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High-frequency vibrational modes at stepped Pt(111) surfaces
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We show that vibrational modes with frequencies above the maximum in the bulk can occur
at the steps of the Pt(332) or 6(111) x(1171) surface, as observed by Ibach and Bruchmann, if
the largest force constants are increased by ~ 30—40% at the steps. The calculations are done
by applying the recursion method within clusters of thousands of atoms, with a rotationally in-
variant first- and second-neighbor bond-angle model for the interatomic forces.

Ibach and Bruchmann' have recently reported
inelastic-electron-loss measurements of localized pho-
nons at the (332) or 6(111)x(111) surface of plati-
num. The most interesting feature of their results is
that the observed phonon loss peak occurs at a fre-
quency of 25.4 meV, slightly higher than the max-
imum frequency of 24.3 meV in bulk Pt, and roughly
15% above the highest frequency peak at ~22 meV
in the bulk density of states.? This is somewhat
unexpected, because the usual picture is that phonon
frequencies will decrease at surfaces to reflect the
missing bonds. To explain higher-frequency surface
vibrational modes, it is necessary to invoke relaxation
accompanied by increased force constants in the sur-
face region. Arguing by analogy to a linear chain
with nearest-neighbor interactions, Ibach and Bruch-
mann estimated that the force constants for atoms at
the steps must be increased by a factor of approxi-
mately 1.7 to explain their data.

Drawing conclusions for three dimensions from
one-dimensional models is generally somewhat risky.
On the other hand, high Miller index surfaces with
regularly stepped structures like the fcc (332) surface
are difficult to treat by either exact methods>* or ap-
proximate, slab calculations® that rely on use of the
two-dimensional transform with respect to surface
wave vectors. An approach that does not vary in
complexity with surface normal, i.e., one that can be
programmed to deal with (hk/) surfaces in the same
way as (100), (110), or (111), is the recursion
method.® We have applied this method to large clus-
ters of atoms to investigate vibrational modes at
stepped fcc surfaces.

We use a rotationally invariant, first- and second-
neighbor (1nn +2nn) bond-angle force model like
that described by Keating.” Scalar products of vectors
are invariant under rotations, so the potential energy
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is expanded in powers of scalar product differences S,
S(ny,nynsng =R (ny,ny) - R (n3,n4)
—io(n|.ﬂ2)'§0(n3,n4) N (1)

where l_io(n,n’) is the equilibrium spacing between
atoms at sites » and n’, and

R (n,n") =Ro(n,n") +0 (n) =T (n")

includes the displacements U (#) and T (#') away from
equilibrium. The expansion is truncated at second
order in the displacements to yield a harmonic pho-
non Hamiltonian. For the present calculations, we
include squares of the following scalar product differ-
ences in the potential energy, giving an example for
each: lnn bonds—S$%(110,0;110,0); 2nn bonds—
$2(200,0;200,0); 1nn-1nn-1nn angles—
$2(110,0;011,0); Inn-1nn-2nn angles—
$2(110,0;110,0), $2(110,0:200,0). In the bulk, this
five-parameter bond-angle model is equivalent to a
general Inn + 2nn Born—von Karman model. At
surfaces, however, the bond-angle model is automati-
cally rotationally invariant, unlike a truncated Born-
von Karman model.

We generate our clusters in a way designed to elim-
inate boundary effects in the recursion procedure.
Suppose that we want to calculate the density of
states for displacements of a particular atom along a
given direction, e.g., for [111] displacements of an
atom at a step on an fcc (332) surface. Then level 1
of the cluster consists solely of this atom. Level 2 in-
cludes the first and second neighbors of the single
atom in level 1. Level 3 comprises all first and
second neighbors of the atoms in level 2 not already
included in levels 1 and 2, etc. If an N +1 level clus-
ter is generated, then recursion is performed at level
N, before the Inn + 2nn Hamiltonian reaches cluster
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FIG. 1. Phonon densities of states for bulk Pt calculated
by the Gilat-Raubenheimer (GR) and recursion methods:
top—GR, six-neighbor force model of Ref. 2; bottom—GR

(full line) and recursion (dashed line) results for the Inn +

2nn force model fitted to the 90 K data in Ref. 2. All densi-
ties of states shown here and in Fig. 3 are normalized to in-
tegrate to unity.

boundary atoms in level N +1 that are the only
atoms in the cluster with missing neighbors.

The first step in the calculations was to fit the 1nn
+ 2nn force model to the neutron scattering data of
Dutton et al.? Reasonably good agreement with the
measured dispersion curves was obtained, although
forces of longer range are needed to fit all details of
the spectrum. Figure 1 compares the bulk Pt density
of states calculated by the Gilat-Raubenheimer
method® for our 1nn + 2nn force model with the
results of the six-neighbor model of Ref. 2. The de-
tails of the curves are somewhat different, but the
major spectral features appear in the same places.

FIG. 2. Fecc (332) or 6(111)x(111) surface.

Figure 1 also shows level-9 recursion results, calcu-
lated within a level-10 cluster of 4579 atoms, for the
Inn + 2nn force model. These compare very well
with the corresponding Gilat-Raubenheimer results.
For a surface as complex as the fcc (332) surface
of a transition metal, it is difficult to argue what re-
laxation will occur and how the force constants will
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FIG. 3. Normalized densities of states for [111] vibra-
tions at the Pt(332) surface. (a), (b), and (c) give results
for edge, terrace, and corner atoms, respectively; full lines
are for 1nn bond-stretching force constant increases of
15000 dynes/cm at the steps as described in the text, dashed
lines for no force-constant changes.
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change. We have therefore adopted a pragmatic
viewpoint, focused our attention on the step edges,
and set out to illustrate the magnitude of the changes
needed to produce high-frequency step modes like
those observed. Specifically, we allow changes only
in the 1nn bond-stretching force constants for atoms
at the top and bottom of the step edges, and no at-
tempt is made to include relaxation to new equilibri-
um spacings Ro(n,n") near the surface..

Figure 2 shows the surface we are dealing with.
The atoms at (0,0,0), (0,-1,-1), and (0,-3,3) will be
referred to as edge, corner, and terrace atoms,
respectively. Any atom that does not occupy a site
on a surface step will be called a bulk atom.

Figure 3 compares densities of states for edge, ter-
race, and corner atoms for vibrations along the [111]
direction, the normal to the steps. To obtain these
results, recursion was performed at level 11 in level-
12 clusters of 4099, 4313, and 4468 atoms, respec-
tively. The dashed curves are those obtained with no
changes in the forces at the surface except for the ab-
sence of interactions involving missing neighbors.
The solid curves were calculated by assuming that all
1nn bond-stretching force constants for edge-corner,
edge-bulk, and corner-bulk atom pairs were increased
by about 35%, that is, by 15000 dynes/cm from the
value of 41500 in the bulk.

Figure 3 shows that no high-frequency modes oc-
cur for edge, corner, or terrace atoms in the absence
of force-constant changes, although the [111] densi-
ties of states for the three atoms are quite different
from one another and from the bulk results. With
1nn forces at the steps increased by ~35% as speci-
fied, high-frequency peaks appear for both edge and
corner atoms, while essentially no change is seen in
the terrace atom density of states. In fact, the results
shown for the terrace atom are virtually the same as
those for Pt(111) vibrations along [111] with no
force-constant changes. The pronounced high-
frequency structure for edge and corner atoms ex-
tends from about the top of the bulk spectrum at
24.4 meV to about 26.1 meV (5.9—6.3 THz; 1
THz=4.135 meV). The electron-loss peak observed
by Ibach and Bruchmann' fell at 25.4 meV (6.15

"THz); this was considerably broader than the calcu-

lated results in Fig. 3, but most of the experimental
width appears to have been instrumental.

In the results shown for edge and corner atoms
with increased forces, the high-frequency modes are
nearly split off above the bulk spectrum. The one-
band recursion procedure we have used gives only
semiquantitative accuracy for such cases. Thus,
while the overall shape of the solid curves in Figs.
3(a) and (c) is reliable, the fine structure does vary
with changes in such computational parameters as the
recursion level. This does not affect our conclusions;
the variations in the calculated results are small with
respect to the experimental resolution.

Other sets of force-constant changes at the steps
yield high-frequency modes for vibrations along the
step-normal direction. These can be distinguished
from one another by the structure they give for [111]
vibrations and by their effects for other atoms and vi-
brational directions. All that we have tested require
substantial (30—40%) increases in the force-model
parameters at the steps, but not of the magnitude
(70%) inferred by Ibach and Bruchmann from one-
dimensional arguments. We have also performed cal-
culations for another stepped surface similar to the
(332) or 6(111)x(111), namely, the (755) or
6(111) x(100) and found similar results.

For these illustrative calculations, we have only
considered changes in the 1nn bond-stretching force
constants for atoms at the step edges and corners, be-
cause this provides a relatively simple model with few
parameters that concentrates on the regions where
the largest perturbations are expected. However,
other force-constant changes no doubt occur at these
surfaces, and we intend to explore more general
phenomenological models to investigate the effects of
such other changes.
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