The plasmon energies in the cases of a single tubule~or
spherical shell! and of a pair of coupled tubules~or spherical
shells! were given in Sec. II. We note that these energies
depend explicitly on the inner- and outermost radii of the
assembly, unlike the bulk plasmon@see Eq.~32!#, which
must be independent of the geometric parameters of the
curved superlattices~with the exception naturally of the in-
terlayer distance!. We further note that, when we calculate in
the next section the case of nanotubes or multishell
fullerenes with an arbitrary numberN of shells, the areal
densities on each tube~or shell! and the intertubule~or inter-
shell! distance will be kept equal to the corresponding quan-
tities of planar graphitic sheets in agreement with experimen-
tal evidence from carbon nanostructures.24,27

We first address the case of coaxial carbon nanotubes. In
investigating whether a 3D plasmon can emerge in coaxial
carbon nanotubes, we will study the behavior of the solutions
of Eq. ~13! in the following two ways.

~1! Starting with a single tubule, and keeping the longitu-
dinal wave vectorq constant, we will successively consider
additional tubules in order to study the evolution of the
coupled plasmon mode with a given azimuthal angular mo-
mentumm as a function of the numberN of tubules.

~2! Keeping the numberN of tubules in the assembly
constant, we will investigate the evolution of the coupled-
plasmon mode for a givenm as a function of the longitudinal
wave vectorq.

In the case of multishell fullerenes, the two possibilities
described above are reduced to the first one, since, in place
of the pair of quantum numbersm andq, the spherical sym-
metry allows the angular momentuml to solely control the
plasmon energy. Furthermore, from the similarities in the
general form of the matrix elementsMi j between the spheri-
cal symmetry and the cylindrical one in the limiting case
when the longitudinal wave vector is zero, namely,q50, we
can surmise that the spherical case is closely related to this
special subcase of the cylindrical symmetry. Anticipating our
results~see below!, we mention here that a nonzero value of
q is essential for the emergence of the bulk plasmon in co-
axial carbon nanotubes, and that such a bulk plasmon cannot
be developed in multishell fullerenes.

Before proceeding to describe actual numerical investiga-
tions of the matrix equations~13! and~28! for curved geom-
etries, it is useful to refer to earlier results obtained in con-
nection with planar semiconductor superlattices.9,12 In the
case of a finite planar lattice, an eigenvalue problem like Eq.
~7! yields a set ofN modes organized in a band,12 the plas-
mon mode being the uppermost one whose energy converges
rapidly to the bulk value within a rather small number of
planar sheets~thus when considering below the case of car-
bon nanotubes or multishell fullerenes we will naturally fo-
cus on the behavior of the uppermost mode at the top of the
corresponding band!.

Qualitative insight into how the bulk plasmon can arise in
an assembly of coaxial carbon nanotubes can be gained by
considering certain idealized situations. Indeed, considering
plasmons with wavelength much smaller than the innermost
radiusR1 , so thatqR1@1, we can apply the asymptotic ex-
pansion~16! to all tubule indicesi and j . Additionally, as-
suming that the widthd of the hollow cylindrical superlattice
is small compared to the innermost tubule radius~i.e.,

d/R1!1), we can treat the magnitudes of all tubule radii as
equal in the exponential prefactors@see Eq.~16!#, and con-
sider only effects due to the length differences,
R,2R.52uRi2Rj u, in the exponents. With the further ap-
proximation that sufficiently many shells can be packed
within the inner and outer radii~i.e., d/d!1, d is the inter-
tubule distance!, the limits over thej summation in Eq.~13!
can be extended from2` to 1`. Then under the additional
condition of q@m/R1 Eq. ~13! simplifies to the dispersion
relation

15@2pe2nq/~mev
2!#S~q!, ~33!

whereS(q) is given by

S~q!5(
j
e2quRi2Rj u5(

j
e2qu i2 j ud. ~34!

Furthermore, in this case, the summation overj from 2` to
1` yieldsS(q)5coth(qd/2).

Two limits can now be recognized. In the weak coupling
limit,9 namely, whenqd@1, the tubules decouple, each
sheet responds independently with its own two-dimensional
plasmon, and the collective excitation of the assembly is
given by Eq.~17!. In the opposite strong coupling limit,9

namely, whenqd!1, one has for the hyperbolic contagent
coth(qd/2)'2/qd, and as a result the cylindrical superstruc-
ture develops a volume plasmon with energy\vp

bulk @see Eq.
~32!#.

We note that the above qualitative analysis for an assem-
bly of coaxial tubules recovered the results of Fetter,9 ob-
tained for a planar geometry, since the wavelength of the
plasmon,l52p/q, was taken by us to be small compared to
the inner radiusR1 ~i.e., qR1@1) of the cylindrical assem-
bly. The finite value of the curvature reasserts itself as soon
asqRN!1, when the assembly reverts to a 1DEG behavior
~see the discussion below in connection with Fig. 1!.

While the analytic results demonstrating the emergence of
the volume plasmon in coaxial tubules~as well as a cross-
over from 1DEG to 3DEG! were obtained above for certain
idealized circumstances~e.g., d!d!R1), our numerical
study ~see the next subsection! of the solutions of Eq.~13!
shows that similar behavior is maintained also for other sets
of parameters corresponding to actual carbon nanotubes with
a finite number of shells.

B. Numerical results

1. e5em51: s plasmons in coaxial carbon nanotubes

Figure 1 displays the solutions of Eq.~13! as a function of
the numberN of carbon tubules when the wave vector
q50.02a0

21 and the innermost radiusR15d (d56.4a0 is
also the intertubule distance!. For this value ofq, one has
qd50.128 ~strong coupling!, and the response of tubules
with only a few sheets approximates the response of a
1DEG. Indeed, from Fig. 1~a!, the value forN51 and
m51 is \v1515.19 eV, in agreement with expression~18!.
However, as the radiusRN5Nd of the outermost tubule in-
creases, the productqRN becomes larger than unity, which as
aforementioned would lead to a 2DEG behavior for indi-
vidual tubules@see Eq.~17!, and the related discussion in
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III A #, and to the development of a 3D plasmon due to the
intertubule couplings. The onset of such a crossover from a
1D to a 3D behavior is expected whenN reaches a value
such thatqRN'1, orN'8 for q50.02a0

21 . ForN>30, the
N solutions of Eq.~13! form a band, bounded between upper
and lower limits, independent ofN. As discussed in the case
of finite planar superlattices12 such behavior is characteristic
of a 3DEG. The top of the band is the 3D plasmon and
carries most of the oscillator strength. Indeed, taking the ar-
eal density of thes electrons to ben50.319a0

22 , and ap-
plying the unscreened expression~32!, the value of the bulk
plasmon53 is 21.53 eV~using the bare electron mass!, which
practically coincides54 with the value at the top of the band
@see Fig. 1~a!#.

For m50 andN51@Fig. 1~b!#, the one-dimensional be-
havior described by Eq.~19! is reproduced. Indeed, for
N51, the plasmon has a value close to zero, unlike the finite
value of them51 case. In spite of the different behavior for
the first few tubules, both modes develop the same volume
band forN>30. In particular, the top and bottom limits in
both bands are very similar in value.

To illustrate the development of the bulk plasmon for
other modes with different azimuthal quantum numbers, we
display in Fig. 2 the uppermost modes form5 2, 4, 6, 8, and
10, and for a value ofq50.035a0

21 ~again a case of strong
coupling! when the innermost radius of the assembly of car-
bon nanotubes isR1520d.55 For all values ofm, these
curves indeed converge to the bulk plasmon value at 21.53
eV. The convergence is almost reached forN530 sheets. For
N5100 sheets, the convergence is almost ideal.

Next we address cases when the bulk plasmon in cylin-
drical assemblies fails to develop in spite of the strong cou-
pling condition. Such is the case whenq50. Figure 3 dis-
plays the uppermost modes form5 1, 5, 10, and 15 in the

limiting case whenq50. Two different values of the inner-
most radius have been considered, i.e.,R1510d ~dashed
lines! andR1520d ~solid lines!. One sees that, while several
modes~those withm>10) converge as a function ofN to
well recognizable limits, these limits are different from the
value of the bulk plasmon,\vp

bulk , since~i! they depend on
the azimuthal angular momentumm, and~ii ! they depend on
the value of the innermost radiusR1 . In the case of the
m51 mode, no convergence is reached within the 200 tu-
bules plotted here, and this remains true even for a larger
number of tubules.

We focus now on the second way described in Sec. III A
for varying the parameters of the assembly, namely, keeping
N constant, but varyingq. This can be carried out for the
case of coaxial nanotubes only.

In Fig. 4~a!, we exhibit the development of the 3D plas-
mon form50 andN530 sheets, as a function of the longi-
tudinal wave vectorq, and for an innermost radius of
R151d. Note that forq<0.02a0

21 , the superlattice behaves
as a 1DEG, while in the region 0.05a0

21<q<0.10a0
21 a

3DEG develops, since the top of the band is very close to the
3D plasmon, i.e., 21.53 eV@see Fig. 4~b!#. For values
q>0.3a0

21 , the coaxial tubules decouple from each other,
and the superstructure exhibits theq1/2 behavior characteris-
tic of a 2DEG.

In Fig. 4~b!, we further demonstrate the development of
the 3D plasmon by focusing on the range 0<q<0.10a0

21 ,
and by considering three cases with different numbers of
sheets, i.e.,N520, 60, and 100~but again with the same
innermost radiusR151d and for the samem50). One sees

FIG. 1. Eigenmode bands ofs excitations forq50.02a0
21 ver-

sus the number of sheets,N, in a coaxial carbon nanotube. The
innermost radiusR151d, whered56.4a0 is the intertubule dis-
tance. Eigenmodes forN51 are denoted by a triangle.~a! The
m51 band.~b! Them50 band. The choice of dielectric constants
for the carbon structure (e) and the surrounding medium (em) is
e5em51.

FIG. 2. The uppermosts mode ~coupled-plasmon mode! for
m5 2, 4, 6, 8, and 10~bottom curve to top one, respectively!, and
for q50.035a0

21 versus the number of sheets,N, in the carbon
nanotube. The innermost radiusR1520d, whered56.4a0 is the
intertubule distance. Observe the strong convergence of all the
modes to 21.53 eV, which is the energy of the bulk graphitics
plasmon in the unscreened approximation of the calculations pre-
sented here. Although only the discrete values ofN are meaningful,
in plotting the curves, a continuous interpolation was used for rea-
sons of convenience. The top panel is a continuation of the bottom
one with respect to the number of coaxial sheets. The choice of
dielectric constants for the carbon structure (e) and the surrounding
medium (em) is e5em51.
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that, in the region 0<q<0.0125a0
21 , the coupled-plasmon

mode in all three cases rises very fast, from a vanishing value
atq50 to values close to 21.53 eV, which is the value of the
bulk plasmon. The rise is faster~and correspondingly the
overlap with the value of the bulk plasmon becomes better!
for a larger numberN of graphitic sheets. However, even for
the rather small number ofN520 sheets, the energy of the
coupled plasmon comes very close to the value of 21.53 eV,
although in a more restrictedq range ~namely, for
0.05a0

21<q<0.075a0
21) than the plasmons associated with

N560 and N5100 sheets. This behavior of the
N520-sheets assembly is in agreement with experimental
observations,28 according to which a 29-layer tube already
exhibits a bulklikes plasmon.

Figure 4 shows that, for a multishell nanotube~with suf-
ficiently largeN), a succession of dimensionality crossovers
occurs as a function ofq, which is unique in the sense that
no analogous behavior is exhibited by finite planar
superlattices12 ~where a simple 2D to 3D crossover takes
place!. In particular, we find that the character of the collec-
tive excitation changes from a 1D plasmon for small values
of q to a 2D plasmon for largeq ~decoupling regime of the
excitations of individual layers! with the occurrence of a 3D
plasmon for a certain range of intermediate values ofq. In-
termediate 1D-2D and 3D-2D behavior also occurs for cor-
responding ranges ofq.

2. e5em51: s plasmons in multishell fullerenes

We turn our attention now to the case ofs plasmons in
multishell fullerenes. Figure 5 displays the uppermost modes
with angular momental5 1, 5, 10, and 15, and for a value of
the innermost radius equal toR1510d ~solid lines!. For
comparison, the plasmon modes of an assembly of coaxial
nanotubes with similar parameters (m↔ l , R1510d) and
q50 have also been drawn. As was anticipated in Secs. II A
and II B from an inspection of the form of coupling matrix
elements, the plasmons of multishell fullerenes resemble in
their behavior the plasmons of coaxial nanotubes in the spe-
cial case of zero longitudinal momentum transfer. In particu-
lar, one can infer that no bulk plasmon can be developed in
multishell fullerenes.

In Fig. 6 we further elaborate on the behavior of the
l51 mode. In this figure, the uppermost mode is displayed
as a function ofN for different innermost radii, i.e., for
R151d, 3d, 5d, and 7d. One sees that this mode does not
reach the value 21.53 eV of the unscreened bulks plasmon
even for multishell fullerenes with the rather large number of
N5100 shells. A strong dependence of the plasmon energy
on the value of the innermost radius of the multishell
fullerene is also seen. Since the synthesized multishell
fullerenes27 have on the average 20 to 40 shells~structures
with up to 70 shells have also been observed!, further experi-
mental work should be able to demonstrate this nonbulk be-
havior of thel51 s excitation of multishell fullerenes.

3. eÞem : p plasmons in coaxial carbon nanotubes

In this subsection, we turn our attention to the case ofp
electrons, which have an areal electronic density equal to 1/3

FIG. 3. The uppermosts mode ~coupled-plasmon mode! for
m5 1, 5, 10, and 15~bottom curves to top ones, respectively!, and
for q50 versus the number of sheets,N, in a carbon nanotube.
Results for two different innermost radii are plotted, namely, for
R1520d ~solid lines!, and for R1510d ~dashed lines!, where
d56.4a0 is the intertubule distance. The numbers 1 and 15 indicate
the lowest and highest value ofm in this figure and label bottom
and top curves, respectively. These labels are placed below the re-
spective solid curves and above the corresponding dashed ones.
Although only the discrete values ofN are meaningful, in plotting
the curves, a continuous interpolation was used for reasons of con-
venience. The top panel is a continuation of the bottom panel with
respect to the number of coaxial sheets. The choice of dielectric
constants for the carbon structure (e) and the surrounding medium
(em) is e5em51.

FIG. 4. ~a! Eigenmode band ofs excitations form50 for a
carbon nanotube with a fixed number of sheets,N530, versus the
longitudinal wave vectorq. The innermost radiusR151d, where
d56.4a0 is the intertubule distance. The dimensionalities of the
plasmons are indicated at the top.~b! The uppermosts mode for
m50 and R151d for three nanotube assemblies with different
number of layers, namely,N5 20, 60, and 100~bottom curve to top
one, respectively!. The choice of dielectric constants for the carbon
structure (e) and the surrounding medium (em) is e5em51.
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of that of thes electrons, namely,np50.106a0
22 . An im-

portant factor to be taken into account is that thep electrons
are strongly screened by the tightly bounds electrons. This
effect can be mimicked by considering that thep electrons
move in an environment of dielectric constanteÞ1. The
natural choice44 is e54, so that the value of the screened
bulk graphite p plasmon, namely,\vp5@4\2pe2np/
(emed)]

1/2, equals 6.2 eV, instead of 12.4 eV~for e51).

Before proceeding to the numerical results, we refer the
reader to the Appendix for a listing of the relevant matrix
equations in the general case wheneÞem , with em being the
dielectric constant of the surrounding medium.

For the casee5em54, we exhibit in Fig. 7~a! for m50
the development of the 3D plasmon in nanotubes with
N530 sheets, as a function of the longitudinal wave vector
q and for an innermost radiusR151d. The behavior of the
total band closely parallels that of thes plasmon band in
Fig. 4~a!.

On the other hand, in Fig. 7~b!, we present a calculation
for the casee54 andem51 ~solid lines!. This latter choice
closely models the actual case ofp plasmons of coaxial
carbon nanotubes in air. The remaining parameters~i.e., N
andR1) are the same as in Fig. 7~a!. The top of the band
again develops into a bulkp plasmon~6.2 eV! in the region
0.02a0

21<q<0.10a0
21 . This is consistent with the experi-

mental observation of a bulkp plasmon in coaxial carbon
nanotubes.28 However, forq>0.1a0

21 , the uppermost mode
develops into a new branch which strongly rises above the
rest of the band. Such a branch, which is due to the differ-
ence in the values ofe andem , is commonly referred to as a
surface plasmon,56 and was studied by Giuliani and Quinn11

for the case of a semi-infinite, planar semiconductor super-
lattice~see also Ref. 12!. Analogous surface modes have also
been predicted for semi-infinite graphite intercalation
compounds.15 The dashed line in Fig. 7~b! corresponds to the

FIG. 7. Eigenmode band ofp excitations form50 for a carbon
nanotube with a fixed number of sheets,N530, versus the longitu-
dinal wave vector q. The innermost radiusR151d, where
d56.4a0 is the intertubule distance. The dimensionalities of the
plasmons are indicated at the top. The choice of dielectric constants
for the carbon structure (e) and the surrounding medium (em) are:
~a! e54 and em54; ~b! e54 and em51 ~air!. The dashed line
corresponds to the surface plasmon when the surrounding medium
is water (em51.9); ~c! e54 andem510. Notice that the special
surface-plasmon mode appears above the band fore.em and below
the band fore,em .

FIG. 5. The uppermosts mode ~coupled-plasmon mode! for
l5 1, 5, 10, and 15~bottom curve to top one, respectively! versus
the number of shells,N, in multishell fullerenes~solid lines!. The
innermost radiusR1510d. For comparison, the corresponding
modes (m5 1, 5, 10, and 15! for a carbon nanotube~with
R1510d) whenq50 are also plotted~dashed lines!. The numbers
indicate values ofl ~or m) and label respective pairs of curves.
Although only the discrete values ofN are meaningful, in plotting
the curves, a continuous interpolation was used for reasons of con-
venience. The top panel represents a continuation of the bottom one
with respect to the numberN of shells. The choice of dielectric
constants for the carbon structure (e) and the surrounding medium
(em) is e5em51.

FIG. 6. The uppermosts mode ~coupled-plasmon mode! for
l5 1 versus the number of shells,N, in multishell fullerenes. Re-
sults for four different innermost radii are presented, namely, for
R151d, 3d, 5d, and 7d ~top curve to bottom curve, respectively!.
Although only the discrete values ofN are meaningful, in plotting
the curves, a continuous interpolation was used for reasons of con-
venience. The choice of dielectric constants for the carbon structure
(e) and the surrounding medium (em) is e5em51.
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surface plasmon when the surrounding medium is water
@em51.9 in the high-frequency range~see Ref. 22 in Ref.
31!#. Only the surface plasmon is plotted in this case, since
the rest of the band remains essentially unaltered from the
em51 case.

In Fig. 7~c!, we present results for the casee54 and a
surrounding medium characterized by a high value of the
dielectric constant, e.g.,em510. We see that the surface plas-
mon appears now below the band. Unlike the casee.em
@see Fig. 7~b!#, however, it is uncertain that such a low-
energy surface plasmon can be observed, since commonly
the excitation strength concentrates in the uppermost mode.

For completeness, we further present in Fig. 8 the evolu-
tion of the band in the casee50.8 andem51, but for s
plasmons. As seen from this figure, the small difference be-
tween the dielectric constants results only in the renormal-
ization of the value of the bulks plasmon~namely, from
21.53 eV to 24.1 eV, which is the value observed in the
experiment28!, but has no other effect on the nature of the top
of the band @compare with Fig. 4~a! where results for
e5em51 are shown#. In particular, a surface plasmon
branch on top of the total band fails to develop, since
e,em .

4. eÞem : p plasmons in multishell fullerenes

In Fig. 9, we present the behavior of thep plasmon dipole
mode (l51) in multishell fullerenes associated with the re-
gion of ultraviolet absorption. In this figure, the uppermost
mode is displayed as a function ofN for different innermost
radii, i.e., for R151d, 2d, 3d, 5d, and 7d, from top to
bottom.

The solid lines correspond to the casee54 andem51,
which mimics the case of onionlike graphitic particles in the
interstellar dust. One sees that none of the solid lines reaches
asymptotically the bulkp plasmon value of 6.2 eV. Rather,
despite a moderate dependence on the innermost radiusR1 ,
these lines group asymptotically around the value of 5.7 eV,
a behavior which is consistent with that of the observed in-
terstellar absorption feature. This indicates that the multishell

fullerenes in the interstellar dust consist of a rather large
number of graphitic shells.

The dashed lines in Fig. 9 display the behavior of the
dipole mode of thep plasmon in multishell fullerenes, but
for the casee54 andem51.9. This last case corresponds to
the case of ultraviolet absorption spectra of suspensions of
multishell fullerenes in water, which were recently studied31

in laboratory experiments. For hollow multishell resulting in
fullerenes ~i.e., those withR1>2d), one observes forN
<10 a stronger dependence on the innermost radius result-
ing in a strong redshift compared to the case of a surrounding
medium withem51 ~case of interstellar dust!. This behavior
is again consistent with the experimental observation31 that a
mixture of hollow multishell fullerenes lacking six to ten
innermost shells~while having a total of two to eight gra-
phitic shells! exhibits an ultraviolet absorption band centered
at 4.7 eV~264 nm! when suspended in water. Indeed, as seen
from the dashed lines in Fig. 9, the centroid of the absorption
band for hollow multishell fullerenes withN<10 is in the
range of the experimental value. Further comparison be-
tween experimental results and our theory requires measure-
ments on clean samples selected according to the innermost
radii of the multishell fullerenes.

IV. CONCLUSIONS

Adopting methodologies developed in investigations of
the linear response of finite planar superlattices,9,12we used a
classical hydrodynamical approach to study the behavior of
coupleds andp plasmons in curved layered carbon micro-

FIG. 8. Eigenmode band of screeneds excitations form50 for
a carbon nanotube with a fixed number of sheets,N530, versus the
longitudinal wave vectorq. The innermost radiusR151d, where
d56.4a0 is the intertubule distance. The dimensionalities of the
plasmons are indicated at the top. The choice of dielectric constants
for the carbon structure and the surrounding medium ise50.8 and
em51. FIG. 9. The uppermostp mode ~coupled-plasmon mode! for

l5 1 versus the number of shells,N, in multishell fullerenes. Re-
sults are shown for two choices of pairs of dielectric constants:
e54 andem51 ~vacuum, solid lines!; e54 andem51.9 ~water,
dashed lines!. For each choice of the dielectric constants, results are
given for five values of the innermost radii of the multishell
fullerenes, namely, forR151d, 2d, 3d, 5d, and 7d ~top curve to
bottom curve, respectively, for each case!. Although only the dis-
crete values ofN are meaningful, in plotting the curves, a continu-
ous interpolation was used for reasons of convenience.
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structures, namely, coaxial carbon nanotubes24,25 and multi-
shell fullerenes.27

Our findings can be summarized as follows.
~I! In the case of coaxial carbon nanotubes and indepen-

dently of the specific excitation (s or p) we found the fol-
lowing.

~a! For small q, such thatqd,1 ~strong coupling!, a
dimensionality crossover from a characteristic 1D to a 3D
bulk plasmon behavior may occur upon increase of the num-
ber of graphitic sheets (N) comprising the nanotube~see
Figs. 1 and 2!.

~b! For a multishell nanotube~with a sufficiently large
number of sheetsN), the collective excitation changes from
a 1D plasmon to a 3D plasmon, and then to a 2D plasmon
~decoupling of the excitations of individual sheets! as a func-
tion of the longitudinal momentum transfer\q ~see Figs. 4,
7, and 8!.

~c! A sufficiently small ~namely, forqd,1, strong cou-
pling!, butfinite value ofq is necessary for the emergence of
the bulk plasmon. Forq50, the coupled plasmons, for any
number of sheetsN, exhibit a particular nonbulk behavior
and have frequencies dependent on the azimuthal angular
momemtumm and the innermost radiusR1 of the assembly
~see Fig. 3!. This behavior contrasts with the properties of
the bulk plasmon.

The results of~Ia! and~Ib! above suggest that systematic
investigations of the nature of dimensionality crossovers of
the plasmons in carbon nanotubes would require experimen-
tal energy-loss data as a function of the longitudinal momen-
tum transfer.

~II ! The cases of multishell fullerenes for boths andp
plasmons resemble strongly the corresponding cases of co-
axial carbon nanotubes whenq50 @case~Ic! above, see Fig.
5#. In particular, the dipolel51 mode displays frequencies
significantly lower than the value of the bulk plasmon~see
Figs. 6 and 9!. Since the dipole excitation mode associated
with thep electrons mediates the optical absorption in mul-
tishell fullerenes, such behavior correlates with the observed
systematic redshift of the interstellar absorption band35,36 as
compared to thep plasmon of bulk oriented graphite.28

~III ! For hollow multishell fullerenes suspended in water,
our calculations for thel51 p plasmon exhibit an additional
strong redshift in fair agreement with recent experimental
observations31 ~see Fig. 9!.

~IV ! Unlike the case ofs plasmons, the study ofp plas-
mons requires consideration of the different dielectric con-
stants between the carbon structures and the surrounding me-
dium. Due to this difference, in the case of carbon nanotubes
in air or vacuum, a special surface mode can develop for
largeq ~see Fig. 7!.
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APPENDIX

In this appendix, we list the general matrix elements
Mi j

tub andMi j
fuller in the case when the graphitic structures are

characterized by a background dielectric constante and at
the same time are embedded in a medium of dielectric con-
stantem .

First we notice that from the set of original Eqs.~1!–~5!,
only Eq. ~5! for the boundary conditions concerning the de-
rivatives of the potential will change as follows:

e
]F i11~Ri !

]r
2e

]F i~Ri !

]r
54pen1

i ~A1a!

for i<N21 and

em
]FN11~RN!

]r
2e

]FN~RN!

]r
54pen1

N ~A1b!

for i5N.
Repeating the same steps as described earlier in Sec. II A,

we obtain for the case of coaxial carbon nanotubes

Mi j
tub5

4pe2n0
i

eme
Rj Sm2

Ri
2 1q2D I m~qR,!

A2B1C2D

E2F
,

~A2a!

where

A5eI m8 ~qRN!Km~qRN!Km~qR.!,

B5eKm8 ~qRN!Km~qRN!I m~qR.!,

C5emKm8 ~qRN!Km~qRN!I m~qR.!,

D5emKm8 ~qRN!Km~qR.!I m~qRN!,

E5eI m8 ~qRN!Km~qRN!,

F 5emKm8 ~qRN!I m~qRN!. ~A2b!

Observe that the primes indicate differentiation only with
respect to the argument of the modified Bessel functions, and
that R,[min(Ri ,Rj), R.[max(Ri ,Rj), while RN is the ra-
dius of the outermost tubule.

For the case of multishell fullerenes, we find

Mi j
multi5ṽ0i

2 H ~Ri /Rj !
l21@~e l1eml1em!1~e2em!~ l11!~Rj /RN!2l11#, i< j

~Rj /Ri !
l12@~e l1eml1em!1~e2em!~ l11!~Ri /RN!2l11#, i. j ,

~A3a!

whereRN is the radius of the outermost shell, and
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ṽ0i
2 5

4pn0
i e2

eme

l ~ l11!

~2l11!~e l1eml1em!

1

Ri
. ~A3b!

Notice that fore5em the above Eqs.~A2! and~A3! reduce
to Eqs.~13! and~28!, apart of course, from an overall factor
1/e.
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ep54, since\vp0512.4 eV (np50.106a0

22 and d56.4a0).
Working in the same spirit for the case ofs plasmons, we find
es50.8, since\vs0521.53 eV (ns50.319a0

22) and the ex-
perimental value~Refs. 28 and 37! for the bulk oriented graphite
is 24.1 eV. This smaller than unity value naturally means that the
contribution dep(vs) is negative, as can been seen from the
work of Taft and Philipp who resolved the total dielectric func-
tion into p and s components. We remark, however, that the
experimental values used in the present work are based on more
recent measurements for oriented graphite~Refs. 28 and 37!,
and thus do not coincide with those of Taft and Philipp.

45Handbook of Mathematical Functions, edited by M. Abramowitz
and I.A. Stegun~Dover, New York, 1965!.

46ForN.2, these last two steps are facilitated through the use of an
algebraic computer language, likeREDUCE or MACSYMA @e.g.,
see C. Yannouleas and J.M. Pacheco, Comput. Phys. Commun.
52, 85 ~1988!; 54, 315 ~1989!#.

47T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys.54, 437
~1982!, and references therein.
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48For the case of a solid cylindrical wire, see R.A. Ferrell, Phys.
Rev. Lett.13, 330 ~1964!.

49For the case of a hollow cylindrical wire, see E.N. Bogachek and
G.A. Gogadze, Zh. E´ksp. Teor. Fiz.67, 621 ~1974! @Sov. Phys.
JETP40, 306 ~1975!#.

50G. Barton and C. Eberlein, J. Chem. Phys.95, 1512~1991!.
51G. Mie, Ann. Phys.~Leipzig! 25, 377 ~1908!.
52Using the Drude dielectric function, the Mie theory yields the

result VMie5VpAl /(2l11) for the frequency of the surface
plasmons of a solid metallic sphere, wherel is the multipolarity
and Vp5A4pre2/me is the frequency of the plasmon in the
bulk metal,r being the volume electron density of the metal.
For large values ofl , the Mie frequencyVMie approaches the
frequency of the plasmon of aplanarmetal surface~Ref. 3!.

53The experimental value, 24 eV, of the bulks plasmon in oriented
graphite~Ref. 28! reflects the screening of thes oscillations due
to thep electrons. In Secs. III B 1 and III B 2, we neglect this
screening. However, see Sec. III B 3~last paragraph! for an es-

timate of the effects this screening has on thes plasmons.
54The contribution of cq2 can be neglected, since\c512.93

eV a0
2 , so that one hascq250.0052 eV forq50.02a0

21 .
55This choice ofR1 guarantees thatq@m/Ri @Ri5R11( i21)d#

for the majority of shells in the assembly, even for the largest
valuem510 considered in this calculation@see text immediately
preceding Eq.~33! in the subsection on qualitative consider-
ations#. Based on our numerical calculations, we note, however,
that this condition does not necessarily have to hold for the
innermost radius (i51) for the bulk plasmon to emerge.

56Again this surface plasmon is different from the surface plasmon
that develops on the surface of a thick solid metallic cylinder
with the electric field perpendicular to the axis of symmetry and
with frequencyVp /A2, whereVp is the frequency of the plas-
mon in the bulk metal~Ref. 52! @see C.F. Bohren and D.R.
Huffman,Absorption and Scattering of Light by Small Particles
~John Wiley, New York, 1983!#.

10 236 53YANNOULEAS, BOGACHEK, AND LANDMAN


