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ABSTRACT  We present an extension of the continuous-time
random walk formalism to include internal states and to es-
tablish the connection to generalized master equations with
internal states. The theory allows us to calculate physical ob-
servables from which we can extract the characteristic param-
eters of the internal states of the system under study.

Physical systems can be described at different levels. In the
simplest models the system is considered to be a structureless
whole. Attempts to understand nature on finer scales incorpo-
rate sharper details of internal structure. The definition and
identification of the structural elements are naturally dictated
by the system under investigation. Consequently, a maximal
degree of detail (microscopicity) usually exists, governed by
characteristic parameters of the subject phenomenon (e.g.,
range of forces, correlation lengths, relaxation times, etc.).

Our aim is to describe, through examples, a manner of de-
composing systems into internal states and to present a rich
random walk formalism capable of characterizing internal
states and unusual relaxation effects. The total scheme may be
viewed as an effective scaling in terms of which fundamental
processes may be renormalized and their dynamics ana-
lyzed.

For our first example, we note that atomic clusters adsorbed
on crystalline surfaces may exist in several geometric config-
urations (Fig. 1, upper panels). During configurational transi-
tions, cluster centroids experience a lattice random walk (1)
displaying several internal states per unit cell (details to be
published elsewhere) (Fig. 1, lower panels).

Random-walk lattice sites need not represent spatial dis-
placements of the system variables but may merely model the
state of a counter, such as the flux of tracer ions through a neural
membrane. The positions of tracer ions within a channel rep-
resent the internal states of the channel, and the counter changes
when a tracer ion leaves the membrane (2).

Other types of membrane transport are enzyme-assisted as
in some cell wall transport (3). The ligand-membrane (enzyme)
complex may exist in several distinct states as intermediates in
the transport. A single ligand being transported through the
membrane becomes equivalent to a step to the right in a one-
dimensional walk. If two different ligand species may penetrate
the membrane, the transport process maps onto a two-dimen-
displaying several internal states per unit cell (details to be
published elsewhere) (Fig. 1, lower panels).

Finally, transient photocurrents in certain amorphous ma-
terials used as xerographic films can be modeled as the hopping
of localized charges over a random distribution of spatial sites
or random potential depths (4). In this last case, a periodic lattice
is mathematically imposed, such that the number of sites per
unit cell is large. The motions in and out of a cell are treated as
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random events. So many possible states exist for a carrier inside
a cell that it is almost hopeless to try to identify them. Therefore,
the germane characteristic of the process is specified by a single
waiting time distribution function for the leaving of struc-
tureless unit cells. This description is similar to proceeding from
a microscopic to a macroscopic description, such as in the hy-
drodynamic description of a fluid.

A unifying feature of the above models is a continuous-time
random walk on a lattice. An appropriate mathematical tech-
nique for the investigation of such processes was described a
number of years ago (5) and has been further developed and
applied more recently by several researchers (6-10). However,
internal states were not included in the above analyses. Lattice
random walks in which the walker can exist in several possible
spatial states per unit cell, but in which steps are taken in regular
time intervals, have been analyzed in an application to photo-
synthesis modeling (11). Weiss (12) recently discussed several
aspects of random walks by a walker capable of existing in ei-
ther of two states.

In this paper, we extend the continuous-time random walk
formalism to include internal states and to establish a connection
to generalized master equations. The physical observables of
the above-mentioned phenomena are typically mean distances,
fluxes, and concentrations and their fluctuations. The theory
is amenable to these calculations. Moreover, the theory offers
methods of analysis from which information about the transi-
tion rates between internal states can be found from the ex-
perimental data.

DESCRIPTION OF MODEL

Let us consider a d-dimensional space lattice of individual cells,

each being identified by a vector
with s, = L2, N, [1]

Generally we will be concerned with periodic boundary con-
ditions

8= (81, 89, -+554)

(s + Nysy + Ny ysg + Ny) = (84,59, ... [2]

Many applications involve the limiting case of infinite lattices

with N, — o for all « or perhaps for all « but one. The states

available to the walker will be chosen to be identical in each cell

and will be identified by an index j withj = 1,2, .... m.
The basic quantity of concern is the probability,

Pj,jo(sy So; t)a

7Sd)-

(3]

that a walker originally created at ¢ = 0 in lattice cell s¢ in state
jo will be in cell s in state j at time ¢. The transition (jo,s0) —
(j,s) is achieved after a number of individual steps by the
walker, each being characterized by the function

\bj,j/(S,S/' T) = F',',',/(S,S/; T)wj/(T) [43]
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I-D DIMER 2-D DIMER

F1G. 1. Left, One-dimensional dimer migration. Upper, Three
possible spatial configurations of a dimer (filled circles connected by
heavy line) moving along the x direction (the allowed equivalent
mirror image configurations are not included in the figure). If only
states 1 and 2 are allowed, this is a two-state dimer; if all states are
allowed, it is a three-state dimer. Lower, The random-walk lattice
describing the motion of the dimer centroid in upper panel. The unit
cell is denoted by broken lines and the states by circles, numbered,
respectively. Lettered arrows indicate transitions to and from states.
Note that transition rates connecting states can be different for
transitions to the left or right (i.e., @ # «, etc.). Also, the centroid
location is the same for states 1 and 3; however, they are distinguished
by different transition rates.

Right. Two-dimensional dimer migration. Upper, Spatial con-
figurations. Lower, Random-walk lattice.

in which ;(7) is the waiting time density function between
transitions when in state j (a time which we postulate to be in-
dependent of the lattice points s). The F function is the prob-
ability of (j”,s”) = (j,s) in one step at time 7 when a step is taken.
We have the normalization

> Fis(s8;7) =1 and fmlp,(‘r)d‘r =1. [4b]
s 0

Thus, Eq. 4a is the probability per unit time that, upon arrival
at s’ in state j/, a walker will, after time 7, have just taken a step
to s, arriving at that cell in state j. We shall finally be able to
express the required elements of the matrix

Pn(spso, t).. le(s So; 1)
P(s,80; t) = (5]

ml(s So; t) mm(saSOyt)

in terms of those of the matrix

V1u(s,8%; T) ‘plm(s s 7)
Y(s,s" 1) = (6]
1f,/ml(s S T) \bmm(&s T)

Furthermore, we postulate that all cells on our basic lattice are
equivalent so that the transition probability associated with any
displacement is independent of initial position and depends only
upon the displacement vector itself. For example

Y(sss 1) = Y(s — &5 1) (7]
P(s,sp3t) = P(s — sg; t) etc. [8]

Our lattice walk is executed through an alternating sequence
of steps and pauses, both specified by elements of the matrix
¥(s —s’; 7). Consider the first two steps of the walk, which we
assume to take a walker from lattice point s’ in state j’ to lattice
point s where it will arrive in state § in the time interval between
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7 and 7 + d7. The probability of the occurrence of this event
is
Qs — ¢ 1) dr
Z drf Yils — 81 — 7)Y (s

H i’

—_— s/; T”)dT”,

which is the weighted average summation over all possible
two-step paths of the walker. We also set

Y07y =0 if 7> 0 [9]

to ensure that the act of no transition is not considered to be a
step. The matrix Y(s,7) will always be chosen so that

Y(s,7) >0 as 7 >0 for all s. [10]

The defining equation for Q;;® (s —s’; 7) is more conveniently
written in matrix form with the defined quantities being con-
sidered as elements of a matrix:

Q¥(s — J
- Zf7¢(s =T = (s — & T dr

4 0
The n step walk carrying the walker from (j/,s’) to (j,s) with

the precise arrival time 7 is then characterized by a matrix
which satisfies the recurrence relationship

Qs — &5 7)
— Zf1Q(n—l)(s — .S‘”; T - T//)‘p(su — S’; T”)dT”. [11]
7 Jo
with
QW(s,7) = Y(s,7). [12]

The initial condition we choose for our problem is
P(s,t) > 6,00 — 0" as t >0, [13]

I being the identity matrix. We also define a matrix Q(©(s, 7)
by

QU(s,7) = 8,00 — OH)I. [14]
Then the matrix
Qs = 1= 2@ =1 (5]
n=0

satisfies the same initial condition as P(s — s’; 7). Its matrix el-
ements

Qs — 51 =2 Q,; (s — 1) [16]

n=0

represent the probability density of a walker starting at (j”,s”)
and just arriving at (j,s) at time 7, since the required probability
is the sum of the probabilities of the independent ways of
achieving that arrival— i.e., after no steps, after one step, after
two steps, etc.

The matrix Q(s, 7) is a special value of the generating func-
tion

i 2"QM (s, 7) [17]

n=0

Qs,7; 2) =

obtained by setting z = 1.

We now introduce the finite Fourier transform (in the dis-
crete lattice space {s}) and the Laplace transform in continuous
variable 7 for the function of Eq. 11 so that the convolution
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theorem can be applied. For a function F(s) we define (with
kj = 2nr j / N )

f(k) = f(27rr1/N1,

EN N Z ZF(S1

d s=1 sq=1

27r4/Ny) [18a]

X exp 27rz[N1 + + Nd].

Also, for a function G(t) we define the Laplace transform to

be
) = f :e—wG(t)dt. [18b]

Application of the Fourier and Laplace convolution theorems
to the recurrence formula, Eq. 11, yields

Gk w) = G0 (kyu) Y (k) [19a]
TR0 = Y (kyu), Ok, u) = I. [19b]
Then
(k) = Whaw}"I for n =0,1,2,..  [20]
so that, from Eq. 17,
Qs 2) = T+ 29 + 2202 + . ={I — 2k, u)}™
[21]

The required matrix P(s,t) whose elements were defined by
Eq. 3 is immediately available from Eq. 21. The quantity
Pjio(s,s05t) is related to Q;;(s — s’; 7) through the aid of a
function I';(7) which we define to be the probability that a
walker arriving at state (j,s) at time 0 has not changed state in
the time interval 7 after arrival. Then

P (s;t) = fot ¢ — 1NQ;;(s7)dr. [22]

Since ;(r) was defined below Eq. 4a to be the probability
density that a walker will leave state j (from any cell that it
might occupy) in time 7

t
r=1- L¢Ij(t — 7). [23]
The Laplace transform of this quantity is

¥iw =u[1 = §iw)l. [24]

Then, by taking the Laplace and finite Fourier transform of
Eq. 22, the convolution theorem, and Eq. 21,

Pk =u™[I = Y@ = $haw}™  [25]
in which ¥4 (u) is the diagonal matrix
yw 0 .. 0
~ 0 Y@ .. 0
Bw={ " P [26]
0 . . ... 4w

Our initially stated problem is solved by constructing the
inverse Laplace, finite Fourier transform of Eq. 25 (with k; =
27r;/N;); L™1is the inverse Laplace transform operator

P(st) = L7 4T — Y,)Gis,u) [27]

in which G(s,u) is the lattice Green’s function matrix
1 N, Na

G(su) = NN, > 2 fexp (mik I — YR
1 =1 rg=1
[28]
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This function satisfies our required periodic boundary condi-
tions (Eq. 2). In the limit N, —, = for all o,

Gls,u) = —&}T—)gf_ . f_ fexp (~ik-){I — $(hw}™ dok.
[29]

We observe that, once given the matrix y(s,7), Green’s function
G(s,u) follows from Eq. 21 and the matrix ¥4 (u) follows from
Eq. 26, so that all quantities that appear in our final formula,
Eq. 29, are given and the calculation of P(s,t) is reduced to
quadratures. Eq. 27 is the generalization of equations (V.11),
(L11), and (V.12) of ref. 5; there it was postulated that only one
walker state exists in each cell.

We note that many interesting properties can be obtained
directly from §. For example, in an infinite lattice the x-com-
ponent of the mth moment is given by

(s:m) = X2 2<sx = )P, (5,85 Oy
= lim L_l{(—z)’"Z(a’"qU (kyu,2) [0k, [1 = ¥ @]}

21, k>0

in which p; is the probability of initially being at state j.
Equilibrium probabilities are given by

Pj = lim Z ij(5,3’5t> DPnm
t=»w sm
= lim Y §ulkud) A = Jw)pm

uk=»0,z>1 m

GENERALIZED MASTER EQUATION FOR
CONTINUOUS-TIME RANDOM WALK

We have constructed our required probability distributions by
taking a weighted average over all paths available to the ran-
dom walker. An alternative scheme for analyzing the subject
walks is to construct a generalized master equation which is a
differential equation to describe the evolution of the walk while
it is in progress. We present an equation in the traditional form
and show how the naturally appearing functions in the equation
are related to those that characterize the individual paths.

With the identification established, one can discuss our
continuous-time random walk in terms of a generalized master
equation if one wishes.

We propose the following basic integral differential equation
(generalized master equation) for Pj;(s,7):

dPu (s,8) f dr 2 4@, (s — " DPy(s”,t — 1)

u 1

—<l>j~,j(s’ - TP s(st — 1} [30]
Postulating a factorization analogous to Eq. 4a, we set
S (s — s7) = Fu (8" — s1)®,(7) [31a]

in which the F function is precisely that given by Eq. 4a and
satisfies the normalization (Eq. 4b). Then, using Eq. 4b, we
have

Q)= D By (s — s7) [31b]

// o

The independence of the sum on s is a consequence of the
translational invariance of our lattice. We now show how the
relaxation functions, ®;(7), are related to the waiting time
functions, y;(7).

By taking Laplace and finite Fourier transforms of Eq. 30
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and Eq. 31 and using the initial conditions of Eq. 13, we ob-
tain

u;)jj,(k,u) - 5jj'= —a>j(u)fi,j'(k,u)
+ 2$jj,,(k,u);),~,(k,u). [32]
j

If we define ¢4 (u) to be the diagonal matrix

dwy 0. .0
sy = 0 AW .0 ) [33]
0 0. )
Eq. 32 has the matrix form
U= dkwlul + $@] @l + ¢,w)Blhu) =1
[34]
This equation can be made identical to Eq. 25 by equating the
following two diagonal matrices:
[l + ¢a@]=ull = Yy@]™ [35]

and

k)l + duu)]™ = Yk u). [36]

Consideration of the matrix elements involved in Eq. 35 implies
that

b, = ud W/ — ¥;w)] [37]

and
VW= ¢;w/lu + ¢;wl. [38]

These expressions are the multistate generalizations of Equa-
tions 9a and 9b of ref. 13. (see also ref. 14). Eq. 36 is equivalent
to

blku) = wh(ka)[I — Yaw)]™ [39]

The relationship between the components of ¢ and ¢ are
then

b;1ku) = ug jka) /(1 = §,@)] [40]
and _ ~ ~
Voku) = dutkow) [lu + &,w)]. [41)

Eq. 37 and Eq. 38 are recovered by summing Eq. 40 and Eq.
41 over j, using Eq. 4a, Eq. 4b, and Eq. 31b.

In conclusion, we have shown that a direct construction of
the probability matrix, Eq. 27, by a weighted sum over all
achievable paths is equivalent to solving the generalized master
equation, Eq. 30, when the time-relaxed kernels of Eq. 30 are
appropriately related to the transition rates through Eq. 40 and
Eq. 41.
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An attractive feature of the generalized master equation is
that it is precisely the form of the equation which has been
derived (15-18) for the time development of the diagonal ele-
ments of the density matrix of a quantum mechanical system
whose density matrix at time ¢ = 0 is diagonal. In any special
problem it is exceedingly difficult to derive the expression for
®;;~(7). However, by starting with Eq. 30 as a phenomenolo-
gical equation to describe a process, one at least starts with an
equation of the proper structure. Such an approach has been
used recently (19) for the study of exciton transfer. The
equivalence between the continuous-time random walk for-
malism and generalized master equations when there is no
translational invariance, but also no internal states, has been
noted.

The traditional approach to the generalized master equation
has been to find wider sets of conditions that cause it to become
equivalent to the Pauli master equation (or, if one is mathe-
matically inclined, to the Kolmogorov equation for statistics of
birth and death processes). Our attitude is to accept the fact that
we have been given a very rich integral differential equation
and marvel at the splendid variety of processes which it is ca-
pable of characterizing. For example, the generalized master
equation describing transient photocurrents in certain xero-
graphic films (4, 9) has a memory kernel decaying so slowly that
the Pauli master equation is not valid in any limit.

This work was partially supported by the Office of Naval Re-
search.
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