GRB Studies in the GeV Band

Gamma-ray bursts (GRBs) have been shown by the Fermi LAT to be a source of gamma rays with energies as high as ~100 GeV in the rest frame. Detection at higher energies may be possible with next-generation ground-based instruments. I will present results from a new simulation of GRB detections with the upcoming Cherenkov Telescope Array (CTA), using models based on the combined observations of Fermi LAT and lower-energy satellite experiments. This simulation allows the prediction of the overall detection rate, how this rate might vary as a function of telescope performance and uncertain GRB statistical properties, and the likely properties of detected GRBs. I will also show a preliminary...

Gamma-ray bursts (GRBs) have been shown by the Fermi LAT to be a source of gamma rays with energies as high as ~100 GeV in the rest frame. Detection at higher energies may be possible with next-generation ground-based instruments. I will present results from a new simulation of GRB detections with the upcoming Cherenkov Telescope Array (CTA), using models based on the combined observations of Fermi LAT and lower-energy satellite experiments. This simulation allows the prediction of the overall detection rate, how this rate might vary as a function of telescope performance and uncertain GRB statistical properties, and the likely properties of detected GRBs. I will also show a preliminary calculation of the GRB detection rate with the HAWC (High-Altitude Water Cherenkov) observatory using a similar model. Finally, I will end with a brief mention of how new GRB detections in the GeV band could help improve our understanding of UV-optical radiation fields in the universe.

Event Details

Date/Time:

  • Date: 
    Thursday, October 11, 2012 - 11:00am

Location:
Boggs 1-90 (CRA Visualization Room)