Interrogating a granular material: force networks, state variables, and acoustics

Granular materials exhibit large spatial variations in their response to external loading, whether static or dynamic. As such, continuum models of properties such as the shear modulus and sound speed often fail. A promising alternative is to build an understanding of bulk behaviors from measurements at the particle scale, by analogy with the statistical mechanics of thermal systems. I will describe experiments in which we utilize photoelastic particles and piezo-embedded 'smart' particles to explore how two familiar properties -- temperature equilibration and...

Granular materials exhibit large spatial variations in their response to external loading, whether static or dynamic. As such, continuum models of properties such as the shear modulus and sound speed often fail. A promising alternative is to build an understanding of bulk behaviors from measurements at the particle scale, by analogy with the statistical mechanics of thermal systems. I will describe experiments in which we utilize photoelastic particles and piezo-embedded 'smart' particles to explore how two familiar properties -- temperature equilibration and densities of states -- might arise in this new context.

Event Details

Date/Time:

  • Date: 
    Wednesday, November 14, 2012 - 10:00am

Location:
Howey N110