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Molecular-dynamics study of elasticity and failure of ideal solids
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Results are presented from molecular-dynamics simulations of ideal solids under conditions of
constant temperature, pressure, and uniaxial tensile force. We show that the system remains in
metastable equilibrium all the way up to a critical value of the applied stress or force, at which point
it fails irreversibly via the nucleation of small-scale defects. The critical load (failure strength) is

found to decrease strongly with temperature.

In the past decade several attempts have been made to
study the stress-induced phase transitions and failure of
ideal (i.e., defect-free) solids via finite-temperature
molecular-dynamics simulation. Most notable is the
pioneering work of Parrinello and Rahman' and Ray and
Rahman? in which the constant pressure ensemble of An-
derson® was systematically extended to include an aniso-
tropic applied stress. Their primary interest, however,
was to investigate the nature of crystal-crystal phase
transformations in “ideal” metals under increasing ten-
sion or compression. Conversely, Soules and Busbey*
have focused directly on the fracture process itself, exam-
ining, in particular, the plastic deformation via cavity
formation in “pristine” glasses. But their studies were re-
stricted to the case of fixed strain rather than imposed
stress, and the systems simulated were finite in at least
one dimension (i.e., microscopic ‘slabs” or “fibers”).
Similarly, Kieffer and Angell® have considered isotropic
expansions of silica networks in an effort to explore the
fracture structures and dynamics induced by increasing
negative pressure. Most recently, LaViolette has report-
ed both amorphization and rupture® in Lennard-Jones
solids, but again in the fixed volume (uniform strain) en-
semble.

In the present work we exploit molecular-dynamics
(MD) techniques to treat the failure of ideal solids sub-
jected to uniaxial stress o or tensile force f under condi-
tions of fixed temperature and pressure. Most of our dis-
cussion and results will refer to the case of applied force,
since our use of simulation methods for this ensemble ap-
pears to be novel. For sufficiently slow increase in ap-
plied load, the system is shown to evolve through a suc-
cession of metastable equilibria, up to a critical value f§
of the external (E) force. For subcritical loads f close
enough to fg (i.e., within a few percent), the metastable
state is observed to fail only after a time delay, whereas
for fr R fg this nucleation process is essentially instan-
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taneous. For still smaller loads, the stressed solid
remains metastable for all times of interest. While the
system at f < fg can be unloaded without hysteresis, it
is seen to fail irreversibly (i.e., no recovery is possible via
removal of applied tension) once the nucleation of micro-
scopic defects has begun. Finally, the critical load —
failure strength—is found to decrease significantly with
temperature. This latter result, especially in the context
of explicit microscopic simulation of the failure of single
crystals, provides many additional insights into the role
of thermal fluctuations in metastable solids. All of these
findings are consistent with the statistical thermodynamic
approach formulated via mean-field theory and model
Monte Carlo calculations in a recent paper.’

We have employed two ensembles for our simulations,
one involving fixed temperature (T), pressure (P), and
stress (o), and the other fixed T, P and force (f). These
ensembles are generalizations and/or modifications of
those proposed by Parrinello and Rahman! and Ray and
Rahman,” inspired by the idea of (periodic-boundary con-
dition) cell motion originally suggested by Andersen.’
This fluctuating box is characterized instantaneously by
its edge vectors, which—as columns—define a “shape
matrix” k. Each of the particle positions r; is normalized
by this matrix according to r; =hs;. The dynamical vari-
ables of the system are then comprised of the columns of
h and the scaled vectors {s;}. Let G denote the metric
tensor A Th, with superscript 7T indicating a transpose in
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the usual way: rf;=r/r;=(s;—s;)"G(s,—s;), for exam-
ple, is the square of the distance between the ith and jth

particles. Now, the system Lagrangian
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generates the following equations of motion for k& and s;:
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Here W is a quantity with dimensions of mass (see below),
and g; is the internal stress tensor defined by
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The dynamics implied by the Lagrangian (1) have been
shown'? to result in a constant enthalpy when only hy-
drostatic pressure is applied. In the case of nonisotropic
stress, however, subtle complications arise in attempting
to identify a thermodynamic potential with the constant
stress ensemble. Nevertheless, a meaningful statistical
mechanics can be obtained by treating the external stress
via the principle of virtual work.® The equations of
motion so generated are identical in form to that of Eqgs.
(2a) and (2b), but with PI now replaced by the full aniso-
tropic stress tensor g, which specifies the external load.
In the special case of unidirectional load, we propose a
constant-force ensemble, where the (external) force, rath-
er than the stress, is fixed. Here we simply add a term
—fh; to the Lagrangian in (1), where k5 is the length of
the repeating box edge along the direction of applied ten-
sion. This last ensemble does lead to a well-defined ther-
modynamic potential, in this case, a generalized enthal-
py.” The two ensembles produce consistent results in the
failure thresholds, stress-strain relations, etc. According-
ly, we present data alternately from these fwo ensembles,
without further comment on the differences in thermo-
dynamic formulations and equations of motion, etc.

We report results here for a pair interaction of the
Lennard-Jones form: U (r)=4¢e[(ry/r)'?—(ry/r)%]. In
terms of €, ry, and m (=m;,, all i), it is natural to intro-
duce a characteristic time scale T=(mr3/e)!/?
=0.5X10"12 5, corresponding to m =1X 1072 g (=60
amu), r,=2.5X10"% cm, and e=2.5X 10 !* erg. Forces
and stresses are measured in units of €/r, and £/r3, re-
spectively. For W we choose 10m, but its value is imma-
terial since we consider only (metastable) equilibrium
properties of the system.! ™3 In integrating the equations
of motion for {s;} and A, the time step is taken to be
At=0.00757, using the standard predictor-corrector al-
gorithm.!® The temperature is kept constant by simple
rescaling of the particle velocities every 40 steps. Con-
sistent with the low vapor pressure (compared to atmos-
pheric) of solids at the temperatures of our study, and the
long-time scale for evaporation (relative to failure), we
are free to set P=0. Uniaxial force or stress is applied at
a constant rate Af /At=0.6 or Ao /At =0.018, after first
equilibrating the system (for 5000A¢) under zero load,
starting from a two- d1mens1ona1 trlangular lattice with a
nearest-neighbor distance of 2176

Figure 1(a) shows plots of the y (vertical) and x (hor-

izontal) components of the internal restoring force f; for
a system of 900 particles at kT =0.05¢ (henceforth writ-
ten as T=0.05) with external force applied along the y
direction at a rate of 0.6. Note that f} fluctuates about
zero (since the system relaxes laterally to relieve stress),
whereas f7 follows f with a slope of unity, indicating
that the load is being increased slowly enough for the sys-
tem to move through a succession of (metastable) equilib-
rium states. When the external force reaches a value of
fg=108x1, however, f{ drops abruptly to zero. The
corresponding value of the system’s horizontal (lateral)
length L, is 33.1, implying a critical stress of
o =15 /Li=

Failure of the system at oz =3.3 is indicated by an al-
ternative criterion in Fig. 1(b), where we plot the vertical
(yy) and horizontal (xx) components of the induced
strain € for the same temperature, but with applied stress
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FIG. 1. (a) From the force-ensemble simulation at 7=0.05,
vertical (upper curve) and horizontal (lower curve) components
of the internal force f; vs the applied tensile force f. (b) Verti-
cal (upper curve) and horizontal (lower curve) components of
the strain tensor € vs the applied uniaxial stress o g, for the same
temperature, but from the stress ensemble.
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increasing at a rate of 0.018. For small stresses, € in-
creases linearly, with slope corresponding to the inverse
of the elastic (Young’s) modulus; nonlinearity sets in at
larger o, the anharmonicity of the pair potential begin-
ning to be explored at this point. Finally, €’” diverges at
0 =3.30%0.05, as the system fails. Note that the hor-
izontal component € is negative, indicating a positive
Poisson ratio.

At higher temperature, 7=0.2, we find a plot of f}
versus f5 which is essentially identical to Fig. 1(a), except
that the system now fails earlier, at fy =63%1. The cor-
responding L, is found to be 33.7, giving
0%=63/33.7=1.86. Similarly, € versus o at T=0.2
has the same form as Fig. 1(b), except for the failure
occurring at an external stress of 1.85; also, the inverse of
the limiting slope (Young’s modulus) is smaller than at
the lower temperature. Thus, our estimates of the critical
loads are confirmed by independent molecular-dynamics
simulations carried out in the force and stress ensembles.
Furthermore, these same failure stresses are found when
we carried out similar calculations for a smaller system of
400 particles, as well as for slower increases in external
load.

The foregoing results suggest that for sufficiently slow
application of external stress or force, an ideal solid stays
in quasi (metastable) equilibrium up to a critical load.
This unique threshold corresponds to the failure of the
system in the sense that the internal stress vanishes
abruptly and the induced strain (in the direction of load-
ing) diverges. And because the solid under stress is in a
metastable state, thermal fluctuations play an important
role in driving the intact system over its free energy bar-
rier to failure. In particular, they are responsible for nu-
cleating local inhomogeneities—point defects—at a
characteristic rate which increases with both temperature
and applied load.

More explicitly, consider a trajectory in the force en-
semble simulations where we stop the increase of f; and
hold it fixed at a value near but below the failure thresh-
old. The system is then subjected to this particular exter-
nal force for 5000 time steps, i.e., for a time
5000X0.0075=37.5. Figure 2 shows how the internal,
restoring force varies as time evolves over this interval for
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FIG. 2. From the force-ensemble simulation at T =0.05, the
internal restoring force f; vs time at two constant values of the
applied force (a) fr=104.9 and (b) fr =106.2.

each of two different values of the applied force at
T'=0.05. For f;=104.9, no change in f; is observed:
the internal force simply fluctuates about this applied
value. For f;=106.2, however, the system remains in
metastable equilibrium (f; = fz) for a time ¢ =5 and then
fails abruptly.

Figure 3 shows a set of instantaneous particle
configurations at different times corresponding to the
fg=106.2 trajectory in Fig. 2. Note that the starting
configuration (¢t =0) is remarkably regular, in spite of the
fact that the applied tensile force is only 2% lower than
the critical value (ff=108) at which failure occurs in-
stantaneously. After five time units, however, there is a
clear development of defects—see, for example, a small
opening near the lower right corner of Fig. 3(b) and
several dislocation lines in the upper part. Figure 3(c)
shows the particle configuration at t =7, by which time
these “fatal” defects have begun to proliferate at an ac-
celerated pace: it should be regarded as characterizing
the post-failure regime, i.e., as lying beyond the limits of
validity of the equilibrium molecular-dynamics method.
Similar sequences of configurations are observed for stress

FIG. 3. From the force-ensemble simulation at T'=0.05, instantaneous configurations showing nucleation and development of de-
fects at applied uniaxial (vertical) force fz =106.2, at time (a) ¢t =0, (b) t =5, (c) t =7.
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ensemble runs just below the failure threshold, and at
higher temperature. Decay of the metastable system via
nucleation occurs after a time delay only if the applied
load is close enough to its critical value (typically a few
percent): above this narrow interval the system fails
essentially instantaneously, while below it the metastable
state survives effectively indefinitely, in close analogy’ to
the homogeneous condensation of a supersaturated va-
por.

Consistent with the above scenarios, we expect the
loading of our system to be reversible all the way up to its
failure. To test this, we took the T'=0.2 system (for
which fg~63) up to an applied force of 60.3 and then
abruptly released all of the load: after some transient os-
cillatory behavior, the system settles down to a state
which is indistinguishable from the equilibrium
configuration characteristic of fz=0. On the other
hand, the same system—kept at fy =60.3—is found to
fail after 1200 time steps. Furthermore, as soon as it be-
gins to fail, i.e., even when the particle positions still
reflect a conspicuously regular crystalline order apart
from nascent openings and dislocations as noted in Fig.
3(b), recovery is no longer possible (regardless of how
quickly —or slowly —the applied force is released). Thus
we conclude that failure is irreversible as soon as micro-
scopic defects first appear, even though the loading of the
system is perfectly reversible all the way up to this point
(e.g., no hysteresis in the stress-strain response, etc.).

To complement the constant temperature results dis-
cussed above, we also carried out computations under
adiabatic conditions, to probe the failure behavior in the
limit where the heat transfer rate is slow (rather than fast)
compared to that of load increase. Starting from
T=0.05 and from 0.2, we find that the system tempera-
ture drops significantly as the external force is applied
and, consequently, the failure threshold are pushed up to

higher values (117+1 and 73=*1, versus 108+1 and 631,
respectively). We expect, however, that the temperatures
at which the system fails in these cases are the same as
those which would yield f;=117 and 73 in isothermal
simulations. This check should provide another
confirmation of the quasi(metastable) equilibrium nature
of the prefailure regime. As far as we are aware, the
dramatic temperature dependence reported here for the
nucleation rates pertaining to failure of single crystals un-
der tension is a feature of our MD approach. We also
plan to study the effect of preexisting (i.e., zero-load) de-
fects such as vacancies, substitutional impurities, and
small-scale dislocation pairs, etc. (see, for example, Ref.
11 for the failure effects of quenched disorder) on plastici-
ty and strength of these model solid systems, and to ex-
tend our simulations above the melting temperature in a
probe of cavitation phenomena.> !?
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