Mapping the pathways and energy landscape of protein aggregation

Mapping the pathways and energy landscape of protein aggregation

Soft Condensed Matter & Physics of Living Systems


September 5, 2017 -
3:00pm to 4:00pm




1116 East



University of Georgia

Proteins can adopt a variety of intricate conformations, including native, unfolded, misfolded and aggregated forms. In the latter case, generally 10’s-1000’s of protein molecules bind together to form an aggregate structure that could be random and amorphous or highly specific and well-ordered, such as an amyloid fibril. Amyloid fibril formation of certain proteins is associated with disease, including Alzheimer’s, Parkinson’s, and ALS, wherein the aberrant misfolding and aggregation of a particular protein is central to pathogenesis. Prion protein is notorious for forming infectious amyloid-like species that cause transmissible spongiform encephalopathies, including BSE, CJD and Kuru. In other cases, proteins form amyloid fibrils as part of their natural functional role, forming so-called functional amyloid.

Given the correct conditions, potentially any protein can be induced to form amyloid-like fibrils, also called nanofibrils. Nanofibrils hold promise for applications ranging from biosensors, nanowires, cell scaffolding, and perhaps as food ingredients. Protein nanofibrils have a high aspect ratio (1000’s nm in length, 7-12 nm wide), strength, and surface charge profile that make them attractive for such applications. The mechanisms of protein aggregation must be better understood in order to prevent amyloid formation, in the case of disease-associated amyloid, or such that it can be controlled in the case of engineering functional nanofibrils.