The Dynamical Structure of Electroconvecting Liquid Crystals

The Dynamical Structure of Electroconvecting Liquid Crystals

We utilize electroconvecting liquid crystal samples as a test bed from non-equilibrium driven systems. I will discuss results from the application of a novel mathematical analysis that incorporates time-delay embedding and diffusion maps to elucidate the underlying geometry in this system. This analysis permits the discrimination of different dynamical states from empirical data and is used to demonstrate multistability in this system. In addition we investigate the effects of an abrupt transition to defect turbulence on the structure and energy flow in this system.

Date

April 16, 2014 - 11:00am

Location

Howey N110

We utilize electroconvecting liquid crystal samples as a test bed from non-equilibrium driven systems. I will discuss results from the application of a novel mathematical analysis that incorporates time-delay embedding and diffusion maps to elucidate the underlying geometry in this system. This analysis permits the discrimination of different dynamical states from empirical data and is used to demonstrate multistability in this system. In addition we investigate the effects of an abrupt transition to defect turbulence on the structure and energy flow in this system.