"Condensed Matter Physics Opportunities in Semiconductor Nanowires from Bottom-up" by Xuan Gao

"Condensed Matter Physics Opportunities in Semiconductor Nanowires from Bottom-up" by Xuan Gao

Semiconductor nanowires synthesized in the bottom up approach have shown promising potential for a variety of applications in nanoelectronics, optoelectronics, biosensing and energy conversion. With the small length scale and a variety of material choices, nanowires also offer a versatile playground to explore mesoscopic and quantum physics. I will discuss our recent studies of magneto-transport phenomena in InAs and Bi2Se3 nanowires. In nanowires of InAs, a conventional low band-gap semiconductor, quantum interference and spin-orbit coupling lead to one-dimensional localization or anti-localization of electrons. For nanowires/ribbons of Bi2Se3, a 3D...

Date

December 1, 2010 - 10:00am

Location

Howey L5

Semiconductor nanowires synthesized in the bottom up approach have shown promising potential for a variety of applications in nanoelectronics, optoelectronics, biosensing and energy conversion. With the small length scale and a variety of material choices, nanowires also offer a versatile playground to explore mesoscopic and quantum physics. I will discuss our recent studies of magneto-transport phenomena in InAs and Bi2Se3 nanowires. In nanowires of InAs, a conventional low band-gap semiconductor, quantum interference and spin-orbit coupling lead to one-dimensional localization or anti-localization of electrons. For nanowires/ribbons of Bi2Se3, a 3D topological insulator, our experiments revealed a novel linear magneto-resistance which is likely due to 2D Dirac electrons on sample surface.