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A stochastic theory of heterogeneous bimolecular reactions catalyzed by active sites is
formulated using a defect-renormalized propagator method. Reaction between adsorbed
migrating species occurs upon their coincidence on active sites and may demand proper
internal-state configurations. Effects due to spatial heterogeneity, lattice structure,
and internal states on the reaction evolution are analyzed.

We present a stochastic theory of bimolecular
reactions catalyzed by a surface, which follow a
genevalized Langmuiv-Hinshelwood mechanism,*'?
where adsorbed reactants migrate on the surface
and reaction occurs only upon their coincidence
on active sites.® Additionally, the particles may
possess internal states (energetic, spin configura-
tion, or orientational) and the reaction cross sec-
tion may depend on the internal states of the re-
acting species. Mechanisms involving reactant
surface diffusion to active sites have been in-
voked recently in the analysis of several cataly-
tic systems of interest: For example, based on
statistical thermodynamics considerations it has
been concluded that the disproportionation reac-
tion of ethylene on a supported rhenium oxide
catalyst* (and similarly®? for propylene on WO,)
proceeds via surface migration and subsequent

1174

reaction on specific surface sites (“site-localized
diffusion”®"); molecular beam data of H, /D, ex-
change on stepped Pt(111) surfaces have been in-
terpreted in terms of adatom surface migration
to surface steps where reaction occurs®; surface
migration was found to be the rate-limiting step
in a number of high-temperature reactions—the
oxidation of polycrystalline Mo, the decomposi-
tion of formic acid® above 455°K, the halogenation
of Si and Ge surfaces,® and the oxidation of the
basal plane of graphite.® In order to achieve a
comprehensive understanding of catalytic systems
of the type considered in this study, such as to
allow an optimization of system parameters for
maximum yield, it is necessary to construct a
microscopic theory which goes beyond the tradi-
tional “mass action law” approaches. Our formu-
lation and the derived expressions for the mean
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and variance of the number of reactive particles
incorporate characteristic parameters of the
catalytic system (such as active-site and reactant
concentrations, internal-state transition rates,
site residence times, and lattice topology) and
allow a systematic study of the time evolution of
the reaction. In addition, considerations of de-
fects other than the active sites (e.g., promoters
or inhibitors of particle migration), which are of
fundamental and practical interest, are included.

Consider an irreversible reaction scheme?!® (a
and g denoting adsorbed and gaseous species,
respectively, and ¢ and j specifying internal
states of the reactants)

Agi +Ag; —— Ayy—L s A, (1)

where the desorption step (II) is much faster com-
pared to the binary collisional step (I) which in-
volves a coincidence of reactants on active sites.
The master equation governing step I is given by*?

dP(N, 1)
al |
=K(t)[<N;2>P(N+2,t) -<];’>P(N,t)} , @

where N(f) is a discrete random variable gov-
erned by the probability P(N, ) of finding N parti-
cles (A,) on the surface at time ¢, given P(N,{=0)
=0y, N3 K(¢) is the reaction rate between any two
adsorbed particles and all such binary events are
included via the binomial factors. The solution
to Eq. (2) is found via a generating-function tech-
nique from which moments of the probability
P(N,t) are obtained, e.g., for the mean

¥o
(NED=- TA,expl-2n6 -1)60)], (3)

where the coefficients A, are determined in
closed form from the boundary conditions, and |

Ct)= 121: 2 23 cun(T*, T3, T, )i [)ps(T)

i, [myn

the effective time 8(¢) = [oK (t')dt’.

The function K (f) completely characterizes the
reaction system and its evaluation is the major
task involved. Novel results which emerge from
our study are (a) the time dependence of K (t)
(achieving a constant value for large times), par-
ticularly for catalytic heterogeneous surfaces
(containing active sites and defects), and for in-
stances where the reacting species may have in-
ternal states, (b) the structural dependence of the
rate K(%).

Consider a crystalline surface with a periodic
arrangement'® of active sites and possibly other
defects, on which adsorbed particles move in-
dependently unless they collide on an active site
and both are in favorable internal states for re-
action to occur (reactivity of an active site ex-
tending over an effective region can be easily in-
corporated in the formalism). The rate K(?) is
the conditional probabdility density (CPD) for re-
actant coincidence at an active site in the time in-
terval (¢, +dt) given that no such coincidence (re-
action) occurred in the interval (0,¢). If we de-
note by F(¢) the PD for the first reactant coinci-
dence (at an active site) at time ¢, K(f) is given by

K@) =F@)/ [ F(r)ar. (4)

The 2D (two-dimensional) lattice is divided into
unit cells of dimensionless area af ="' where
a and B are the dimensions of the active-site-
superlattice unit cell (with reference to the ideal
lattice), each of which contains one active site
at T* and periodic boundary conditions are em-
ployed. The first-coincidence PD, F(), can be
calculated in terms of C (t), the PD for coinci-
dence (not necessarily the first) at time ¢ [which
is obtained via a random-walk formalism, see
Eq. (7)], by considering that a first coincidence
may have occurred at an earlier time ¢ -7

=27 D 5 L ar fua@*,t =7 (T3, L)oo @) eo (T, 7T4m, THn), (5)

S O A
vl B

where p;(I) is the initial probability of occupying site T in state ¢, T* is the location of the active site
in the unit cell, in the primed summation the term TI,T =T* is omitted [thus subtracting the event that
two particles reacted at ¢ =0, violating the initial condition P(N,{=0) =0y y, ] and [U w] indicates the
set of reactive internal states. c,,(I*,¢[T,x,,T,x,) is the PD for bimolecular coincidence at time ¢ on
T* in the reactive internal states ., v given the initial positions and internal states T,x,, T,x,. The PD
for the first such coincidence is denoted by f,, (T*,#[T,x,,T,1,) which when averaged over initial states
and reactive final states yields F(f). Laplace transforming ({~u) Eq. (5) we find

FO) =& cw)/ 22 22 c,s@*,ull*m,T*n)l. (6)

[7,s] [m,n]
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A reaction will occur on an active site at time ¢ if (a) one reactant already resides on the site at time
t, having arrived there earlier, and (b) the other reactant just arrives for vice versa, thus the factor
of 2 in Eq. (7)] and both are in the proper internal states. The probability correspondmg to (a) of be-
ing at the active site, T* in internal state ¢, given that at £=0 (T j) was occupied [with probability
p,(f )], is denoted by P; J(T* t]T 0) and similarly Rn T* t |T 0) corresponding to (b). Averaging over
initial positions and summing only over the set of 1nterna1 states which lead to reaction (denoted by
[1] ), we obtain

Ct)=2 [Z]) 1Z;P“(o, t[T, 0)p,;(1) [L;I,ER,,, (0,¢]T7, 0)p,(T") - 2g0225(2), )

where g is the probability that both reactants are

in reactive internal states. The last term in Eq. rTo obtain P [Eq. (7)], the elements of R [Eq. (8)]

(7) subtracts the event that two particles reacted
at £ =0, violating the initial condition P(NV,? =0)
=5N,No. The evaluation of P and R in Eq. (7) pro-
ceeds using a method of continuous-time random
walk!® with internal states.'® In this method, mo-
tion of a particle is mapped onto a “random-walk
lattice” composed of cells each of which contains

are mu1t1p11ed by the elements of the d1agona1
matr1x‘1> given by &;; =u"1[1 - zp(j',)( )], which
accounts for events where the particle reached
site (,7) at a time earlier than ¢ and paused
there. Substituting the above in Eq. (7) and as-
suming random initial occupation probabilities,
we obtain an expression for C(u«).

internal states. The particle performs both inter-
cell and intracell (between internal states) transi-
tions, which are characterized by a function ¥ (¥)
=Yt 5E)pi; I, 1) where i+;)(7)d7 is the probabil-
ity that a jump occurs in the interval (7,7 +d7)

The denominator in Eq. (6) can also be ex-
pressed in terms of the propagators P and R cor-
responding to paths of two particles which both
begin and later coincide at the active site, T*.

The resulting expression is in the form of a finite-

from (I’,7) given that (I”,;) has been occupied
since 7=0. [¢g;(t) is called the waiting-time
density function which relates to the potential
chavacteristics at a site. Specific sites on the
lattice, such as active sites, defects, and their
neighbors, would be assigned different ¥(¢) ’s.]
2:;(T,T") is the probability that given the jump oc-
curs, it is from d’,7) to (I,i). When we express
all quantities as matrices of dimension m Xm
(where m is the number of internal states) the
equation of motion for the propagator can be
solved* in Fourier and Laplace (denoted by tilde)
space yielding

R&,u)=[1-p®F @) ‘explk-1), (8)

where 1, is the initial position of the particle.

lattice (periodic boundary conditions) Green’s
function which depends upon the structure of the
lattice.’® Consequently, F(¢) and thus the rate
K(?) are determined by both the potential charac-
teristics of the system [transition rates via the
site waiting-time distribution function ¥z, ,)(t)]
and by the surface structure.

To illustrate the method consider migrating
particles on triangular, hexagonal, and square
lattices with a concentration of active sites 2,
and the unit cell chosen such that the active site
is located at the origin, The particles are as-
sumed to be structureless and are assigned a
characteristic function ¥(f) =A exp(-At) with A
being the local transition rate from a site and all
nearest-neighbor transitions are weighted equal-
ly. By use of the above in Eq,. (8), the Laplace-
transformed propagator R is obtained:

R, u|f0)—2 E[l-—zp(u (Ry, ky)] " texpl-dke @' =1)], 9

xOyO

where 2p (b, k,) =cos(2mk,/ a) + cos(2nk, /B) and
d@)=A/(A + u). The propagator PA’,«IT,0) is
obtained by multiplying the right-hand side of Eq.
(9) by (A +u)"* [see comments following Eq. (8)].
In terms of the above, the denominator in Eq. (6)
is given by the Laplace transform of the product
R(0,t10,0)P(0,¢10,0). With use of Egs. (7), (6),
and (4) the resulting expression for the rate K (f)

1176

[can be used to obtain the “effective reaction

time” 6¢) [Eq. (4)] which completes the deter-
mination of (N (£)), While the evaluation of K (t)
for all times is possible (though complicated) it
is instructive to analyze it at times sufficiently
long for the initial transient behavior of K (f) to
decay. Such an analysis employs a result due to
Montroll*® for the asymptotic behavior of R (0, «)
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=R (0,u10,0),
R(0,u)=0[1- D)) c,log +Co+ CR
+cQ%+ ... +0(1 =@V, (10)

where the c¢;’s are constants dependent upon the
lattice structure, for example c,=1/m, 3¥%/4x,
and 3Y2/27 for square, hexagonal, and triangular
lattices, respectively.’” In using Eq. (10) we note
that ¥(u)—~1 as the Laplace variable u—0, i.e.

for large ¢, Employing an asymptotic analysis,
we obtain for the rate a constant value given by

K =A/(1+ 27), (11)

where n==(c,/Q)InQ + (¢,/Q) + 3+ C, Q4 o0 &
The rate diminishes as the concentration of ac-
tive sites © is decreased since reaction occurs
exclusively at these sites. The dependence of the
rate K (Eq. 11) upon the structure of the sub-
strate reflects the sampling of lattice sites by
the propagating reactants prior to achieving a
binary encounter, resulting in a reaction, on an
active site. In general it is found that the rate
constants order as K, >K ;( >Kyex, Which is the
same ordering as the coordination of these lat-
tices and the structural effect is more pronounced
for low active-site concentration © (e.g., for
=10"', K, and K., are larger by 7% and 16%
than Ky, and for £ =10"4 by 23% and 39% re-
spectively). Furthermore, the rate of reactions
of the type discussed above can be affected by
defects which may inhibit or promote the migra-
tion of the reactants. These effects can be in-
corporated in the theory via the internal-state
formalism' or through a defect renormalized
propagator method.’® When the influence of the
defects or active sites extends to neighboring
sites a further dependence on lattice structure is
introduced.'® At short times the rate is time de-
pendent, However, a measurement of the mean
number of reactants on the surface, (N () in Eq.
(3), as a function ¢ would allow a determination
of the rate K (= =N, *d In{N (¢))/dt).

Finally, calculations for a system of two-state
reactants (mobile and immobile states), and
where a bimolecular reaction occurs on active
sites when both particles are in their mobile
states, show similar structural dependence of
the rate constant as well as variation due to the
mechanism governing internal-state population.

The rate equation (2) provides a general de-
scription of bimolecular reactions of N particles.
Different reactions are distinguished by the rate
K whose calculation incorporating characteristics

of the system is of fundamental importance, For
certain active-site catalyzed surface reactions
we have related K to the underlying stochastic
process, ¥, which governs single-particle transi-
tions. This was achieved by proceeding through
a sequence of relations, employing single-par-
ticle probability propagators, to calculate the
probability of reactive coincidences. The above
results coupled with kinetical experiments (con-
trolled measurements of reaction evolution on
single-crystal surfaces) and data about the mi-
gration of adsorbed species (rates, structural
and compositional dependencies) from field-ion
microscopy* and other methods could provide
quantitative estimates of structural and potential
surface parameters which control the rates of
migration and active-site catalyzed bimolecular
reactions.

This work was supported by the U. S. Energy
Research and Development Administration, Con-
tract No, EG-77-S-05-5489.
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Has Two-Dimensional Superfluidity Been Seen in Real *He Films?
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The theory of two-dimensional superfluidity by Nelson and Kosterlitz is examined in the
context of ideal interacting ‘He films. It is shown that superfluid onset in a film on a uni-
form surface would have a critical-temperature gap due to phase condensation. No exper-
iments on uniform or heterogeneous substrates have disclosed any gap, indicating that
superfluid onset in experimental films may have another origin.

In a recent Letter Nelson and Kosterlitz' pre-
dict that, if recent theories of phase transitions
in the planar XY model are applicable to uniform
two-dimensional *He films, the areal density of
superfluid will undergo a universal jump p, as
the critical temperature T, is approached from
below. The predicted relation is a linear depen-
dence, with theoretical slope independent of the
wall potential, coverage, and other details:

lim (ﬁ&>=zm2k3/m2

o1, \ T
=3.49%x107° g/cm?® K. (1)

Recent experiments by Bishop and Reppy? using

a torsional oscillator and re-examination of third-
sound experiments by Rudnick?® are in quantitative
agreement with Eq. (1). In addition Bishop and
Reppy cite third-sound results obtained by Mo-
chel and by Hallock which are consistent with
Refs. 2 and 3. The correspondence appears to
confirm the theory and, at the same time, the
judgment that the experimental films were in-
deed uniform two-dimensional (2D) systems.
However, in this Letter I cite contrary evidence
that makes it extremely unlikely that the films in
question could have been uniform. On this basis,
we are faced with (at least) two alternative ex-
planations: (a) 2D superfluidity is not strongly
affected by the kind of heterogeneity present in
the experimental films, or (b) the agreement is
fortuitous and an explanation of the data must be
sought elsewhere.

Virtually all solid surfaces are heterogeneous
in adsorption except for atomically clean and
well-ordered crystals having a single class of
crystal facet exposed to the adsorbed gas.* Un-
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less the uniformity of the substrate is demon-
strated for the particular gas, physical property,
coverage, and temperature conditions in ques-
tion, then it is prudent to suspect it as hetero-
geneous. There are no reported studies demon-
strating that the several substrates Mylar,?
glass,® argon-coated glass,® and polished CaF,?
used in the torsional oscillator and third-sound
experiments are uniform in adsorption, and
therefore the uniformity of the films has to be
doubted. But even in the event that all of the sub-
strates were ideal, the *He films themselves
would be nonuniform in the plane. This nonuni-
formity arises from the interactions between the
He atoms themselves, which causes monolayers
adsorbed on uniform surfaces to condense into
2D liquid phase at low temperature and, if the
density is sufficiently high, to form 2D solid. In
the following I discuss the experimental results
for “He on uniform surfaces, and explore the con-
sequences of the theory of 2D superfluidity ap-
plied to such films.

Monolayer and multilayer films of *He have
been studied for many years. During the earlier
period the substrates were typically heterogene-
ous adsorbents, and on these surfaces the films
showed little evidence of any layer structure or
phases within layers. The absence of structure
is now understood to result from strong lateral
fields due to substrate heterogeneity. However,
since 1970 film studies on more uniform sub-
strates have disclosed a succession of distinct
regimes within the first and second adsorbed lay-
ers of “*He, °He, and *He-°He mixtures.®"** These
adsorbents have been various high-area basal-
plane graphite substrates and basal-plane graph-
ite plated with monolayers of noble gases. The
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