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We present a model for semi-infinite simple metals which does not require crystalline order or a
single species, and thus is applicable to problems of defect energetics near the surface and random-
alloy surfaces as well as ideal metal surfaces. The formulation is based on the use of ionic psuedopo-
tentials and linear-response theory. An expression for the total energy is obtained which depends ex-
plicitly on ionic species and position. This expression is decomposed into a density-dependent term
and single-ion and ionic pair-interaction potential terms. The single-ion potentials oscillate about a
constant bulk value, with the magnitude of the oscillation decreasing rapidly away from the surface.
The interaction between pairs of ions near the surface is shown to be a noncentral force interaction
which differs significantly from the central-force bulk pair potential. The effect of quantum interfer-
ence in the response of the semi-infinite electron gas to the ions is seen in both the single-ion and the
pair-interaction potentials. Results are presented for the simple metals sodium, potassium, and rubi-

dium.

I. INTRODUCTION

Fundamental investigations of certain physical proper-
ties of solid materials such as crystallographic structure,
dynamics, and defect energetics (formation and migration)
require detailed knowledge of, and the ability to calculate,
the total energy or total-energy differences for various
configurations. The total energy of metals, simple metals
in particular, contains contributions of different origins,
e.g., terms in the electronic energy which are density
dependent (independent of the location of atoms) and
terms which depend on the spatial arrangement of the
atoms.! It is important to recognize that the dominant
factors underlying various physical properties may relate
to terms in the total energy which are of different origins.
Thus, for example, the determination of crystallographic
structure requires a minimization of the total energy in-
cluding the contribution which is only density dependent?
while the dominant contributions in studies of vibrations
of bulk metals come from those terms which depend on
the interatomic position vectors.""> Determination of the
surface atomic arrangement (relaxation and reconstruc-
tion) may require, in addition, terms which depend on the
positions of individual atoms relative to ideal (truncated
bulk) crystal planes.*

Essential to the construction of theoretical treatments of
the properties of perfect bulk crystals is the translational
invariance of the lattice. The lack of translational symme-
try causes major difficulties in the exploration of proper-
ties of imperfect crystals, and theoretical formulations
which can provide quantitative estimates of structure, en-
ergetics, and dynamics of real (imperfect) materials, while
most desirable, are less abundant. Material surfaces in the
ideal case possess two-dimensional translational symmetry
parallel to the surface plane but lack translational symme-
try along the surface normal. Consequently, theoretical
treatments of surface properties are complex and require
new formulations or adaptations of bulk methods with
major modifications. Among the formalisms which have
greatly enhanced our understanding of surfaces are
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density-functional-based techniques,“’ methods which em-
ploy real-space or mixed representations (recursion tech-
niques,” Green’s functions®), and surface band-structure
computations’ (slab and supercell techniques).

While significant progress in the theory of the electronic
structure of ideal metallic surfaces and with ordered ar-
rays of adsorbates has been achieved, calculations which
employ minimization of the total energy yielding surface
structural information,*!°~!2 calculations of force con-
stants for use in surface vibrational studies, and evaluation
of interaction potentials for use in molecular-dynamics
and Monte Carlo simulations are in their infancy.!>'* The
introduction of single or randomly arranged defects to the
surface region compounds the complexity since the lack of
translational invariance is exhibited by both components
of the system. Thus traditional band-structure calcula-
tions are not applicable and application of the density-
functional method becomes difficult, involving approxi-
mate perturbative (most often first-order'®) treatments, or
it may entail a reduction in the dimensionality through
averaging over the ionic potentials in layers.

The purpose of this article is to develop a theoretical
method for simple (sp bonded) metals which retains the
three-dimensional character of the system, maintains the
essential features of the electronic structure, and allows (a)
systematic investigations of ionic potentials (effective pair
potentials and single-ion potentials in the surface region),
(b) studies of surface structure (relaxation and reconstruc-
tion), (c) analysis of the energetics of single and randomly
distributed defects, and (d) studies of surface segregation
phenomena'® in alloys (layer concentration profiles) via
minimization of the surface free energy. An application
of the formulation developed here to the prediction of the
relaxed surface structure of the low-index faces of Na and
Al, yielding good quantitative agreement with available ex-
perimental results, has been reported.!” A detailed descrip-
tion of the surface relaxation calculation and a discussion
of the results are given in the second paper of this
series.'®® Impurity and vacancy formation energies and
surface segregation in alloys have been reported'®® by us
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and will be treated in forthcoming publications.

To enable us to perform the studies listed above we need
first to obtain an expression for the total energy of a
semi-infinite metal which depends explicitly on the atomic
species and their positions. Pseudopotentials, often in
conjunction with linear-response theory, have been instru-
mental in investigations of bulk metal systems.! In partic-
ular, the application of local model pseudopotentials has
yielded effective interaction potentials which have been
well tested in studies of vibrations,'*~22 elastic properties
and vacancy formation energy and volume,?2~% and in
molecular-dynamics simulations.?’ =%

In Sec. II of this paper we present the general formula-
tion and obtain an expression for the total energy of a
semi-infinte simple metal. This total-energy expression is
most general in that it does not require crystalline order or
a single species. The formulation employs local model
pseudopotentials embedded in a semi-infinite interacting
electron gas. The response of the electron gas to an em-
bedded ion is obtained through the solution of a single
one-dimensional integral equation and involves the use of
a linear-response model applicable to the semi-infinte sys-
tem. A decomposition of the total energy into (a) a
density-dependent term, (b) terms which depend on the
coordinates of a single ion, and (c) terms which depend
jointly on the coordinates of pairs of ions is accomplished.
In Sec. III we apply the theory to the calculation of
single-ion and pair-interaction potentials in the surface re-
gion of simple metals. We find that near the surface the
single-ion potentials oscillate about the (constant) bulk
values and that the pair-interaction potentials are anisotro-
pic and differ significantly from the bulk interaction.

II. TOTAL ENERGY OF SEMI-INFINITE
SIMPLE METALS

A. Total-energy expressions

The metal surface system which we wish to study is
conveniently represented by a semi-infinite interacting
electron gas in the presence of a neutralizing positive
background (jellium model), to which we add the ap-
propriate ionic potentials. The Hamiltonian for the elec-
trons is written as

H=H+Jw, . )

H° is the many-body Hamiltonian of the interacting
electron-jellium system,

H=T+V,+V,, )

where T and V, are the electron kinetic energy and
electron-electron interaction operators, respectively, and
V. (T) is the potential due to the positive background.
The potentials associated with individual ions, w;, are
given by

w(T)=V,(B; | T—T; | ) =N 'Z(B)V (D), )

where V,(B;; | T—T; | ) and Z(B;) are the bare ionic pseu-
dopotential and valence charge, respectively, of the ion of
species B; located at position T;, and N=3,,Z(B;). The
second term in the right-hand side (rhs) of Eq. (1) sub-
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tracts the potential due to the jellium background and
adds the potential due to an arrangement of ions
represented by local model pseudopotentials.

In this study we employ pseudopotentials of the simpli-
fied Heine-Abarenkov form,

—Z(Be*/r, r>r.B) (4a)

Vo(Bir)=

—Z(Bu.(Be?/r.B), r<r.B) (4b)

where the core radius and level parameters, 7.(8) and
u.(B), are chosen to fit bulk properties (lattice constant
and bulk modulus®) of the pure species S.

The ground-state energy E, and electron density po( T)
of the jellium system described by H° [Eq. (2)] is given in
a seminal study by Lang and Kohn.3® With the use of the
coupling-constant integration method and assuming linear
response, the total energy E of the semi-infinite metal is
given by

Er=E°+ 3 [d’r p’(F)w;(T)
+33 [dr p(Powy(F)+Ey 5
bj

where p;(T) is the electron density induced by the potential
w;(T), and E,; is the Madelung energy of the ionic system.
The second term in Eq. (5) is a first-order correction due
to the replacement of the positive background by discrete
ions, and the third term is second order in w;, usually
called the band-structure (BS) energy Egs.

B. Screening

The major task in obtaining the total energy, Eq. (5), for
an arbitrary arrangement of ions is to obtain a self-
consistent solution for the induced, or screening, electron
density p;(T). We use linear-response theory, yielding a
pair of coupled integral equations,

pi(D)= [ dr'a( ¥, 7w, (F)+6,(7"] ,
$i(D)= [d*rg(F,T wel | T—T' | pi(T"),

(6a)
(6b)

where ay(T,T') is the random-phase-approximation (RPA)
response function (polarizability). ¢,(T) is the effective
potential due to the electron density p;(T’), which includes
exchange and correlation effects via the function
g(F, ¥ )=1—G(T,T"), and vc(T)=e?/r is the Coulomb
interaction. G(T,T’) is a local-field correction, related to
the electron pair correlation function of the jellium sys-
tem, which takes into account short-range correlations
arising from both Coulomb and exchange effects.’!

Translational invariance parallel to the surface requires
that

—

af(T, T )=ao |[R—R'|;z,2")
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with ©=(R,z) (here and in the following, upper-case
letters denote two-dimensional vector, parallel to the sur-
face). An evaluation of the response function requires
knowledge of the single-particle wave functions and ener-
gy eigenvalues of the interacting electron-jellium system.
These are of the form

- _-172,iK-K
‘l’k.’x(r)—() e Y l(2), o
E(K,x)=#K?/2m +¢,,
respectively, where Q=N is the volume of the semi-
infinite metal (Q, is the volume per electron). The

response function (retarded polarizability) is given in a
mixed representation by

ao(Q;2,2') =207 F L (Qsk, k' Wie(2)Y (2)

XWe(z (2", (8a)
j(Q;K,KI)ZQ—2/32 f(IE_?/Z’K)_f(I:{,+§/2’K’) ,
8 E(K—Q/2,k)—E(K+Q/2,«")
(8b)

where f(K,k) is the Fermi-Dirac distribution function,
and .Z(Q;k,k') is the two-dimensional RPA response
function.*?

To obtain the response function, Eq. (8a), we must
either numerically evaluate the single-particle wave func-
tions, ¥,(z), or use an approximate analytical form. Our
choice is to use the wave functions of a noninteracting
electron gas confined to the half-space (z > 0) by an infin-
ite barrier.>2=% This choice is dictated primarily by
analytical convenience. Other choices are possible’®; for
instance, one could solve for the single-particle wave func-
tions resulting from the potential due to the Lang-Kohn
electron density plus the positive background. However,
the increased complexity of such choices results in formu-
lations which are impractical or impossible to use in a sys-
tematic study which retains the three-dimensional charac-
ter of the system. Lert and Weare®? have used the infinite
barrier response model to calculate the electron density at
the Na(100) surface and report that comparison of their
results with the self-consistent nonlinear results of Appel-
baum and Hamann’’ indicates the joint validity of the
linear approximation and the infinite barrier response
model. The overconfinement of the electrons outside the
jellium surface in this model might contribute to the sur-
face energy. However, we are interested primarily in
total-energy differences resulting from a rearrangement of
the ions or a change in species of some ions, and contribu-
tions due to overconfinement are expected to be of less sig-
nificance due to cancellation. In addition, the success of
this response model in predicting the relaxed surface
structure of simple metals'”!3® lends some a posteriori
validation to the approximation.

The basis-set wave functions and energies associated
with the infinite barrier response model are given by

Y (z)=sin(kz)O(z) , (9a)
2
€= %KZ , (9b)
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where O is the Heaviside unit step function. The surface
barrier is located at z=0 and the jellium edge position,
determined by charge neutrality, is zo=37/8kr (Ref. 38);
the layers of an unrelaxed crystal will be located at
z, =20+ (n—5)D, where n =1 for the surface layer and D
is the layer spacing. Substituting Egs. (9) into Eq. (8a)
gives the infinite barrier model response function

ay(Q;2,2') =202 £ (Q;x,k")sin(kz)sin(kz’)

K

Xsin(k'z)sin(k'z')O(2)0(z') .  (10)

The analytical convenience of this response model is due
to the vanishing of ay(Q;z,z’) if either z <0 or z’' <0, or
both; thus it is possible to symmetrize the problem by re-
flecting across the z=0 plane. We define symmetrized
quantities p;(T), wi(T), and ¢;(T), and their three-
dimensional Fourier transforms, by

(11a)
(11b)

pis(F)=pi(R, |z])
Pu(ﬁ)=fd3reia'

etc. Using these definitions, we obtain from Eq. (6a), after
some manipulation, an equation in reciprocal space for the
induced electron density in the symmetrized system (see
Appendix A),

’
—
r

is(f.) ’

pis(d@)=ao(g)w;(q)+¢i(d)]
—‘rr‘lfdx L(Q;k+q,/2,k—q,/2)
X[wis(Q’2K)+¢is(Q:2K)] .

Here agy(q) is the three-dimensional Fourier transform of
the polarizability of an infinite electron gas as given by
Lindhard,*

ao(q)z'n'“ldeY(Q;x+qz/2,x—q,/2) .

(12)

(13)
Integrating Eq. (12) over g, results in a useful sum rule,
[ da.pi(@)=0, (14)

expressing the fact that the induced density is zero at
z=0.

The equation for the self-consistent effective potential,
Eq. (6b), takes, in the symmetrized system, the form

¢,-,(§)=fd3re"a"_"fd3r'g( IR—R'[;z,2')
Xvc( | T—T"| )pi(T’)

X[1-6(z)6(—2')
—6(—2)6(z')] . (15)

In order to simplify Eq. (15), and to allow the solution of
the coupled integral Eqgs. (12) and (15) to be reduced to the
solution of a single one-dimensional integral equation, we
will assume that g ( lﬁ—l—i' |;z,2') can be adequately ap-
proximated by

g(|R—R'|[;z,2)=1—-G(|T—7"])

where G(|[T—T"'|) is the local-field correction evaluated
for the bulk electron density. This approximation may be
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justified for several reasons: (a) It introduces only
second-order errors, (b) G(T,T’) does not depend sensitive-
ly on the local density, and (c) experience with other sys-
tems indicates that anisotropic or inhomogeneous correc-
tions in condensed systems are usually small.*°

Employing the above form of g (T,T’), Eq. (15) becomes
(see Appendix B)

¢is(4)=g(qlvc(@lpis(G) +vc(qlo (@) +X;(G),  (16)
where g(q) is the Fourier transform of g(r) evaluated for

the bulk electron density. We use the analytical fit

glg)=1—A[1—exp(—Bg?/k})]
given by Singwi et al.’' vc(q)=4me?/q? is the Fourier-
transformed Coulomb potential. vc(g)o;(Q) and X;(q)
are functions which subtract the interaction of the induced
electron density with its image in the symmetrized system.
The Coulomb interaction between the induced electron
density and its image is canceled by

0:(Q)=—(Q/2m) [ dg.[ps(d)/q] ,

which can be regarded as a fictitious surface electron den-
sity, and

X(@=—[deTT [dPr[g(|T—F"|)—1]
Xve( | T—T"] )pi(T")
xX[6(2)0(—z")

+0O(-2)08(z')]

17

(18)

subtracts the exchange-correlation potential due to the im-
age electron density. Since the local-field correlation func-
tion G (r)=1—g(r) is short ranged, and since the induced
electron density p;(T’) vanishes as z—0, X;(q) can be
neglected. A posteriori validation of this approximation is
provided by the observation that the sum rule, Eq. (14)
(which was derived with no approximation), is satisfied by
our numerical results when X;(q) is neglected.-

The coupled integral equations, Eq. (12) and Egs.
(16)—(18), can be decoupled by setting
pis(q)=ay(g)[w;(q)+vc(q)o:(Q)]/elq)
+[u;(q Qo (D)]/[g(@vc(g)], (19)
where
elg)=1—g(qhvc(q)ay(q) (20)

is the (bulk) electron dielectric function, and u;(q) and
u,(q) are to be determined. Combining Egs. (12), (16),
and (19), and requiring that the coefficients of o;(Q) can-
cel, results in a single one-dimensional integral equation
for u;(q),
u(§)=—[g(qvc(g)/elg)]m!

x [dk Z(Qik+4,/2,k—g,/2)

")/elg’)],

X[u;(q ") +wi(q (21)

where §'=(Q,2«), and in a similar equation for u,(q) in
which w;(q ') is replaced by vc(q’) in the integral. These
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equations are solved numerically by successive iteration.
Since 0;(Q) is independent of g,, substltutmg Eqg. (19) into
Eq. (17) yields immediately an expression for o;(Q) in
terms of u;(q) and u,(q).

Note that in Eq. (19) the first term on the rhs describes
the bulk response to the potential [w;(q)+vc(g)o;(Q)].
It is apparent that u;(q) and u,(q) in the second term
contain the effects of quantum interference associated
with the semi-infinite bounded electron gas. These quan-
tum interference effects become small, as does o;(Q+0)
(the nonvanishing contributions to the fictitious surface
electron density due to w;), as the ion position T; moves
further from the surface, and bulk screening is obtained
for ions far from the surface. The semiclassical limit
(i—0 with #ikp= const) amounts to neglect of these
quantum interference terms.>> However, in this limit the
position of the jellium edge is at zy=0 and, therefore,
there is no response beyond the jellium edge.

C. Total-energy decomposition

The total energy, Eq. (5), can be decomposed into a
term U'®(Q,) which depends only on the average electron
density of the semi-infinite metal, terms U''(Qg;B8;,2;)
which depend on the species and the positions of individu-
al ions relative to the surface, and terms U'®(Q;8;,
T; ;Bj,f’j) which depend on the species and the coordinates
of pairs of ions; thus the total-energy expression becomes

Er=UQ0)+ UM (Qg;8:,2;)

+5 2 U8, T1B;,T)) - (22)
ij

The purpose of this section is to show that this decompo-
sition is possible and to derive the expressions for the
single-ion and pair-interaction potentials, U'" and U?. It
should be noted that this decomposition is not particularly
useful in performing most calculations since it is usually
simpler to take advantage of the geometry specific to the
problem and do the calculation in reciprocal space. How-
ever, we can gain some insight into how ionic interactions
differ at the surface and in the bulk, and the decomposi-
tion may be useful in, for instance, molecular-dynamics

and Monte Carlo simulations.
We begin by separating w;(T) and p;(T) into ionic pseu-
dopotential, w; and p;, and positive background, ¥ and

P+, parts:

—(Qe/Q)V, (7)] (23a)

and

pi(F)=Zi[p:(F)—(Qo/Q)P (V)] (23b)

where for notational convenience we have defined

Z7 W, (B | T—Ti )

[see Egs. (3) and (4)] and Z;=Z(f;). In defining the
Fourier transforms of the symmetrized quantities ;(T)
and p; (f) we shift the ions to the origin in the x —y
plane,
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4 =fd2R e ¢ _Ri)fdzcos(q,z)w,-s(f') ,
(24)

etc. The reciprocal-space representations of the potentials
W;s(q) and V. 4(q) are given by (see Appendix C)

(25)
where V,,(B;;q) is the Fourier transform of V,(B;;r), and

I‘Ei,(ﬁ)=22,‘lV,(B.-;q)cos(q,zi)+vc(q)e i ,

Vo @)=02m)205°8(Q 4 4(q;) (26a)
where
v45(g2)=—2Q5 'vclg,[md(q,) —sin(g,20)/q,] -
(26b)

The induced electron densities p;(q) and p_ ;(g,) are ob-
tained as before using @;(q) or v,g,) with Q=0,
respectively, in place of w;(q) in Eq. (12). Finally, we de-

Er=Eo— [d*rpX®W (V) +
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fine &,(Q) by using p;(q) in place of pi(q) in Eq. (17).
With this definition, o;(Q) is given by
0/(Q)=Z;[5:(Q)+(2m)*Q~28(Q)] . 27

It can be shown [see Eq. (B7)] that limg_,¢7;(Q)=—1, in
agreement with our numerical results.

The total energy, Eq. (5), expressed in terms of the
reciprocal-space functions w;(q) and p;(q), is

ET=E0+2fd3rp°(f')w,~(f')

+7 2277' 3qupu

The factor of + instead of 5 in the third term (the band-
structure energy) is due to the symmetrization of the sys-
tem (in effect we have two noninteracting semi-infinite
systems). Substitution of Egs. (23)—(26) into Eq. (28)
yields, after some algebra,

Q@) +Ey . (28

(/) 27r)'lqu,p+, 4z )0 4 q,)+ZZ fd’rp )i (T)

1057 2 Z,2m " [ dg,[5i(0,6,)0.4(4) P44, (0,g,)]

AZZ (27) 3fd3QPu G)w;s(q

where the primed sum 2 omits the i =j terms.

+42’ZZ Qm)~ 3fd apis(@)(Ge

TCR=R) LR, (29)

The only terms in Eq. ( 29 which depend on the coordinates of more than one ion are the last two terms. Thus we de-

fine the pair-interaction potential U'® to be

U QBT3B T))=ZiZ;/ | Ti—T; | ++Z,Z;2m) ™ [ d B @)3s(G) +5s (4D (G)]e’

QR =R (30)

Since the two-dimensional (2D) vector R; does not appear in the definition of i (q) or p(q), it is evident that the pair-
interaction potential depends on |R R |, the magnitude of the distance between two ions parallel to the surface.
However, this pair-interaction potential depends on the z coordinates of the two ions separately rather than just on
|z —2z;],ie.,

UD(QyB,,:38;,F)) = U Qg; | B, — R, | 8,,213B;,2)

For this reason U'® is not a pair-potential in the usual sense but can be regarded as a three-body potential, where the

third body is the electron-jellium system described by H, Eq. (2).
The single-ion potential is contained in the fourth, fifth, and sixth terms on the rhs of Eq. (29) since these terms de-

pend on the z coordinate of a single ion,
U QgBiz)=Z; [ dr pT)m; (T
+32Z2em = [dq (@ (@) .

N—+052Z,02m)

The physical origins of the three terms on the rhs of Eq.
(31) are, respectively, (i) the interaction of the bare ion
with the unperturbed electron density, (ii) the interaction
of the ion and the (subtracted) positive background density
through their screening electron densities, and (iii) the in-
teraction of the ion with its own screening electron densi-
ty. The terms (i) and (ii) taken separately are divergent
since the system is semi-infinite, but the sum of the two is
finite.

In order to evaluate Eq. (31) the direct interaction of the
ion with the positive background is added to the first term
and subtracted from the second. The expression for this

=1 [ dg,[7is(0,q,)0 4+ 5(g,) +p45(4,)is(0,g,)]

(31

ion-positive background interaction energy is

~ [d* PUDIZiw(D)
=—3073Z,2m) " [ dg,[pk(0,q,)v(g,)]
=—307Z,2m" [dg,lplle,)@i(0,4)], (3D

where P/(¥)=Qg'O(z —z,) is the positive background
(jellium) density, with symmetrized Fourier transform

Pl(@)=02m?05**8(Qiplle,)

and
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TABLE I. Parameters used in the calculations: r,=(3Q,/47)!/ is the electron density parameter, r.
and u, are the pseudopotential core radius and depth (Ref. 25) [see Eq. (4)], and 4 and B are the param-
eters in the local-field correction G (¢q) Ref. 30 [see Eq. (6)].

Metal rs e U A B
Na 3.931ag 2.076a, 0.3079 0.9942 0.2631
K 4.862a, 3.033a, 0.5723 1.0119 0.2406
Rb 5.197a, 3.551ag 0.7273 1.0161 0.2337

Zipi(§)=vc(g) ™2V, (B3q)cos(g,2;)

is the positive density which gives rise to the ionic pseudo-
potential [see Eq. (C5)]. With the use of Eq. (32) as dis-
cussed above, the expression for the single-ion potential
becomes

UNQ;B,zi)=Es+Ey+E3s , (33)
where

Es=+5Z}2m ™ [ dq pi(@i(q) (34a)

Ey=2; [ d*r[p"(F)—P (D)) (T) (34b)
and

Efs=+0Q5"Z;(2m)!

x [ dg,{[pk(0,4,)—Pis(0,g,)1v44(g;)
+1p2(g) —p15(g,)1T(0,9,)} . (340)

We remind the reader that p;; and p, are induced elec-
tron densities corresponding to the potentials ;; and v,
respectively [Egs. (25) and (26)], which are in turn the po-
tentials due to the densities p{s and p;’ which represent the
ions and positive background, respectively. Having
described in this section the physical model and derived
the expressions needed for the evaluation of the total ener-
gy and its decomposition into density, single-ion, and
pair-interaction potentials, we turn now to a discussion of
results for the single-ion and pair-interaction potentials.

III. RESULTS AND DISCUSSION

In this section the theory developed in Sec. II is em-
ployed in a systematic study of the single-ion and ion
pair-interaction potentials in the simple metals Na, K, and
Rb. The values of the bulk electron density parameter 7,
the pseudopotential core radius and depth [Eq. (4)] 7. and
u,,?> and the parameters 4 and B in the analytical fit to
the local-field (exchange-correlation) correction G (g) (Ref.
31) which were used in the calculations are given in Table
L

In general, the practice of determining model pseudopo-
tential parameters is guided by the adequacy of the fit be-
tween calculated and measured material properties. When
treating metal surfaces, and possible structural relaxations,
it is essential to use a model which yields the correct bulk
lattice constant and reproduces the elastic properties of the
bulk. In addition, if the model is to be applied to alloys
(heats of formation, surface segregation, etc.) it is of ut-
most importance that the model also yield the correct total
energy, and thus the cohesive energy, of the bulk pure
species. The pseudopotential parameters, 7. and u,., which

we employ were determined by Popovic et al.? to repro-
duce the experimental values of the bulk modulus and
equilibrium lattice constant. These authors used the pseu-
dopotentials, and the local-field correction of Singwi
et al.’!, in calculations of vacancy formation energies and
volumes for the alkali metals and Al, obtaining results in
good agreement with experimental values. We have calcu-
lated the cohesive energy of Na, K, and Rb using the pseu-
dopotentials and find that the calculated and experimental
values agree to within less than 0.3% in each case (experi-
mental values are summarized in Ref. 20). To our
knowledge these pseudopotentials have not been used in
lattice-dynamics calculations; nevertheless, the bulk pair-
potentials which we obtain are similar (in terms of loca-
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FIG. 1. Electron densities ﬂopo(z) for Na, K, and Rb. The
Lang-Kohn (Ref. 30) densities are shown as solid curves and the
dashed curves are the infinite barrier noninteracting electron
density. The truncated bulk density is also shown as a solid line,
and the (100) and (110) layer positions are indicated by arrows.
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FIG. 2. Single-ion potential U'"(z) for K. Layer positions
are indicated by arrows.

tion, depth, and curvature—see dashed curves in Figs.
3—7) to the M 1 model pair potentials of Dagens et al., !
which do yield rather satisfactory agreement with experi-
mental dispersion curves.

The Lang-Kohn®® surface electron density p%z) for the
three metals is shown in Fig. 1. These densities were ob-
tained by Lagrange interpolation between the densities at
the r; values given in Ref. 30. The positions of the (100)
and (110) crystalline layers, also shown in Fig. 1, are given
by

z1=z¢+(—5)D, (35)

where zo =37 /8kp is the position of the jellium edge, and
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D=(2kp)~Y(67*)'* for the (100) layers and
D=(V"2kp)~'(67*)'”* for the (110) layers [the Fermi
momentum kg is related to r; by kp=(97/4)'3/r;]. The
Lang-Kohn electron density enters the calculation through
the first-order correction to the total energy and contri-
butes to the Ey term in the single-ion potential, Eq. (34b).
The surface electron density of the infinite barrier model*®
is also shown in Fig. 1. We have found that the use of
this infinite barrier electron density in place of the Lang-
Kohn density yields values of Ey which are in close quan-
titative agreement with the results obtained using the
Lang-Kohn density, particularly for large z. We use the
infinite barrier density to extend p%(z) to values of z larger
than those provided in the tables of Ref. 18(a).

In performing the numerical integration over Q and g,
to obtain the results presented in this section we have used
a grid of points in Q,q, with spacing AQ =Agq, =0.04kp,
and have truncated the integrals when convergence is ob-
tained (in most cases a maximum of g=12kp is suffi-
cient). The derivatives of the potentials U''(z) and
U(R ;Z1,Z,) which are presented in the tables were ob-
tained numerically in each case by evaluating the quanti-
ties at points z,2+0.01D and R,R £0.01D, where D is the
(100) or (110) layer spacing. The units of energy and of
length used in the tables are e?ky and k7, respectively, to
facilitate comparison of the results for the different met-
als.

The single-ion-potential results are summarized in
Tables II, III, and IV for Na, K, and Rb, respectively.
The general behavior of U'! as a function of ion position

TABLE II. Single-ion potential for Na, U (z)=E,+Ey+E% and derivatives, evaluated at the
(100) and (110) layer positions z =z + (] — % )D; D is the layer spacing. The units of energy and length
are, respectively, e*kr and k7!, where kp=(9m/4)!/3/r, and r is given in Table L

1 2 3 4 5
(100) layer
E, —0.2739 —0.2697 —0.2660 —0.2648 —0.2643
Ey 0.0328 0.0356 0.0369 0.0359 0.0358
Ed 0.0085 0.0002 0.0000 —0.0005 0.0009
ud —0.2326 —0.2338 —0.2290 —0.2294 —0.2276
3E, /dz —0.0107 0.0039 0.0008 0.0004 0.0002
3Ey /dz 0.0316 —0.0039 —0.0004 0.0002 —0.0005
dEYs /3z —0.0304 —0.0006 0.0026 —0.0015 0.0003
AU /az —0.0095 —0.0006 0.0031 —0.0009 —0.0000
d’E, /3z? 0.032 —0.003 —0.000 —0.000 0.000
3’Ey /92* 0.006 0.010 —0.002 0.000 0.000
3’EYs /327 —0.010 0.007 —0.001 0.003 —0.003
32U /322 —0.027 0.013 —0.003 0.003 —0.002
(110) layer
E, —0.2760 —0.2668 —0.2648 —0.2642
Ey 0.0428 0.0365 0.0360 0.0355
E%s —0.0013 —0.0015 —0.0009 —0.0002
U —0.2346 —0.2317 —0.2297 —0.2289
3E, /dz —0.0008 0.0014 0.0003 0.0001
3Ey /dz 0.0119 0.0016 0.0002 —0.0000
AEYs /3z —0.0128 0.0005 —0.0013 —0.0014
UV /3z —0.0017 0.0035 —0.0008 —0.0013
J’E, /3z? 0.017 —0.001 0.000 —0.000
Ey /32 —0.059 —0.003 —0.000 0.001
AEYs /3z? 0.051 0.005 0.003 0.000
U /az? 0.009 0.001 0.003 0.001
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TABLE III. Single-ion potential for K, and derivatives. See the caption for Table II.

BARNETT, BARRERA, CLEVELAND, AND LANDMAN

1 2 3 4 5
(100) layer
E, —0.2674 —0.2633 —0.2596 —0.2585 —0.2580
Ey 0.0222 0.0167 0.0185 0.0174 0.0176
E$s 0.0059 0.0001 —0.0001 —0.0005 0.0007
vt —0.2393 —0.2465 —0.2413 —0.2417 —0.2398
oE, /dz —0.0119 0.0039 0.0008 0.0004 0.0002
3Ey /3z 0.0134 —0.0034 —0.0003 0.0004 —0.0004
OEYs /8z —0.0190 0.0001 0.0022 —0.0013 0.0002
aUu"/az —0.0175 0.0006 0.0027 —0.0005 0.0001
9’E, /3z? 0.034 —0.003 —0.000 —0.000 0.000
3’Ey /0z* 0.018 0.012 —0.003 0.001 0.000
3’EYs /327 —0.019 —0.007 —0.000 0.002 —0.003
3*u'v/az? 0.032 0.002 —0.003 0.003 —0.001
(110) layer
E, —0.2698 —0.2604 —0.2585 —0.2579
Ey 0.0277 0.0179 0.0175 0.0174
E3s —0.0020 —0.0013 —0.0006 0.0000
v —0.2441 —0.2438 —0.2417 —0.2404
3E, /0z —0.0015 0.0013 0.0003 0.0001
dEy /3z 0.0066 0.0020 0.0005 0.0000
dEYs /02 —0.0128 0.0002 —0.0011 —0.0012
AU /dz —0.0077 0.0036 —0.0003 —0.0011
3%E, /3z* 0.019 —0.001 —0.000 —0.000
3*Ey /322 —0.049 —0.002 0.000 0.000
J’EYs /02? 0.047 0.004 0.003 0.000
au'h /3z? 0.018 0.001 0.003 0.000
TABLE IV. Single-ion potential for Rb, and derivatives. See the caption for Table II.
1 2 3 4 5
(100) layer
E, —0.2677 —0.2633 —0.2597 —0.2586 —0.2581
Ey 0.0203 0.0113 0.0128 0.0118 0.0120
ESs 0.0046 —0.0002 —0.0000 —0.0005 0.0004
vt —0.2427 —0.2523 —0.2469 —0.2473 —0.2456
dE, /3z —0.0111 0.0039 0.0008 0.0004 0.0002
dEy /3z 0.0060 —0.0032 —0.0005 0.0004 —0.0000
dEYs /92 —0.0144 0.0006 0.0015 —0.0009 —0.0000
au" /oz —0.0196 0.0013 0.0019 —0.0000 0.0000
3’E, /9z* 0.034 —0.003 —0.001 0.000 0.000
d*Ey /322 0.005 0.012 —0.002 0.000 0.000
3’EYs /322 —0.007 —0.006 —0.000 0.002 0.000
U /322 0.032 0.003 —0.003 0.002 0.000
(110) layer
E, —0.2701 —0.2605 —0.2586 —0.2580
Ey 0.0229 0.0124 0.0119 0.0119
Eds —0.0015 —0.0009 —0.0005 —0.0000
v —0.2487 —0.2490 —0.2472 —0.2461
dE, /3z —0.0007 0.0013 0.0003 0.0001
3Ey /dz 0.0023 0.0017 0.0004 0.0001
AESs /dz —0.0112 0.0003 —0.0007 —0.0008
U /3z —0.0095 0.0033 0.0001 —0.0006
d’E, /3z? 0.019 —0.001 —0.000 0.000
QEy /322 —0.032 —0.003 —0.000 0.000
I ESs /022 0.031 0.003 0.002 0.000
U /3z? 0.017 —-0.001 0.002 0.000
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FIG. 3. Pair-interaction potentials, U'*(R;z,,z,), for ions in the same (100) layer, plotted vs the interionic distance
r=(R%>+(z,—2,)%)""* as R is varied and z,,z, are constants. The z coordinates of the ions correspond to layer positions,
zy=29+(l; — —;— )D, z;=zo+(l, — %)D; the values of /,,/, are indicated in the upper right-hand corner of each graph. The units of en-

ergy and length are 10~3 Ry and a, (Bohr radius), respectively.

z is shown graphically in Fig. 2, which was drawn from
the values of U'"(z) and its derivatives at the (100) and
(110) layer positions for K.

The largest contribution to the single-ion potential U‘!,
Eq. (33), is the interaction of the ion with its own screen-
ing electron density E;. The second largest contribution is
Ey, which comes from the first-order energy and corre-
sponds to the direct interaction of the ionic pseudopoten-
tial with the difference, po(z) —Qq 9(z —2z,), between the
Lang-Kohn electron density and a truncated bulk density.
Both E; and Ey oscillate about a constant bulk value as z
increases, and the magnitude of the oscillations decreases
as the distance from the surface increases. The third con-
tribution, Egg, is much smaller in magnitude and oscil-
lates about a bulk value of zero, but the magnitude of the
oscillation decreases more slowly as z increases. It is the
oscillations in U'") rather than the magnitude which are
important in determining surface structure, since these os-
cillations give rise to forces on the ions normal to the sur-
face plane. Differences in the magnitude of U'" for dif-
ferent ionic species (evaluated for the same () are impor-
tant in determining impurity formation energies and sur-
face concentration profiles in alloys, but this is the subject
of a planned future publication and will not be discussed
here.

The derivative of the single-ion potential, dU'"/dz, is
negative for ions in the surface layer of both the (100) and
(110) surfaces of each of the metals considered, corre-
sponding to a force on the ions toward the bulk. There is

a large amount of cancellation between the derivatives of
the three terms E,, Ey, and E g near the surface. Ey and
E %s are related in that Ey is a direct interaction while E (1)35
is an interaction mediated by the screening electron densi-
ties, and the forces arising from these two interactions
tend to cancel in the surface layer. The cancellation is al-
most complete for the higher electron density metal, Na.
The single-ion forces on ions deeper than about the third
(100) layer or second (110) layer are primarily due to oscil-
lations in E%g, which are in turn due to quantum interfer-
ence effects in the solution for the screening electron den-
sities.

The results of calculations of the pair-interaction poten-
tial U'?(R,z,,z,) are summarized in Figs. 3—7 and Tables
V—VIII. These interaction potentials are not two-body
central-force potentials in the surface region since they de-
pend on the z coordinates of the two ions separately.
However, U does depend on the magnitude of the ionic
separation parallel to the surface, R, and we can get some
feeling for how U'? differs from the bulk interaction by
plotting U'®(R,z,z,) vs r=[R*+(z;—2,)?]'/? as R is
varied while keeping z, and z, fixed. This is done in Figs.
3—7, where z; and z, are layer positions for (100) or (110)
layers. The bulk pair potential is shown as the dashed
curve in each figure. For ions near the surface the
minimum in the pair-interaction potential may be signifi-
cantly deeper or shallower than the bulk pair-potential
minimum and may be shifted to larger or smaller interion-
ic distance r depending on the z coordinates of the two
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TABLE V. First derivative of the pair-interaction potential with respect to z,, 3U‘*(R ;z,,z,)/0z,,
for K ions in the same layer, z, =z, =2+ (/, — %)D, evaluated for second- and third-nearest-neighbors
(NN) ions in the first five (100) layers, and for first-, second-, and third-nearest-neighbor ions in the
first four (110) layers. The units of energy and length are, respectively, e2kr and k7'

1 2 3 4 5 Bulk

(100) layer 11=12

Second NN —0.00136 —0.00013 0.000 04 0.00001 0.00001 0.0

Third NN —0.00013 —0.00002 0.00000 0.00002 0.00001 0.0
(110) layer I,=1,

First NN —0.00021 —0.00001 0.00001 0.00001 0.0

Second NN 0.00021 0.00001 0.00001 0.00001 0.0

Third NN 0.00009 0.00003 0.00002 0.00001 0.0

ions. In addition, the magnitude of the Friedel oscillations
in the interaction potential as r increases may be either in-
creased or decreased. It has been shown by Lau and
Kohn*? that the oscillatory part of the interaction between
point ions adsorbed on a substrate with a spherical Fermi
surface is proportional to cos(2kzR)/R°®, in contrast to
the R ~3 dependence in the bulk. We have not attempted
such an asymptotic analysis, and the inclusion of quantum
interference effects may alter this behavior. However, as
the distance of the two ions from the surface increases, the
bulk behavior must result. The interaction between ions in
the same layer (z;=z;) is essentially bulklike for ions
deeper than the third (100) layer, but the effect of the sur-
face on the interaction between ions in different layers ex-
tends further, i.e., the interaction between ions in the third
and fourth or third and fifth (100) layers still shows
marked differences from the bulk interaction. The differ-
ences between U'? and the bulk pair potential are fairly
uniform for the three metals, although there is a trend to-
ward larger differences in the higher electron density
(smaller r;) metal Na.

In order to examine the dependence of the pair-
interaction potential on the z coordinates of the two ions
we have calculated the first and second derivatives
U /3z,, dU'¥ /3z,, 3*U'* /3R 3z, 5, 3*U? /3’2, 5, and
9°U'? /3z,9z, for ions at lattice sites in the (100) and

(110) layers, and compare these to the derivatives of the
bulk pair potential in Tables V—VIII (for K only). The
units of energy and length used in these tables are
again e%kp and k7, respectively.

The fact that the pair-interaction potential is not a
central-force interaction is first clearly illustrated in Table
V, which gives dU'?"/3z, =3U'? /3z, for ions in the same
layer (zy=z;). While in the bulk this derivative is zero,
for ions in a layer near the surface it is not zero and for
nearest and next-nearest neighbors it is about an order of
magnitude smaller than the force due to the single-ion po-
tential. This amounts to an additional force normal to the
surface on each ion in the layer since the potential energy
due to interaction between ions in the layer can be de-
creased by moving the entire layer. Table VI gives the
derivatives dU?/dz, and dU'?/dz, for ions in different
layers. In contrast to the bulk  where
U /3z, = —0U'? /dz,, in the surface region the deriva-
tives with respect to z; and z, are not equal in magnitude
and may not be opposite in sign [e.g., second nearest
neighbors in (100) layers 1 and 3].

Table VII and VIII give the second derivatives of U'?
with respect to various combinations of z;, z,, and R.
Again we see that the derivatives of the pair-interaction
potential for ions in the surface region are significantly
different from the derivatives of the central-force bulk

TABLE V1. First derivatives of the pair-interaction potential for K ions, U'*(R ;z,,z,), with respect
to z; and z,, evaluated for ions in different layers, z,=z¢+(/, — % )D and z,=z¢+ (I, — % )D, for first
nearest neighbors (NN) in (100) layers and first and second nearest neighbors in (110) layers. The units

of energy and length are, respectively, ek and k.

(1,2) 2,3) (3,4) 4,5) Bulk

(100) layers (11,12)
First NN aU?/3, 0.005 86 0.00513 0.00509 0.00520 0.00513
aU? /dz, —0.003 59 —0.00533 —0.00509 —0.00510 —0.00513

(110) layers (I,,1;)
First NN 3U?/3z, 0.007 07 0.007 33 0.007 32 0.007 26
aU? /3z, —0.007 44 —0.007 06 —0.00712 —0.007 26
Second NN 9U? /9z, —0.00073 —0.00051 —0.00049 0.00051
U /3z, 0.00012 0.00058 0.00060 —0.00051

(100) layers (1,,1,)
Second NN 3U?)/3z, —0.00081 —0.000 66 —0.00077 —0.00073
aU? /dz, —0.00070 0.001 32 0.000 50 0.00073
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TABLE VII. Second derivatives of the pair-interaction potential U'?(R;zy,z,) for K ions in the
same layer, z, =z,=2z09+(] —-;—)D, evaluated for second nearest neighbors (NN) in (100) layers and for
first and second nearest neighbors in (110) layers. The units of energy and length are, respectively, e2kp
and k7',

1 2 3 4 5 Bulk
(100) layer /,=1,
Second NN 32U‘* /3R dz, 0.00211 —0.00002 —0.00001 0.00000 0.00001 0.0
aZU‘Z’/aﬁ 0.002 15 0.00013 0.00021 0.00019 0.00021 0.000 19

3’U? /dz,0z, 0.00362 —0.00018 —0.00021 —0.00017 —0.00020 —0.00019

(110) layer I,=1,

First NN 9°U®/3R3z;, 000116  0.00001 —0.00001  0.00001 0.0
U /323 —0.00130 —0.00263 —0.00262 —0.00261 —0.00263
3*U® /32,82, 000530 000275 000265  0.00261 0.002 63

Second NN 9*U®/3R3z,  0.00047  0.00005  0.0000  0.00000 0.0
d*U? /az} 000102 000021 000019  0.00019 0.00019
*U® /32,82, 000112 —0.00012 —0.00017 —0.00019 —~0.00019
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pair potential, and may have the opposite sign.

The results presented in Tables V—VIII support the
conclusions stated earlier in the discussion of the figures
that (a) the pair-interaction potential in the surface region
is significantly different from the bulk central-force pair
potential, (b) the effect of the surface on the interaction
between ions in different layers (different z coordinates)
extends further than the effect on the interaction between
ions in the same layer, and (c) in any case, the interaction
between pairs of ions both of which are deeper than about
the fourth (100) or third (110) layer positions is essentially
bulk like. The major differences of U'® from the bulk
pair potential are due to quantum interference effects in
the solutions for the screening electron density, the terms
u;(q) and uy(q) in Eq. (19). If these quantum interfer-
ence terms are simply set equal to zero only the interaction

between pairs of ions very close to the surface [the (100)
surface layer] deviate from the bulk interaction. In the
semiclassical limit (mentioned in Sec. IIB) the quantum
interference terms do not occur, but the position of the jel-
lium edge is zo=0, so the effect of the surface on the
pair-interaction potential in the semiclassical response
model might extend somewhat further. However, the
semiclassical response model restricts the choice of ionic
pseudopotential since there is no response of the electron
gas for z<O0, and therefore the positive charge density
which gives rise to the ionic pseudopotential must not ex-
tend past the jellium edge (see Appendix C).

The single-ion and pair-interaction potentials derived in
Sec. IIC and discussed in this section are, in principle,
sufficient to treat problems involving surface relaxation,*
defect energies, and surface segregation in alloys. Howev-

TABLE VIII. Second derivatives of the pair-interaction potential UXR ;zy,z,), for K ions in adja-
cent layers, z,=zo+(/,— —;—)D and z,=z¢+(l;— % )D with I,=1,+1, evaluated for first nearest neigh-
bors (NN) in (100) layers and for first and second nearest neighbors in (110) layers. The units of energy

and length are, respectively, e %k and k7'

(1,2) 2,3 (3,4 (4,5) Bulk
(100) layers (I,1;)
First NN 32U'? /3R 3z, —0.01706  —0.01618 —0.01630  —0.01638 —0.01629
3*U"? /3R 3z, 0.01551 0.016 54 0.01622 0.016 34 0.01629
32U /3z? 0.008 86 0.009 02 0.008 80 0.008 92 0.008 88
32U /32,92, —0.01022 —0.008 69 —0.00893 —0.00892 —0.008 88
3U? /3z3 0.008 85 0.009 18 0.008 68 0.009 00 0.008 88
(110) layers (I,
First NN 3*U‘*/3Rdz, —0.01639 —0.01641 —0.01635 —0.01629
U /3R 3z, 0.01594 0.01612 0.01623 0.01629
U 73z} 0.02013 0.02037 0.02044 0.02041
32U /3z,8z, —0.02069 —0.02054  —0.02048 —0.02041
32U /323 0.01829 0.02001 0.02043 0.02041
Second NN 32U /3R 3z, —0.00397 —0.00406 —0.00405 —0.00399
32U /3R dz, 0.003 87 0.003 86 0.00394 0.003 99
3U? 3z} 0.004 19 0.004 14 0.004 17 0.004 18
3*U? /dz,z, —0.00420  —0.00423 —0.00422 —0.004 18
U /322 0.003 14 0.003 86 0.004 13 0.004 18
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er, due to the long-range nature of the pair interactions
and the fact that in the surface region they are not two-
body central-force potentials, a real-space approach to
such problems is cumbersome. Calculations using a
reciprocal-space approach to minimize the total energy
and determine the relaxed surface structure are reported
elsewhere,' 8@ and surface segregation and defect ener-
getics will be treated in planned future publications.

The model as developed here is not directly applicable
to surface vibrations because the use of the jellium system
as a starting point and the infinite barrier response model
specifies the location and orientation of the surface plane
with respect to the coordinate system; thus the dynamical
matrix obtained from this model would not satisfy the
condition of rotational invariance. It is clear, however,
that two-body central-force potentials are not sufficient to
describe the interionic interactions in the surface region
and that the interaction of the ions with the inhomogene-
ous electron gas, which is the origin of the single-ion po-
tentials, must be included. It may be possible to impose
rotational invariance and obtain and approximate dynami-
cal matrix.** The single-ion and pair-interaction poten-
tials can be used in Monte Carlo or molecular-dynamics

BARNETT, BARRERA, CLEVELAND, AND LANDMAN

28

simulations. Monte Carlo studies on liquid-metal sur-
faces* have shown that the inclusion of a single-ion po-
tential leads to stable density oscillations at the surface.

In summary, we have developed a formulation based on
the use of ionic pseudopotentials and linear-response
theory which is applicable to problems involving minimi-
zation of the surface energy of a simple metal with respect
to ionic species and/or position. The formulation main-
tains the full three-dimensional nature of the system and
does not require crystalline order; thus it is possible to
treat defects near the surface and random alloys as well as
ideal surfaces. We have decomposed the total-energy ex-
pression into a density-dependent term and real-space
single-ion and pair-interaction potentials. An examination
of these potentials shows that both the single-ion poten-
tials and the non-central-force nature of the pair-
interaction potentials are important in surface structure
and energetics and in surface lattice virbations of simple
metals.
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APPENDIX A

In this appendix Eq. (12) for the Fourier transform of the symmetrized screening electron density is derived. Substitut-
ing Eq. (6a) into Eq. (11b) and using the fact that ay( | R—R'|;z,z’) vanishes for negative z’ gives

p,-s(?i)=2fd2R el @R fowdz cos(q,z)fdzR’fowdz’ao( IR—R'|;z,2)[w;(F")+;(F"] .
When the integrals over Rand R’ are performed we obtain

pis(q’)=2fowdz'[w,-(Q,z’)+¢,~(Q,z’)]fowdz cos(q,z)ay(Q;z,2") .

(A1)

(A2)

The integral over z in Eq. (A2) is evaluated using Eq. (10) for ay(Q;z,z') and the integral representation of the Dirac &

function
78(k)=1+ [ “dz cos(kz) .

The result is

fwdz COS(qu)ao(Q;Z,Z')=LdeSin(KZ')f dk'sin(k'z").L(Q;k,k’)
0 T

X[8(g; +Kk—«')+8(q, —k+k')— (g, + Kk +K')—8(q, —k —K")] .

(A3)

From the definition of the two-dimensional RPA response function, Eq. (8b), it is clear that .#(Q;k,«’) is invariant to
transformations which interchange k and k' or change the sign of x,«’, or both:

L(Qik') =L (Qik,—K)=L(Qi' k) .

These symmetry properties are used together with the fact that k and «’ are to be integrated over both positive and nega-

tive values to obtain

fowdz cos(qzz)ao(Q;z,z’):n-‘lfdx L(Qk+9q;/2,k—q,/2)[cos(q,z') —cos(2kz')] .

(A4)

We now substitute Eq. (A4) back into Eq. (A2) and evaluate the integral over z’. The result is Eq. (12) of the text:

P (D =ao(@wie(@)+ 84 (@] —7" [ dic L(Q3k+4, /2,6 —g, /2) [ (Q,26) +,,(0,20)]

where
afq)=7"" [ dx L(Q;k+4,/2,k—g,/2)

is the RPA response function for an infinite system.

(AS)
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APPENDIX B

In this appendix we derive Eq. (16) for the Fourier transform of the self-consistent effective potential due to the screen-
ing electron density in the symmetrized system. From Eq. (6b) and the definition of the symmetrized system we have

(D)= [[d3r'g (7,7 el | T—T" | Jpy(F)[1—O(2)

O(—-z")—-6(

—2)0(z')], (B1)

where g (7, T')=1—-G(7,r’) and G(T,T"') is the local-field correction discussed in the text. The Fourier transform of Eq.

(B1) is

(@)= ve(@lpis (@) — [dr ' T [ a6 (F,F el | T—T"| )py(F)

— [dre'TT [dPrvc(| T=T| oy (F)[O(2)O(
+ [dre'TT [dPrG (T, el | T—T' | oy (F)[O(2)O( —2')+6(

meg to translational invariance in the x-y plane, G(T,T")
and R’ in Eq. (B2) result in two-dimensional Fourier transforms of the functions G, v¢, and pj.

text, we make the assumption that G (7,7")=G(|T—T

— [ TT [PrG(|T—T" | el | T—T| Jpy(F)=

—2')46(—2)0(z")]
—26(2")] . (B2)

); thus the remaining integrals over R
If, as discussed in the

=G(|R—R'|;z,2");

"|) the second term in the rhs of Eq. (B2) becomes
—G(qv

c(@)pis(q) . (B3)

To evaluate the third term on the rhs of Eq. (B2) we use the identity

e? e rdK o2 o
velr)= . _21Tf X exp(—iK'R—K |z |)

and substitute the inverse Fourier transform of p( k) for pis(T') to get

— @ T [druc( | T—T" | )pis(T)[O(2)0(

2”‘* [ diapilQ.ky) [ dz e [ dz'e ™ [0(210(~2)+6(—2)
21re
27Te - qz+Q2
[ dkaput @) o+ 0D
z z

Since p;s(Q,k;) is an even function of k,,

k,
1) dhapi QoK) 377 05 =0
and
21re —'kzqz +Q2
dk,p;(Q,k;)
Jdbpute (k2 +Q2)(g2+0?)
41re Q
= q° —fdkzpu 0.k, m
=uvc(qlo;(Q), (BS)
where v¢c(g) =4me?/q? and
(q
oiQ)=—=2 [, 28 9 (B6)
It is also evident that
pu(q)
hmoa, Q)= llmo Py fd pe
=—1ps(G=0). (B7)

p,-_.(?]'———a) is the integrated screening electron density in-
duced by the potential w;(T) and is equal to the amount

—2")46(—2)0(z")]

(zl)]e—Q )Z—Z'l

i z 0 0 i z [ ®
2T [ dk,pi(Q,k, )[f dze ™™ 7 detexpl(—ik,+0)2'1+ [__dz e %" [“dzexpl(—ik,—0)2']

(B4)

r

of positive charge (in units of the electron charge e) which
gives rise to the potential, i.e., p;(d=0)=0, since w;(T) is
a neutral perturbation due to the replacement of part of
the jellium positive background by the ionic pseudopoten-
tial.

The last term in Eq. (B2) is

X(@)= [dr e’ T [ &G (T, T el | T—F' | )ps(T)

X[6(z)6(—z")+6(—-2)6(z")] .

(B8)

We do not attempt to evaluate this term here. It is not
possible to reduce X;(q) to a form similar to vc(q)o;(Q),
i.e,, the Coulomb potential multiplying some function
which is independent of g,. Thus this term prevents the
reduction of the problem of solving for p;(T) to the solu-
tion of a single-integral equation. However, X;(q) is
negligible because, as discussed in the text, G (T,T’) is very
short ranged and because p;(T) vanishes at z =0.

APPENDIX C

In this appendix we derive Egs. (25) and (26) which give
the Fourier transforms of the symmetrized potentials
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W (T) and V. 4(T). The definition of @;5(T') can be written
as

@ (D=Z(B) "' [ V,(Bi; | T—(Ry,2) | )O(2)
+Vp(Bi; | T—(R;,—z) )O(=2)]

(Cn
N

L +z ==
@,(_q')=22"f0 *dz cos(q,z)fdzR ! CRY ([R*+(z -2z,
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where T; =( ﬁi,zi) is the ion position, Z(f;) is the charge
in units of e, B; designates species, and V,(B;;r) is the
local-model pseudopotential for ionic species B;. For no-
tational convenience in the following we will omit the
specification of ionic species.

From Eq. (24) we have

(C2)

where L =Q!/3 is the thickness of the semi-infinite metal (the limit L — o will be taken) and z, is the distance of the jel-
lium edge from the z =0 plane. Substitution of the inverse Fourier transform of ¥, (k) for V,(r) yields

+2z,

_ Z_1 ik,z; L —ik,z

wis(q)_—_-z—ﬂ_—fdk,e VP(Q,k,)fO dze "*2cos(q,z) . (C3)
The integral over z in Eq. (C3) is

ZfL“od exp[ —ik,(z —z;)]cos(g,z) = d {exp[ —ik (L +2zo—z;)]exp[ —ig,(L +z )]—eik‘z"}

0 Z €Xp z i q:2)= kz-HIz p z 0 i P q; 0
+ P {exp[ —ik,(L +2z¢—z;)]exp[ig,(L +zo)]—eik’z'} . (C4)
We will now express the ionic pseudopotential as
2
V,(q)=— 4’;‘2’ Zpl(g), (C3)

where Zep’(q) is the Fourier transform of a spherically symmetric positive charge density which gives rise to the local
pseudopotential. An obvious restriction is that p’(| ©—T; | )=0 for z —z; <0; or, in the case of the simplified Heine-
Abarenkov potential which we use, r, <z;, where r, is the core radius [see Eq. (4)].

Equations (C4) and (C5) are substituted into Eq. (C3) to obtain

PO O a2 1
Bu(@) =5 [ dkc[—4mep!(Qk)] 55

1 —
k,—iQ

X
k;+q.

1
kz —q;

k;+iQ

{expl —ik,(L +2o—z;))explig,(L +zo)]—e"*

ik,z;

{exp[ —ik,(L +zo—z;)]exp[ —ig,(L +25)]—e *"}

ik,z

g (C6)

The integral over k, in Eq. (C6) is done by contour integration, using contours which avoid the poles on the real axis at
k, = tq, and which close around either the upper or lower half-planes as required by the exponents. The result of this in-

tegration is

2 4re? o =0z
B(§) = 4;’5 p’(q)zcos(q,z,-)+—Z§—p’(Q,zQ)e :
. 4me? 19
+ lim ——p'(Q,—iQ) ~Zsin[g,(L +2z¢)]—cos[g,(L +2¢)]

Lo g Q

Now pl(q)=p[(Q*+¢7)!/?], and thus p/(Q,+iQ)=p'(q
=0) (a more rigorous proof of this identity is possible but
will not be given here), and p’(g =0)=1 since the ionic
charge Ze is factored out of the definition, Eq. (C5).

In the limit L — o the last term in Eq. (C7) vanishes
for Q0 due to the exponent. For Q =0 the only contri-
butions to an integral over g, involving this term as part
of the integrand are at g, =0 and at any poles due to other
terms in the integrand. To evaluate such integrals, which
occur in the single-ion potentials, it is useful to note the
physical significance of the second and third terms of the

exp[ —Q (L +20—2)] .

r

rhs of Eq. (C7). In writing Eq. (C2) we have assumed an
infinite periodic system with period 2(L +z) in the z
direction, which is symmetric about both z=0 and
z=L +z;. The second term on the rhs of Eq. (C7)
represents the potential due to a two-dimensional density
at z =0 which cancels the interaction between the negative
and positive z parts of the periodic system, and the third
term does the same at z =L 4z, so that W (T)=u;(T) for
0<z <L +zy. Thus, while these terms may contribute to
the (Q =0,q,) integrals involved in the single-ion poten-
tials, their contribution is independent of the ionic posi-
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tion and is in fact canceled by similar terms arising from
the subtraction of the positive background potential.
The positive background potential V' (T) is given by

Vi(D)=i [dr'05'0(z' —z0)e?/|T~T'| ,  (C8)

where (), is the volume per electron in the bulk of the
semi-infinite system. The symmetrized Fourier transform
can be obtained from the expression on the rhs of Eq. (C7)

J

2
bialg) = — 205 2m8(g,) —25in(g,20)/4,]

9z

2
+ lim 27"

Qo—l/3L
Low g,

1— {%sin[q,(L +2z¢)]—cos[q (L +2z)]
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by replacing pPP(q) with Qg ' [the Fourier transform of
Q5 '8(F)] and integrating over the space occupied by the
positive background density. The result of this operation
is

Voo @) =275 8(Qlv4(g;) (C9)

where v (q,) is given by

(C10)

The part of Eq. (C10) which depends on the system size L does not contribute to the single-ion potentials [see the discus-

sion following Eq. (C7)].
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