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A variational solution to a model problem of a hydrogen atom near a sharp planar surface of a
semi-infinite substrate is studied. Results are presented for the ground and excited eigenstates and
dipole moments of the hydrogen atom as a function of distance from the surface for two models:
(a) a system in which the half-space occupied by the solid is represented by an infinite potential
step; and (b) a system in which the semi-infinite substrate is perfectly imaging subject to a
boundary condition that excludes the atomic electron from the substrate. Model (b) is considered
as an idealized model for physisorption, where the exclusion of the electron simulates the
exchange repulsion originating from the overlap of the atomic and substrate electrons. Results for
the physisorption holding potential as a function of distance from the plane are presented and

discussed.

Boundary conditions, as utilized in quantum mechan-
ics, are usually dictated by the requirements of physical ad-
missibility. For example, when considering bound states the
requirement that the normalization integral converge leads
to the consideration of only those solutions which are regu-
lar at the origin and are zero at infinity. For scattering states
a wave function which tends to infinity as » goes to infinity
corresponds to a state that has no physical meaning and
must be discarded. More generally it is known that a partial
differential equation possesses several arbitrary constants
and it is the specification of the value of the solution, or its
normal derivative, on the boundary that yields the values of
these constants.

One of the first uses of a boundary perturbation, that is
a change in the boundary conditions, to model a physical
situation was a calculation of the energy levels of a com-
pressed hydrogen atom.'? In this calculation the effect of
very high pressure on atomic hydrogen is taken into account
by requiring that the wave function vanish on a sphere at
some finite distance from the proton. This type of calcula-
tion is, of course, only an approximate one for it only indi-
cates the effect of repulsive forces at very high densities; but
of course this is the main attraction of such an approxima-
tion in that it replaces the complicated set of interactions
with only a change in the boundary conditions, which in this
case is exactly solvable.’

By changing the new boundary surface from the sphere
of the previous example to an infinite plane surface, there
results a situation that has been used to model several phys-
ical systems. In particular, the requirement of a vanishing
wave function on a plane has been used* to represent the
exchange repulsion of atomic hydrogen physically adsorbed
onto a surface.

Perhaps a more realistic use of this boundary condition
in the modeling of a physical problem arises in the effective
mass theory of shallow donor impurities near the surface of a
semiconductor or a semiconductor-oxide interface. Because
the binding energy of a shallow donor is of the order of a few
meV and the height of the surface barrier is several eV, the
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surface is essentially an infinite potential barrier and the en-
velope function of the donor impurity must be required to
vanish on the surface. This condition on shallow impurities
near semiconductor surfaces was first pointed out by Le-
vine*® and Gadzuk.’®

It is the last two examples of modeling a physical prob-
lem with the use of boundary conditions that will be ad-
dressed in this series. The boundary perturbation in each
case involves a change in the shape of the boundary surface
while still requiring that homogeneous Dirichlet conditions
be satisfied. (Recall that the isolated hydrogen atom wave
function is required to be zero on the sphere at infinity.)

When the surface on which the boundary conditions are
to be specified is no longer a surface in a coordinate system in
which the partial differential equation separates, the prob-
lem is nonseparable. This is due to the fact that even though
it may be possible to separate the equation, there is no way to
satisfy the boundary conditions on a surface which depends
upon at least two independent variables. Because of this non-
separability, some type of approximation method must be
used.

One of the first approaches to the boundary perturba-
tion problem was made by Brillouin.® By considering a dis-
placement operator acting on the boundary he was able to
construct a method that is formally similar to the standard
perturbation series. However, the expansion parameter in
this case is the magnitude by which the boundary surface is
displaced and this parameter is assumed to be small. This is
clearly not satisfied by the problems we wish to solve. Other
methods of treating boundary perturbations have been de-
veloped”® but they all have the same restriction. That is, they
can only be used when the domain of the PDE is finite and
the change in the boundaries is finite. In addition to these
methods, a perturbation method using Green’s functions has
been developed by Feshbach® and also discussed by Morse
and Feshbach.'® However, the method is mathematically
complicated and for the problem of a change in the boundary
shape while requiring homogeneous Dirichlet conditions to
hold, the method cannot be used to find corrections to the
energy beyond the second order.

These considerations lead to the conviction that the
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variational method will yield the best approximate solutions
to this type of boundary perturbation problem.

In this paper a variational solution to the problem of a
hydrogen atom in the presence of a planar infinite-potential
wallis given. The effect of this boundary perturbation on the
spectrum of the hydrogen atom is discussed. At a large dis-
tance from the plane, the isolated hydrogen atom levels are
regained. When the proton lies on the boundary plane the
problem is again exactly solvable® and these solutions are
recovered by the variational solution. Between these two
limits the energy levels vary smoothly and exhibit several
interesting level crossings. By using these methods, a model
advanced by Bruch and Ruijgrok* of the physisorption of
atomic hydrogen is revisited and information with regard to
excited states of the system is provided.

In a subsequent paper'’ in this series we address the
problem of a shallow donor impurity near a semiconductor
surface or interface. Modifications in the variational solu-
tion due to the effect of an anisotropic effective mass are
presented. Energy levels of the ground and excited states of
shallow donors near the surfaces of silicon and germanium
are calculated. One of the results of this model is that the
total interaction energy of a shallow donor with the semicon-
ductor surfaces possesses a minimum and this suggests a
possible clustering of these impurities near the surface. Fin-
ally, the binding energy of a shallow donor impurity asso-
ciated with an n-type inversion layer of a metal-oxide-semi-
conductor field effect transistor is calculated and compared
with other recent theoretical treatments and experimental
results.

The variational method of solution is described in Sec. I
where results for the spectrum of a hydrogen atom near an
impenetrable wall are given. The introduction of images in a
model of physisorption is described in Sec. II and a detailed
discussion of the eigenvalue spectrum and energetics of the
system is given.

I. VARIATIONAL SOLUTION—HYDROGEN NEAR AN
IMPENETRABLE WALL

The variational method of solution is introduced by
considering a hydrogen atom which is at some finite dis-
tance, say R, from an infinite plane surface upon which the
potential is taken to be infinite. This infinite potential mani-
fests itself by the requirement that ¢, the wave function of the
electron, must vanish on the plane and in the half-space not
containing the proton. In our treatment of the model, the
Born—-Oppenheimer approximation shall be used, inasmuch
as the proton will be taken as being located at a fixed distance
from the plane, so that there is no coupling between the nu-
clear and electronic motions.

The Hamiltonian of the problem is given by the usual
hydrogen atom Hamiltonian

H= __”2 v2_ e_z,

2m r
but now the boundary condition is that ¥ must be equal to
zero on the plane z = R (see Fig. 1). This choice of orienta-
tion of the plane and coordinate system, which is centered on
the proton, is made to simplify the following calculations.

(1.1)

'
—P

X

FIG. 1. The coordinate system of Eq. (1.1) centered at the proton and the
boundary surface at z= R = r cos 6.

The variational principle for eigenvalues'?

*

SIE] = [”’ H"""’] 0, (12)
So*ydv

where H is an arbitrary Hermitian operator and this leads to

the eigenvalue equation

Hy=Ey (1.3)

only when the function ¢ in Eq. {1.2) obeys the same bound-
ary conditions that are to be imposed upon the solutions of
Eq. {1.3). In practical applications of the variational method,
this means that the trial functions must obey the correct
boundary values, independent of the choice of values of
whatever variational parameters the trial function may con-
tain. When this condition is satisfied, the trial function is said
to be admissible. ™

This requirement usually poses no problems and its im-
portance is not often emphasized. However, in the present
case when the location of the boundary surface is to be var-
ied, and more generally when the boundary surface and con-
ditions will be considered to be input variables, the construc-
tion of admissible trial functions can become quite
cumbersome. To avoid this complication in the construction
of a set of trial functions for the linear variation problem one
can form the combination

YF)=G(r) Y 4,4,(r) + Fr).

Here the A, are the linear variation parameters and the set
@, (r}is to satisfy the boundary conditions of the unperturbed
problem. The n’s are taken to stand for all the quantum

(1.4)
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numbers which characterize the basis set of the system. The
function G (r)is such that G (r on.S') = O where.S denotes the
boundary surface. The function F (r) is to satisfy

F{ronS)=X,(S)
for Dirichlet conditions, or

ﬁ(r on §)=X,(S)

n

for Neumann conditions. In the present instance we are con-
cerned only with homogeneous Dirichlet conditions and
therefore need only consider, taking into account the coordi-
nate system of Fig. 1 and the fact that the additional bound-
ary surface is a plane, the combination

Vi) =G@) 3 4.4,

where G{R)=0.

When the boundary surfaces are changed, there arises
one more modification of the variational principle of Eq.
(1.2). The range of the integrations in Eq. (1.2) is over the
domain of the Eq. (1.3) and that domain is defined as the
inside of the closed boundary surface on which the boundary
conditions are to be satisfied. The fact that the surface is
closed follows from the elliptic character of the time-inde-
pendent Schrodinger equation. This means that the limits of
integration in Eq. (1.2) will become dependent upon the posi-
tion of the boundary surface.

Taking into account all of these considerations and us-
ing the trial function of Eq. (1.5) the expectation value for the
energy of the system can be written as

) J;[G(Z);An%]*H[G(z)zn"Anq}n]dV
) [ o054 [c05 4. ]av

where the subscript 7 on the integrals indicates that the inte-
gration is over a truncated space and H is given by Eq. (1.1).
The basis set used to expand the trial function will not in
general be orthogonal, because of the factor G (z) and the
integration is over a truncated space, so that the variation of
the linear parameters 4, will lead to a generalized matrix
eigenvalue problem

HA = ENA, (1.7)

where there now appears the overlap matrix N. More specifi-
cally the matrix elements are given by

M), = J; [G 26, 1*H [G(a), |dV

(1.5)

E] , (L6

(1.8)
and

(N),.. =fT [G ), 1*[G o, V. (1.9)

Since both H and N are Hermitian, the usual properties of
Hermitian matrices apply; except that the orthonormality of
the vectors A, is expressed as'*

(A*NA)M, =5, (1.10)

Before the choice of the set ¢, is presented, the specific
form of G (z) which is zero on the boundary surface will be
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given. The most convenient choice is simply to set
G@Z)=R—-z=R —rcosb. (1.11)
Then the development of the Laplacian of the Hamiltonian
(1.1)is
V2[(R —rcos8)p,] = (R — rcos 0)V%, —2k-Vs,,
since, on noting that k is the unit vector in the z direction,
V(IR —rcos0)= —k
and
V3R —rcos8)=0.
It is interesting to note that this choice yields an expression
that is similar to the variational principle for unrestricted
trial functions (i.e., they do not obey the boundary condi-
tions) given by Morse and Feshbach.!® Both forms involve
the derivative of ¢, that is normal to the boundry surface;
however in the present instance the integration is over the
entire volume and not only over the new boundary surface.
The basis set ¢, (r), which must satisfy only the isolated

hydrogen atom boundary conditions, i.e., ¥ — 0 as r — oo,
is chosen to be

¢n = ¢nlm (l', B)
=BV PN2n (N —1— 1)/ [(N+1)1]°]"72

X(2BrYL Y (2Brle #Y (0,8 ). (1.12)
In Eq. (1.12) the Y [” are the usual spherical harmonics, the

L ,’,‘ are the associated Laguerre polynomials and 7 is taken to
be in units of Bohr radius a,,

ay = #*/me’.

This corresponds to a scaling of the Hamiltonian (1.1) to

(— vz i)W=Ew,
r
where E is given in units of Rydbergs (¢?/2a,).

The difference between the set of functions given by Eq.
(1.12) and the isolated hydrogen atom eigenfunctions is the
appearance of the combination Sr, where 8 is an additional
variational parameter independent of any quantum number,
rather than the combination r/n which depends upon the

_ particular state under consideration. The advantages of this

choice are twofold. First the isolated hydrogen atom orbitals
do not form a complete set without the inclusion of the con-
tinuum states.'*> Use of the set given by Eq. (1.12) has been
shown to include contributions from these states.'® Second,
the virial theorem is automatically satisfied for any quantum
mechanical system whose potential is a homogeneous func-
tion of the coordinates if a scale factor is introduced into the
approximate wave function and varied so as to give the low-
est energy.'”'* The parameter 8 is such a scale factor and
because its optimum value will be found, the properties of
the states found with the approximate wave functions of Eq.
(1.5) will be better than those which do not contain such a
scaling.

Since the boundary surface was chosen to be a plane
perpendicular to the 2 axis, there are no changes in the limits
of integration over the variable ¢. Consequently m remains a
good quantum number. This means that we can separate the
problem according to the m value of the particular level that
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we are interested in solving. Moreover, since the degeneracy
of the two states [#, /, + m] is not lifted we need consider
only the positive m values. The original matrix equation giv-
en by Eq. (1.7) then reduces to a set of matrix equations for
which m =0,1,2,... . That is

HmAM = EN™AM), (1.13)

In the calculation of the matrix elements for these separate
problems, the integration over the variable ¢ can now be
replaced by multiplication with the factor 275,

The calculation of the Hamiltonian matrlx elements
now proceeds as follows. Taking account of the truncation of
the region of integration along with the above considerations
the matrix elements can be written as

ZV[J f h',,, sin 8 d6 r* dr

+f f L3
T
R Jeos YR /A

where

B, =[G % B)H [G@pm(rs B)]-

It is here, in the lower limit of the @ integration of the second
term, that the nonseparability of the problem becomes ap-

parent with the appearance of the term cos™ (R /r). For fu-
ture convenience we shall denote this integration as

fh('l’ nl av.

The matrix elements of the Hamiltonian are now expressible
as

Hm, f (R —rcos 6)4,.,., (r,B)
T

, sin 0d0r2dr], (1.14)

X{(R —rcos 8)[ — V* ~(2/7)]$n 1, B)

— 2k - Véym(r, B)}dV, (L15)
which simplifies upon using the relations
(-7 L)unie5)
r
—1
={-p2+ 2=y, e m) (1.16)
and
7 a¢nlm sin & a¢n1m
.  B)=cos @ — . 1.17
k V¢nlm (l' ﬂ) cos a ’ ae ( )

The expression for the overlap matrix is given simply by
N uR)

_ L {(R —rcos 674,,,...(6 Bbun(r, B)}dV. (1.18)

The numerical solution of the matrix Eq. (1.13) is a two
step process. Because of the complicated dependence of the
matrices and the associated eigenvalues on the parameter 5,
it is impractical to develop the variational condition d [E']/
9B = 0. Therefore, at a specific distance a value of 8 must be
assumed and then the linear problem of Eq. (1.13) can be
solved, yielding the eigenvalues and eigenvectors. At this
point the value of B can be varied, the matrix elements calcu-

D. B. MacMillen and U. Landman: A model for physisorption

TABLE 1. Convergence of the ground state energy for the hydrogen/im-
penetrable wall system at several distances. Distance is given in units of
Bohr radii and energy is in units of Ry.

R 0.0 0.2 0.8 4.0
Matrix size
3x 3 —0.2500 —0.2448 —0.4849 —0.9888
6X 6 — 0.2500 —0.2735 —0.5012 —0.9955
10x 10 —0.2500 —0.2786 — 0.5042 — 0.9969
15x15 . — 0.2800 — 0.5058 —0.9972
21x21 —0.2801 — 0.5064 - 0.9973
2828 —0.2802 — 0.5065 —0.9974

lated, and the matrix Eq. (1.13) is again solved. In this way
one can search for the value of B that gives the best upper
bound to the eigenvalue.

Before the above procedure can be applied, it must first
be decided to what extent the basis set of Eq. (1.12) will be
extended in the expansion of the trial function. This deter-
mines the order of the matrix equation to be solved. Since
only the positive m values, one at a time, need be considered
the expansion of the trial function can be written as

(R — rcos) g: jil Al

j’:)k ¢m+j.m+k.m(r“8)’
j=1k=0
(1.19)

where m is fixedand ¢, , ., (r, #) is the function given by Eq.
{1.12). Once N is chosen, the size of basis set, and of the
matrices H™ and N'™), is easily seen to be N (N + 1)/2. In-
creasing NV is analogous to increasing the value of the princi-
pal quantum number 7 that is included in the expansion of

v, (r)=

TABLE II. Ground state properties of the hydrogen/impenctrable wall sys-
tem (m = 0, p = 1). Energies are in units of Ry, the dipole values i, are
given in units of (ea,/2)( = 1.271 D), and the distances are given in terms of
Bohr radii (¢, = 0.529 A). Tand ¥ are the expectation values of the kinetic
and potential energies, respectively.

R B E, . T Vv
0.0 1.000  —0.2500 .- 02500  —0.2500
0.2 1001  —02802 —6.383 03170 —0.5872
0.4 1077  —03272 —5099 04458 —0.7730
0.6 1321 — 04027 —3.735  0.6774  — 1.0801
0.8 1.537  — 05065 —2.617 09527 — 1.4592
1.0 1696  —0.6172 —1.877 11480  —1.7652
12 1795  —0.7144 —1407 12375  —1.9519
14 1.850  —0.7912 —1.092 12576  —2.0488
1.6 1872  —0.8488 —0865 12429  —2.0917
1.8 1.876  —0.8911 —0.693 12139  —2.1049
2.0 1.870 —09217 —0559 11811  —2.1028
22 1.852  —09438 —0451  1.1494  —2.0933
2.4 1822  —09598 —0.364 11211  —2.0809
2.6 1775  — 09712 —0292 10968  — 2.0680
2.8 1719  —09794 —0234 10765 —2.0558
3.0 1.603  —09853 —0.186  1.0599  —2.0452
32 1554  —09896 —0.147 10465 — 2.0360
3.4 1414  —09926 —0.116 1.0358  —2.0284
3.6 1290 —0.9947 —0.091 10274  —2.0221
38 1209 —09963 —0071 10208 —2.0171
40 1183  —09974 —0055 10157 —2.0131
42 1161  —09981 —0042 10118  —2.0099
4.4 1112 —09987 —0032 10088  —2.0075
4.6 1089  —09991 —0024 10065 — 20056
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TABLE III. Properties of the first excited state of the hydrogen/impenetra-
ble wall system (m = 0, p = 2). Units the same as in Table IIL.

R B E(0,2) B, T Vv

0.0 0500 —0.1111 0.1111  —0.2222
0.2 0.506  —0.1198 —17.171 0.1300  — 0.2498
0.4 0636 —01321 —15231 0.1623 —0.2944
0.6 0728  —0.1493 —13.148 02074 —0.3568
0.8 0793  —0.1687 —11.408 02436 —0.4123
1.0 0.848  —0.1856 —10.172 02610 — 0.4466
12 0.855  —0.1988 —9.353 02669 —0.4657
1.4 0.865 —02087 —8761 02694 —0.4781
1.6 0.866  —0.2164 —8.320 02702 —0.4866
1.8 0868 —02224 7974 02704 —0.4928
2.0 0869 —02272 —7.695 02700 — 04972
2.2 0.866  —02311 —7465 02693 —0.5004
2.4 0863  —02342 —7271 02684 —0.5027
2.6 0858  —02369 —7.106 02674 —0.5042
2.8 0.853  —02390 —6.964 02662 —0.5052
30 . 0.849  —02408 —6.840 02651 —0.5058
32 0.843  —02423 —6.732 02639 —0.5061
3.4 0840 —02435 —6.638 02627 —0.5062
3.6 0.835 —0.2446 —6.555 02616 —0.5061
3.8 0.829  —02454 —6.482 02605 —0.5059
4.0 0.823  —02462 —6.417 02595 —0.5056
42 0.819  —02468 —6.361 02585  —0.5053
44 0.813  —02473 —6310 02576 —0.5049
46 0.808 —02477 —6266 02568 —0.5045
48 0.800 —02481 —6.227 02561 —0.5041
50 0793  —02484 —6.193 02554 —0.5038

the trial function, but care has to be taken in this interpreta-
tion since the set of functions of Eq. (1.12) are not the isolated
hydrogen atom wave functions.

The procedure of the calculation is now given by the

TABLE 1V. Properties of the second excited state {m = 1, p = 1) of the hy-
drogen/impenetrable wall system. Units the same as in Table II.

R B E(, 1) i, T v
0.0 0412 —0.111 0.1111  —0.2222
0.2 0.449  —0.1150 —12.358 0.1190 —0.2340
04 048  —0.1192 —11.580 0.1282 —0.2474
0.6 0519  —0.1239 —10.792 0.1387 —0.2626
0.8 0559  —0.1291 —9999 01507 —0.2798
1.0 0590 —0.1347 —9206 01643 —0.2991
1.2 0.625 —0.1409 —8425 0.1794 —0.3203
1.4 0.656 —0.1476 —7.668 0.1956 —0.3431
1.6 0.687 —0.1545 —6948 02121 —0.3667
1.8 0713  —01619 —6.278 02282 —0.3900
2.0 0738  —0.1693 —5.663 02430 —0.4123
2.2 0759  —0.1766 —5109 02561 —0.4327
2.4 0779  —0.1837 —4.613 02671 — 0.4508
2.6 0796  —0.1905 —4.170 02758  —0.4663
2.8 0811  —0.1968 —3.777 02824 — 04792
3.0 0822  —02027 —3.426 02871 —0.4898
3.2 0.831  —02081 —3.113 02901 —0.4982
34 0.838 02129 —2833 02918 —0.5047
3.6 0.845  —02173 —2.581 02923 —0.5097
3.8 0.848  —02213 —2.353 02920 —0.5133
40 0.851  —0.2248 —2.147 02911 —0.5159
42 0.852  —0.2279 —1959 02896 —0.5175
4.4 0.853  —02307 —1.788 02878 —0.5185
4.6 0.853  —02331 —1631 02858 —0.5189
4.8 0851  —-02353 — 1488 02837 —0.5190
5.0 0.849  —02372 —1.356 02815 —0.5187
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TABLE V. Properties of the third excited state (m = 0, p = 3) of the hydro-
gen/impenetrable wall system. Note the discontinuity of the properties &, ,
T,and V'between the distances of 3.4-3.6a, which indicates a level crossing.

R B E{,3) i, T 4

0.0 0268  —0.0625 e 0.0625 —0.1250
0.2 0311  —0.0661 —32.516 00701 —0.1362
0.4 0352  —0.0709 —30.202 00812 —0.1521
0.6 0398  —00772 —27.665 00949 —0.1720
0.8 0.441  —00838 —25323 0.1056 —0.1895
1.0 0472  —00895 —23.551 01110 —0.2005
1.2 0491  —0.0938 —22314 01133 —02071
1.4 0502  —0.0970 —21444 0.1143 —0.2113
1.6 0509  —00994 —20.804 0.1149 —0.2143
1.8 0513  —0.1013 —20317 01152  —0.2164
2.0 0515  —0.1028 —19.932 0.1153 —0.2181
22 0515  —0.1040 —19.623 0.1153  —0.2193
2.4 0.515 —0.1050 —19.365 0.1153  —0.2203
2.6 0514  —01059 —19.151 0.1152 —0.2211
2.8 0513 —0.1066 —18.968 0.1151 —02217
30 0515  —0.1072 —18.809 0.1150 —0.2221
3.2 0510 —0.1077 —18.676 0.1148  —0.2225
3.4 0.508 —0.1081 —18558 0.1146 —0.2227
3.6 0.423  —0.1087 5856 02206 —0.3294
3.8 0.449  —0.1154 —4709 02494 —0.3648
4.0 0.496  —0.1228 —3.590 02791  —0.4019
42 0535  —01310 —2568 03071 —0.4381
44 0570  —0.1400 —1.663 0.3314 —04710
46 0.600 —0.1483 —0.876 03507 —0.4990
48 0.626 —0.1571 —0.199 03646 —0.5217
50 0650 —0.1656 —0.383 03736 —0.5391

following. First, the value of the m quantum number, which
is still a good quantum number, is decided upon. Second, the
eigenvalue’s position in the ordered set

E™R) i=123,..

is chosen. This is done because the optimum value of £ is
dependent upon exactly which eigenvalue is to be mini-
mized. Now the value of N of Eq. (1.19) is set and the opti-
mum value of # and the associated eigenvalue at that matrix
size are calculated. Next the value of N is increased by 1,
which increases the matrix size by N + 1, and again the
eigenvalue is minimized with respect to 8. This process is
repeated until the values of the minimized energy at two
successive matrix sizes agree to a certain number of signifi-
cant figures. In this report most of the results presented are
calculated to four significant figures, recall that the energy is
in units of Rydbergs, and this was obtained by going to ma-
trix sizes of (28 X28). An example of convergence of the
ground state for several distances is given in Table I.

The results of the calculation for the first four states are
given in Tables II-V. There we have tabulated the optimum
value of 8 and the energy for a range of distances of the
proton from the plane. Also included are several properties
of these states that shall be discussed later. In these tables we
have labeled the states by their m-quantum number and their
position in the spectrum of the reduced problem, that is the
spectrum of levels having the same m value.

The results for the ground state energy can be compared
to those obtained by Bruch and Ruijgrok.* These authors
were mainly interested in the imaging system as a model of
physical adsorption (see the next section); however the re-
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FIG. 2. Ground state energy as a function of distance of the hydrogen/
impenetrable wall system. In this and the following figures energy is in units
of Rydbergs and distance is in units of Bohr radii.

sults for a change of the boundary surface only are given for
the ground state. Their approach to the problem is a vari-
ational one that is similar in spirit to the present one. The
difference is that the problem is cast in confocal elliptic co-
ordinates with the foci at the proton and the image proton.
The trial function is then chosen as

¥, = exp( — at /2)sinh( Bn/2) 3 C,y £

In Eq. (1.20} £ and % are the coordinates in the confocal
elliptic system, @ and B are nonlinear variational parameters,
and the set C,, constitutes the linear variational parameters.
The important feature of the trial function (1.20) is that the
boundary value of ¢, = 0 on the plane is satisfied by the
sinh(87/2) term. After converting their results to Rydbergs,
the two calculations agree to as many significant figures as
are reported in that paper. For example, at a distance of 1.2
bohr radii from the plane, both methods yield a ground state
energy of — 0.7144 Ry.

However, results are given by Bruch and Ruijgrok only
for the ground state so that there is no information on the
manner in which the spectrum of a hydrogen atom changes
as an infinite plane potential moves in from infinity. This
information is easier to interpret when it is presented as a

(1.20)

0.0 t + ~+ +

j 13l 7
(0.6

2J) (0.5

ENERGY

1 2 3 4 5
DISTANCE

FIG. 3. The first 13 excited states of the hydrogen/impenetrable wall sys-
tem.
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graph showing the energy as a function of the distance of the
proton from the plane. These graphs are presented in Figs. 2
and 3.

It is evident from Fig. 2 that when the proton is located
4 Bohr radii away from the plane there is very little change in
the ground state energy. As the distance from the plane de-
creases, the energy increases until, at R = 0, it is equal to
— 0.25 Ry. This result is the expected one since when the
proton is located on the plane the Hamiltonian is separable
and the problem is exactly solvable. The solutions are the
isolated hydrogen atom eigenfunctions restricted by the se-
lection rule

|l — m| = odd. (1.21)

This result was first pointed out by Levine,’ who noted its
importance for the problem of a shallow donor impurity lo-
cated at the surface of a semiconductor (see paper II in this
series).!!

The correct values at the R = 0 limit are also obtained
for the excited states in Fig. 3. In that figure the states are
labeled by their m value and their position in the matrix by
the notation (m, p). There are several interesting features ex-
hibited by the spectrum presented in Fig. 3. At R = o there
exist two states with n =2 and m = 0, i.e., the 25 and 2p,
states. However, at R = O there exists only one state with
n = 3 and m = 0 because of the selection rule (1.21) and that
is the 3p, state. Therefore one of the states withn = 2, m =0
at R = o0 must map onto a state with » =4 at R = 0. At
R = 5a, the state which does this is labeled by (0,3). As R
decreases, the energy of state (0,3) increases until it crosses
the state (0,4). These two states possess the same azimuthal
quantum number m and are therefore eigenvalues of the
same reduced matrix problem. This appears to be a true
crossing for two reasons. First, the eigenvalues become
equal, to four figure accuracy which is the limit of accuracy
in the present calculations, at a distance from the plane of
approximately 3.58a,. Second, the properties derived from
the wave functions of these two states have a consistent inter-
pretation only if such a crossing takes place. That is, the
dipole in the z direction, the average kinetic energy and the
average potential energy should be continuous functions of
the distance from the plane and this would not be the case if
such a crossing did not occur. As the distance to the plane is
decreased even further another crossing occurs. However,
this crossing is for states of differing azimuthal symmetry so
there is no reason to suspect another symmetry of the system
at this distance.

The ground state of an isolated hydrogen atom does not
possess a net dipole moment. However when the charge dis-
tribution is changed by the presence of the boundary plane
this is no longer true. Because of the azimuthal symmetry,
the dipole moment of the ground state will be in the z direc-
tion and the dipole moment operator can be written as*

(1.22)

A positive dipole moment is directed away from the bound-
ary plane. The convention used here is that the dipole points
from the negative to the positive charge.

The manner in which the average value of y is calcu-
lates is modified slightly due to the nonorthogonality pre-

M, =z=rcosb.
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viously discussed. First the matrix D' is calculated, where

(D(M))nq" n = J;¢,,'1'm ﬂ¢n1m av

and the optimized value of 3 is used. The expectation value
of u for a state labeled by (m, k) is then given by

(1.23)

*
_ A(km) D""’A'k"”

i — SO .
Al,:ni"‘Nlm)A(km)

(1.24)

where Al™ is the optimized & th eigenvector of Eq. (1.13) and
N is the overlap matrix. The dipole expectation values are
given in Tables II-V. As expected the influence of the
boundary plane is to push the electronic charge distribution
away so that its “center of gravity” lies behind the proton
and yields negative zz. Note also that the dipole moments fall
off much less rapidly as a function of R for the excited states.
This is due to the fact that the excited states, because of their
greater spatial extent, “feel” the presence of the plane for a
further distance than does the ground state.

The average kinetic and potential energies can be calcu-
lated in a manner similar to that for the dipole. But now it is
not necessary to calculate any additional matrices, for T
and V™ are already available from the calculation of H"™.
These expectation values have also been computed and are
given in Tables II-V.

In examining the expectation values of the kinetic and
potential energies of the electron given in these tables it is
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FIG. 4. Force on the proton when the electron is in its ground state.

apparent that the relation
2T= -V (1.25)

is no longer satisfied. Equation (1.25) is of course the state-
ment of the virial theorem for an isolated system with a Cou-
lomb interaction. When the system depends upon a param-
eter which is assumed to be fixed, which for example can be
the internuclear coordinates of a diatomic molecule in the
Born—Oppenheimer approximation or the distance to the

TABLE V1. Ground state properties of the hydrogen/perfectly imaging substrate system. f’l_, V., and V, de-
note the average values of the last three interaction terms in the Hamiltonian of Eq. {2.1). T and ¥ are the

expectation values of the kinetic and potential energies, respectively.

R B E@©1) B, T v, v, v,

0.2 0.174 —0.0633 —11.408 0.0673 —0.1470  —0.1267  0.1440
0.4 0.399 — 00726 * —9.597 0.1055 —02995 —0.1450  0.2664
0.6 0.753 —0.1039 —6482 0.2578 —0.5789 —02002 04174
0.8 1.142 —0.1839  —3.671 0.6107 —1.0821 02841 05717
1.0 1.439 —0.3049  —2237 0.9413 —1.5444 03326  0.6308
1.2 1.621 —04274  —1532 1.1139 —1.8209 —0.3409  0.6205
1.4 1.725 —05309 —1.125 1.1758 — 19612 —0.3295  0.5848
1.6 1.780 —0.6123  —0.856 1.1821 —20270 —03105  0.5430
1.8 1.806 —0.6748  —0.662 1.1641 —2.0518 —0.2893  0.5024
20 1.813 —0724 —0514 1.1376 —2.0564 —02684  0.4648
22 1.794 ~0.7589  —0.398 1.1098 —20511 02486 04311
2.4 1.751 —0.7870  —0.305 1.0843 —2.0419  —0.2304  0.4009
2.6 1.690 —0.8090 —0231 1.0623 —20316 —02139 03741
2.8 1.616 —0.8265 —0.172 1.0441 ~20219 —0.1988  0.3502
3.0 1.539 —0.8405  —0.125 1.0296 —20135 —0.1853  0.3287
3.2 1.466 —0.8519  —0.088 1.0183 —-2007 —0.1731  0.3095
3.4 1.398 ~0.8614  —0.059 1.0097 —2.001 —0.1621  0.2923
3.6 1.336 —0.8695  —0.037 1.0034 —1.9974 —~0.1522 02766
3.8 1.280 —0.8764  —0.021 0.9989 — 19946 —0.1433 02625
4.0 1.228 —0.8825  —0.009 0.9959 —1.9927 —0.1353  0.2497
4.2 1.182 ~0.8878  —00004  0.9939 —19916 —0.1281  0.2380
44 1.140 —0.8926 0.005 0.9928 —19911 —0.1216 02273
4.6 1.100 — 0.8969 0.009 0.9922 —1.991 —0.115%  0.2174
43 1.065 — 0.9009 0.012 0.9920 —19912 —0.1102  0.2084
50 1.033 — 0.9046 0.013 0.9922 — 19915 —0.1053  0.2001
5.2 1.003 —0.9079 0.013 0.9925 —1.9920 —0.1008  0.1924
5.4 0.977 —09111 0.013 0.9929 —1.9925 —0.0967  0.1853
5.6 0.951 —~0.9140 0.012 0.9934 —19931 -0.0929  0.1787
5.8 0.931 —0.9168 0.012 0.9939 —1.9937 —0.08%4  0.1725
6.0 0.912 —0.9193 0.011  0.9943 ~1.9992 00862  0.1668
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plane in the present problem, the virial theorem must be
modified from the form given in Eq. (1.25). This is due to the
fact that the quantity known as the ““virial”

—123 rF

must include all of the forces acting on the system. This
means that since the proton is assumed to be in a fixed posi-
tion some external force must be acting on it so that it re-
mains stationary. When this external force is taken into ac-
count the correct form of the virial theorem is given by

7= —7-RIE

R
The force acting on the proton is therefore given by the quan-
tity dE /9R. Note that in the present case the Hellman—Feyn-

man theorem is no longer valid.*!® That is

a JH

2, ()
because the region of integration of the matrix elements is
dependent upon R. This points out the importance of the
virial theorem, and the choice of the basis set, if the force on
the proton is to be found.

The results presented in Table II have been used, with
the aid of Eq. (1.26), to calculate the force on the proton
when the atom is in its ground state, as a function of distance.

(1.26)

D. B. MacMitien and U. Landman: A model for physisorption

This force is presented graphically in Fig. 4. The interesting
features of this force are that it has a maximum at approxi-
mately 0.9a, and that it is nonzero at R = 0. At R = « the
force is zero and at R = — oo is must also be zero for then
the electron and proton have been completely separated.
Therefore a maximum must exist between these two limits.

il. IMAGE CHARGES AND A MODEL OF
PHYSISORPTION OF ATOMIC HYDROGEN

When a gas adsorbs onto a solid surface, depending
upon the magnitude of the binding energy, it is commonly
said to be chemisorbed or physically adsorbed. The binding
energy that is ascribed to chemical adsorption can be several
electron volts while that of physisorption is of the order of a
fraction of an electron-volt. The difference in binding energy
magnitudes is a reflection of the different processes which
are believed to occur in the two types of adsorption; in
chemical adsorption a bond is formed between the adsorbed
molecule or atom and the surface while in physical adsorp-
tion significant charge rearrangement associated with bond
formation is absent.

Physical adsorption is usually thought to be due to a
potential that is made up of an attractive long-range van der
Waals (or dispersion) potential and a short-range repulsive
potential due to the overlap of the electrons of the adatom

TABLE VII. Properties of the first excited state (m = 1, p = 1), the 2p, |m| = 1 doubly degenerate state, of the

hydrogen/perfectly imaging substrate system.

R B E(1,1) A, T v, v, v,

0.2 0.149 -00602 —11906  0.0606 —00506 —0.1207  0.0505
0.4 0.150 —00604 —11.486  0.0609 —00530 —0.1210  0.0527
0.6 0.152 —00605 —11.059  0.0614 — 00565 —0.1213  0.0558
0.8 0.156 —0.0608 —10.624  0.0621 —0.0620 —0.1217  0.0608
1.0 0.162 —00611 —10170  0.0636 —00717 —0.1223 0069
1.2 0.177 —00617  —9.676  0.0671 —0.0915 —0.1234  0.0860
1.4 0.216 —00630 —9077 00759 —0.1287 —0.1253  0.1152
1.6 0.286 — 00656  —8299  0.0920 —0.1766 —0.1288  0.1478
1.8 0.363 —0.0697  —7.407 01133 —02234 —0.1335 01740
2.0 0.434 —00752 —6.503 01372 —02675 —0.138  0.1936
22 0.496 —0.081 —5.656  0.1615 —03079 —0.1431 02070
2.4 0.548 —0.089 —4902  0.1840 —0.3437  —0.1465 02167
2.6 0.593 —00976 —4.248 02036 —03744 —0.1486  0.2218
2.8 0.630 —0.1058  —3.688 0219 —0.3998 —0.1494  0.2238
3.0 0.660 —0.1138  —3207 02322 —0.4205 —0.1490  0.2235
3.2 0.685 —0.1215  —2792 02416 —04369 —0.1477 02215
34 0.705 —01288  —2432 02484 — 04499  —0.1457 02183
3.6 0.722 —0.1356  —2.115 02531 — 04599 —0.1431 02143
3.8 0.735 —0.1419  —1.836 02559 — 04675 —0.1401  0.2098
4.0 0.745 —0.1476  —1.587  0.2575 —04732  —0.1369 02050
42 0.753 —0.1529  — 1364  0.2580 —04774 —0.1334  0.2000
4.4 0.757 —0.1576  —1.163  0.2578 — 04804 —0.1299  0.1949
46 0.760 —0.162 —0982 02570 — 04825 —0.1263  0.1899
4.8 0.760 —0.165  —0818  0.2558 — 04839 —0.1227  0.1848
5.0 0.757 —0.1695  —0669 02544 —0.4847 —0.1191  0.1799
5.2 0.753 —0.1727  —0535 02528 —0.4852 —0.1155  0.1751
5.4 0.747 —0.1757  —0413 02511 —04853 —0.112 0.1705
5.6 0.739 —0.1783  —0303 02495 — 04853 —0.1085  0.1660
5.8 0.731 —0.1808  —0204  0.2479 — 04851 —0.1051 _ 0.1616
6.0 0.722 —0.1830 —0.116  0.2463 — 04848 —0.1019  0.1574
6.2 0.711 —0.1850  —0.036  0.2449 —0.4845 —0.0987  0.1533
6.4 0.700 —0.1868  —0.034 02436 —0.4842 —0.0956  0.1494
6.6 0.689 —0.1885  —0.09 02424 ~04839 —0.0925  0.1456
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with those of the metal. The problem is a many electron one
and has been the subject of much recent work.'>>?* How-
ever, in the case of atomic hydrogen an idealized model can
be constructed, as presented by Bruch and Ruijgrok,* which
reduces to a one electron problem.

The model consists of replacing the metal by a perfectly
imaging medium with instantaneous Coulomb interactions.
The effect of the exchange repulsion is modeled by the condi-
tion that the atomic electron is excluded from the metal (i.e.,
its wave function vanishes on the surface) resulting in a re-
pulsive {positive) contribution to the total electronic energy
due to raising of the electron kinetic energy. As such, the use
of the “surface boundary condition model” yields an upper
bound to the exchange-repulsion contribution to the total
electronic energy. The potential that the proton then exper-
iences, called by Bruch and Ruijgrok the “holding poten-
tial,” is given by the change in the ground state electronic
energy plus the interaction of the proton with his image in
the metal.

Solving the problem of the ground state electronic ener-
gy of this system is the first step in obtaining the holding
potential of the atomic hydrogen. Taking into account the
possibility of a finite dielectric constant for region B of Fig. 1,

1699

the Hamiltonian for the electron can be written as

= —h2v2_ 52_
2m r
(e—1) e?

(e+1) [P+4R*—4rRcos 0112

2
_de=) e 2.1)
4e+ 1) (R—rcos8)

Equation (1.3) must, of course, be solved subject to the
boundary condition that ¥ = O on the surface z= R. The
coordinate system of Eq. (2.1) is that indicated in Fig. 1 and €
denotes the static dielectric constant of region B. We shall be
interested mainly in the “metallic” limit, i.e., € — . The
last two terms in Eq. (2.1) are, respectively, the interaction of
the electron with the image of the proton and the interaction
of the electron with its own image, and hence the extra factor
of 1/2 (energy of assembly).

The calculation of the energy eigenvalues and proper-
ties of these states proceeds exactly as previously outlined.
Now, however, there are two additional matrix elements to
be included in the matrix equations. The electron-image
electron term is not hard to calculate analytically but this is

TABLE VIII. Properties of the second excited state, originating from the 2s, m = O state, of the hydrogen/

perfectly imaging substrate system.

R B E{0,2) I, T v, v, v,

0.2 0.135 —00590 —12162  0.0615 —00773 —0.1184  0.0756
0.4 0.144 —00602 —11.526  0.0622 —0.0590 —0.1207  0.0573
0.6 0.154 —0.0608 —11.052  0.0630 —0.0623 —0.1219  0.0604
0.8 0.191 — 00616 —10.669  0.0663 —00836 —0.1229  0.0786
1.0 0.423 —~0.0656 —10.648  0.0983 —02011 —0.1213  0.1586
1.2 0.537 —00733 —10.036  0.1239 —02692 —0.1207  0.1927
1.4 0.596 —0.0819 —9.344  0.1430 —03128 —0.1207  0.2086
1.6 0.635 — 0.0906 —8736  0.1587 —0.3451 —0.1203  0.2161
1.8 0.662 —0.0989 —8.228  0.1716 —03700 —0.1193 02187
2.0 0.681 —0.1068 —7.806  0.3897 —0.3897 —0.1176  0.2183
3.0 0.727 —0.1378 —6.508  0.2119 —0.4430 —0.1045  0.1977
4.0 0.720 —0.1580 —5.885 02230 —04631 —0.0899  0.1720
5.0 0.678 —0.1716 —5497 02291 — 04730 —00779  0.1501
6.0 0.609 —0.1818 —4.762  0.2368 —0.4806 —0.0722  0.1343
2.2 0.695 —0.1141 —7454  0.1909 —04053 —0.1155 02159
2.4 0.707 —0.1208 —7.157  0.1979 — 04179 —0.1130 02122
2.6 0.716 —0.127 —6.907  0.2036 ~04280 —0.1103  0.2078
2.8 0.722 —0.1326 —6.692  0.2082 —04363 —0.1070  0.2028
3.0 0.727 —0.1378 —6.508 02119 —04430 —0.1045  0.1977
3.2 0.729 —0.1425 —6.348 02150 — 04485 —0.1015  0.1925
3.4 0.729 —0.1469 —6209 02175 — 04531 —0.0985  0.1872
3.6 0.728 —0.1509 —6.088  0.2197 — 04570 —0.0956  0.1820
3.8 0.726 —0.1546 —5980  0.2215 — 04603 —0.0927  0.1770
4.0 0.720 —0.158 —5.885 02230 ~04631 —0.0899  0.1720
42 0.714 —0.1611 —5799  0.2244 — 04655 —0.0873  0.1673
4.4 0.706 —0.1640 —5720 02257 — 04677 —0.0847  0.1627
4.6 0.698 —0.1667 — 5646  0.2264 — 04696 —0.0823  0.1583
438 0.689 —0.1692 — 5573 0.2280 — 04714 —0.0800  0.1541
5.0 0.678 —0.1716 —5497 02291 —04730 —0.0779  0.1501
5.2 0.667 —0.1739 —5414 02303 — 04745 —0.0760  0.1464
5.4 0.654 —0.1760 —5316  0.2315 — 04760 —0.0744  0.1429
5.6 0.642 —0.1780 —~5192  0.2329 — 04870 —0.0731  0.1396
5.8 0.625 —0.1800 —5020  0.2346 —04789 —0.0723  0.1367
6.0 0.609 —0.1810 — 4762  0.2368 —0.4806 —0.0722  0.1343
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TABLEIX. Properties of the third excited state originating from the 2p, m = Ostate, of the hydrogen/perfectly

imaging substrate system.
R B E(,3) i, T v, v, v,
0.2 0.119 —0.0524 - 14.060 0.0553 —-0.0772 —0.1058 0.0753
0.4 0.125 —0.0541 —13.102 0.0581 —0.0676  —0.1092 0.0646
0.6 0.131 —0.0552  —12.395 0.0594 —0.0655 —0.1112 0.0621
0.8 0.141 —0.0562 —11.746 0.0615 —0.0707 —0.1131 0.0659
1.0 0.159 —0.0574 —11.163 0.0645 —0.0773 —0.1144 0.0698
1.2 0.176 —0.0586  —10.495 0.0656 —0.0728 —0.1162 0.0648
1.4 0.182 — 0.0595 - 9.870 0.0649 —0.0665 —0.1179 0.0601
1.6 0.185 — 0.0600 —9.354 0.0645 —0.0653 —0.1189 0.0596
1.8 0.189 — 0.0605 — 8.898 0.0647 —0.0669 —0.1195 0.0612
2.0 0.197 — 0.0609 — 8.469 0.0654 —0.0710 —0.1198 0.0645
2.2 0.209 —0.0614 — 8.065 0.0666 -00772 —-0.1199 0.0691
24 0.221 —0.0619 — 7.684 0.0682 —0.0845 —0.1198 0.0742
2.6 0.238 —0.0625 —17.317 0.0706 —0.0938 —0.1194 0.0815
2.8 0.254 —0.0632 —6.952 0.0737 —0.1039 —0.1190 0.0860
3.0 0.270 — 0.0640 —6.574 0.0779 —0.1153 —0.1187 0.0921
32 0.283 — 0.0651 —6.158 0.0840 ~0.1289 —0.1187 0.0985
34 0.299 — 0.0665 — 5.665 0.0948 —0.1489  —0.1196 0.1072
3.6 0.317 — 0.0686 —5.027 0.1165 —0.1830 —0.1229 0.1207
38 0.342 —0.0722 —4.183 0.1596 —0.2432 —0.1305 0.1420
4.0 0.378 —0.0781 —3.197 0.2198 —03216 —0.1419 0.1657
4.2 0.427 —0.0862 —2.197 0.2745 —0.3907 —0.1526 0.1825
44 0.482 — 0.0957 - 1271 0.3149 —0.4424 —0.1603 0.1921
4.6 0.532 — 0.1059 — 0.466 0.3421 — 04797  —0.1651 0.1969
48 0.576 —0.1161 —0.211 0.3589 —0.5060 —0.1675 0.1985
5.0 0.610 —0.1260 0.773 0.3677 —0.5238  —0.1680 0.1981
5.2 0.635 —0.1354 1.236 0.3705 —0.5352 -0.1670 0.1963
5.4 0.652 —0.1441 1.611 0.3690 —-0.5918 —0.1648 0.1935
5.6 0.663 —0.1521 1.901 0.3644 —0.5448  —0.1616 0.1899
5.8 0.667 —0.1593 2.097 0.3576 —0.5452 —0.1575 0.1858
6.0 0.669 —0.1658 2.169 0.3489 —0.5435 —0.1523 0.1811
6.2 0.667 - 0.1715 2.047 0.3384 —0.5400 —0.1455 0.1756
6.4 0.667 —0.1765 1.575 0.3255 —0.5346 —0.1360 0.1686
6.6 0.669 —0.1808 0.455 0.3083 —0.5264 —0.1215 0.1588

not true of the electron-image proton interaction given by
the third term of Eq. (2.1). Because of the law of cosines
denominator and the restricted region of integration given
by Eq. (1.14), it has not been possible to find a closed form
expression for that matrix element.

There are two ways of calculating the electron-image
proton matrix element. One can either use a numerical ap-
proach or, by expanding the denominator of the electron-
image proton potential in the standard series of Legendre
polynomials, integrate term by term. The former method
was chosen because the expressions and summation of the
latter method consumed a much greater amount of comput-
er time than a straightforward numerical integration of the
matrix elements by the Gauss-Legendre and Gauss-La-
guerre methods.

The results of this calculation are given in Tables VI-IX
for the first five states. (Recall that m #0 states are doubly
degenerate.) The ground state of this system is shown graphi-
cally in Fig. 5 where the ground state of the nonimaging case
has been repeated for comparison. As is apparent from this
figure and shown explicitly in Table VI where all the energy
contributions are tabulated, the interaction of the electron
with the image of the proton, which is repulsive, dominates
the electron-image electron interaction which is attractive.
In this instance also the R = 0 value is an expected one.
When R = 0, and the system is perfectly imaging, the proton

and image proton charges cancel each other (as far as the
electron is concerned) and the problem is now that of an
electron bound by its image, which is an exactly solvable?>?*
one-dimensional Coulomb problem, yielding a ground state
energy of — 0.0625 Ry.

The first excited state of the isolated atom (principal
quantum number n = 2) is fourfold degenerate. In the pres-

0.0 +

DISTANCE

FIG. 5. Ground state energy as a function of proton distance from the plane
for the perfectly imaging substrate (€, — o) system.
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FIG. 6. The holding potential of Bruch and Ruijgiok in which the image
electron—proton interaction has not been included.

ence of the metal this degeneracy is partially lifted, i.e., while
the 2p, [m| = + 1 states are still degenerate (due to polar
angle symmetry around the normal to the metal plane), the
2s and 2p, m = 0 states mix and their energy split. The ener-
gy as a function of distance of the proton from the surface for
the 2p, |m| = 1 doubly degenerate state is given in Table
VII, and those for the states originating from the 2s and
2p, m = 0in Tables VIII and IX, respectively. These results
are in good agreement with those given in Table III of Ref. 4
{to convert to the values of Ref. 4 substract from our energies
the proton-image proton interaction — 1/2R and divide the
result by two to convert to atomic units).

Having solved the electronic part of the problems it is
possible to construct the holding potential of the atomic hy-
drogen. The potential that the proton experiences has two
contributions. First, still in the Born~Oppenheimer approxi-
mation, is the change in the electronic energy of the system
as a function of distance. The second is the proton-image
proton interaction which is attractive in nature.

Calculating the holding potential for the ground state of
the system [i.e., using the energy values in Table VI, sub-
tracting from them the ground state energy at infinite separ-
ation { — 1.0 Ry}] and adding the proton-image proton inter-
action energy ( — 1/(2R) Ry)] yields the potential curve
shown in Fig. 6, which exhibits a potential well of depth

8.6X 1073 Ry at R = 3.44q,

in agreement with Ref. 4 (see in particular Sec. 9.1). The
various contributions to this holding potential are shown in
Fig. 7. The ground state expectation values of the kinetic
energy and electron—proton interaction, from which the cor-
responding energies at R = « have been subtracted are
shown as curves C and 4, respectively. The electron-image
proton and electron-image electron interactions are denoted
as curves B and D, respectively. The proton-image proton
energy, given by — 1/(2R ) Ry, is denoted as curve E. The
sum of the curves in Fig. 7 yields the holding potential curve
given in Fig. 6.

Finally we comment on the dipole expectation values
given in Tables VI-IX. As shown in Table VI for the ground
state the dipole moment is negative, i.e., directed inward, for

N
t

DISTANCE

FIG. 7. The various contributions to the interaction potential. The curve A
represents the change in the expectation value of the electron—proton inter-
action from its value for the isolated hydrogen atom. Curve B is the average
value of the electron-image proton interaction (Ve-imp). Curve C is the
change in the electron’s average kinetic energy. Curve D represents the
average value of the electron-image electron interaction (Ve-ime). Curve E is
the proton-image proton interaction ( — 1/2R ).

locations of proton near and beyond the minimum in the
holding potentials (same as found in Ref. 4), changing sign of
the vicinity of R = 4.1a,. The values of the dipole moment
are much larger for the excited states and fall off slower as
the atom is removed from the surface reflecting the larger
spatial extent of the excited states wave functions. It is of
interest to note that for the distances included in the tables
the dipole of the 2s, m = 0 state remains negative and large
even up to ~ 7.0a,, while for the 2p, m = 0 it changes orien-
tation between R = 5.0 and 5.24, and past that distance an
oscillation in magnitude is observed. Similarly a reversal of
sign occurs for the 2p, m =1 (doubly degenerate) state
between R = 6.4 and 6.64,,. It has been suggested?' that the
quantitative balance between contributions which deter-
mine the orientation of dipoles of physisorbed atoms may
differ in light and heavy atoms, and this may be a demonstra-
tion of such an effect.*
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